Notices

© Agilent Technologies, Inc. 2010

No part of this manual may be reproduced in any form or by any means (including electronic storage and retrieval or translation into a foreign language) without prior agreement and written consent from Agilent Technologies, Inc. as governed by United States and international copyright laws.

User Guide Part Number

G5415-90063

Edition

Revision 01, April 2010

Technical Support

Agilent Technologies Inc.
Automation Solutions Division
5301 Stevens Creek Blvd. Building 4
Santa Clara, CA 95051
USA

Technical Support: 1.800.979.4811
or +1.408.345.8011
service.automation@agilent.com

Customer Service: 1.866.428.9811
or +1.408.345.8356
orders.automation@agilent.com

European Service: +44 (0)1763850230
euroservice.automation@agilent.com

Web:
www.agilent.com/lifesciences/automation

Acknowledgements

Microsoft and Windows are registered trademarks of the Microsoft Corporation in the United States and other countries.
Adobe and Acrobat are trademarks of Adobe Systems Incorporated.

Warranty

The material contained in this document is provided “as is,” and is subject to being changed, without notice, in future editions. Further, to the maximum extent permitted by applicable law, Agilent disclaims all warranties, either express or implied, with regard to this manual and any information contained herein, including but not limited to the implied warranties of merchantability and fitness for a particular purpose. Agilent shall not be liable for errors or for incidental or consequential damages in connection with the furnishing, use, or performance of this document or of any information contained herein. Should Agilent and the user have a separate written agreement with warranty terms covering the material in this document that conflict with these terms, the warranty terms in the separate agreement shall control.

Safety Notices

A WARNING notice denotes a hazard. It calls attention to an operating procedure, practice, or the like that, if not correctly performed or adhered to, could result in personal injury or death. Do not proceed beyond a WARNING notice until the indicated conditions are fully understood and met.

A CAUTION notice denotes a hazard. It calls attention to an operating procedure, practice, or the like that, if not correctly performed or adhered to, could result in damage to the product or loss of important data. Do not proceed beyond a CAUTION notice until the indicated conditions are fully understood and met.

Technology Licenses

The hardware and/or software described in this document are furnished under a license and may be used or copied only in accordance with the terms of such license.

Restricted Rights Legend

If software is for use in the performance of a U.S. Government prime contract or subcontract, Software is delivered and licensed as “Commercial computer software” as defined in DFAR 252.227-7014 (June 1995), or as a “commercial item” as defined in FAR 2.101(a) or as “Restricted computer software” as defined in FAR 52.227-19 (June 1987) or any equivalent agency regulation or contract clause. Use, duplication or disclosure of Software is subject to Agilent Technologies’ standard commercial license terms, and non-DOD Departments and Agencies of the U.S. Government will receive no greater than Restricted Rights as defined in FAR 52.227-19(c)(1-2) (June 1987). U.S. Government users will receive no greater than Limited Rights as defined in FAR 52.227-14 (June 1987) or DFAR 252.227-7015 (b)(2) (November 1995), as applicable in any technical data.
Contents

Preface .. ix
About this guide .. x
Accessing Automation Solutions user guides ... xii

1. VWorks software overview .. 1
 VWorks software description ... 2
 Supported devices .. 3
 Relationship of VWorks components ... 4
 Overview of VWorks software user interface .. 8

2. Creating a protocol: basic procedure .. 13
 About protocols, processes, and tasks .. 14
 Workflow for creating a basic protocol ... 18
 Preparing for protocol writing .. 19
 Logging in, logging out, and changing passwords .. 22
 Adding devices ... 25
 Creating a new protocol .. 30
 Setting protocol options .. 31
 Adding an alarm .. 35
 Configuring labware .. 38
 Adding processes .. 42
 Setting plate parameters .. 44
 Adding and deleting tasks ... 51
 Specifying time constraints between dependent tasks .. 55
 Setting up Startup and Cleanup Protocol processes .. 58
 Saving the protocol .. 59
 Opening a plugin .. 60
 Compiling the protocol ... 61
 Simulating the protocol run ... 62
 Printing protocols .. 66

3. Creating a protocol: advanced topics .. 69
 Tracking barcodes ... 70
 Using simple variables ... 73
 Using JavaScript .. 80
 VWorks-defined functions ... 83
 plate object .. 85
4. Using macros to create protocols
 About protocol macros and the macro library
 Adding macros to and removing macros from the macro library
 Inserting macros in protocols
 Editing a macro
 Copying macros to a different computer

5. Creating protocol forms for operators
 About forms for running protocols
 Workflow for creating or editing a form
 Opening the Form Designer
 Configuring a run button and other specialized buttons in a form
 Adding indicators for elapsed time and progress to a form
 Adding form controls that allow editing or runtime data display
 Example: Creating a scripted Pushbutton control in a form
 Setting the form properties
 Understanding JavaScript context in form design

6. Running a protocol
 Workflow for running a protocol
 Opening a protocol
 Setting log file directories
 Setting general and view options
 Setting error-handling options
 Setting up email notification
 Setting up automatic online notification
 Starting the protocol run
 Managing runsets
 Monitoring the overall run progress
 Tracking the run progress of instances or devices
 Pausing the run
 Stopping the run

7. Setting parameters for I/O-handling tasks
 Digital Output
 Wait for Input
8. Setting parameters for microplate-handling tasks

Centrifuge Process .. 241
Configure Static Labware .. 250
Delid ... 252
Dismount .. 256
Incubate ... 258
Mount ... 262
Move to Location (Bravo) ... 264
Place Plate .. 266
Pierce Plate (Seal Piercer) ... 269
Print and Apply .. 273
Relid ... 288
Reserve Location ... 292
Rotate Stage (Rotator) .. 294
Rotate Stage (Microplate Labeler) 296
Seal (PlateLoc) .. 298
Waste ... 301

9. Setting parameters for microplate storage tasks

Check First Plate Orientation (Stacker) 305
Downstack ... 307
Load ... 311
Reorder ... 315
Scan Stack ... 319
Storage Incubate .. 321
Unload ... 324
Upstack ... 328

10. Setting parameters for liquid-handling tasks

SubProcess (Bravo, Vertical Pipetting Station) 333
Aspirate (Bravo, Vertical Pipetting Station) 334
Assemble Vacuum (Bravo) ... 346
Dilute to Final Volume (Bravo) 349
Disassemble Vacuum (Bravo) ... 356
Dispense (Bravo, Vertical Pipetting Station) 358
Evaporate (Bravo) ... 366
Hit Pick Replication (Bravo) .. 368
Mix (Bravo, Vertical Pipetting Station) 398
Move and Filter Plate (Bravo) .. 406
Pin Tool (Bravo, Vertical Pipetting Station) 413
Pump Reagent (Bravo, Vertical Pipetting Station) 422
Serial Dilution (Bravo, Vertical Pipetting Station) 425
Set Head Mode (Bravo) .. 431
Shake (Bravo, Vertical Pipetting Station) 438
Tips Off (Bravo, Vertical Pipetting Station) 441
Tips On (Bravo, Vertical Pipetting Station) 444
Preface

This preface contains the following topics:

- “About this guide” on page x
- “Accessing Automation Solutions user guides” on page xii
About this guide

Who should read this guide

This user guide is for people with the following job roles:

<table>
<thead>
<tr>
<th>Job role</th>
<th>Responsibilities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Integrator</td>
<td>Someone who writes software and configures hardware controlled by VWorks software.</td>
</tr>
<tr>
<td>Lab manager, administrator, or technician</td>
<td>Someone who is responsible for:</td>
</tr>
<tr>
<td></td>
<td>• Developing the applications that are run using VWorks software</td>
</tr>
<tr>
<td></td>
<td>• Developing training materials and standard operating procedures for operators</td>
</tr>
<tr>
<td>Operator</td>
<td>Someone who performs the daily production work using VWorks software and solves routine problems.</td>
</tr>
<tr>
<td></td>
<td>Your organization may choose to create its own procedures for operators including the procedures in this guide.</td>
</tr>
</tbody>
</table>

What this guide covers

This guide explains how to use the VWorks software. This guide does not provide procedures for setting up, operating, or troubleshooting devices using the device diagnostic software. For information on devices and how to use the diagnostic software, see the device user guide.

What is new in this revision

<table>
<thead>
<tr>
<th>Feature and description</th>
<th>See</th>
</tr>
</thead>
<tbody>
<tr>
<td>New macros and macro library feature to expedite protocol creation</td>
<td>“Using macros to create protocols” on page 119</td>
</tr>
<tr>
<td>New Form Designer for creating custom interfaces that operators can use to start protocols</td>
<td>“Creating protocol forms for operators” on page 135</td>
</tr>
<tr>
<td>New JavaScript function and object</td>
<td>• “VWorks-defined functions” on page 83</td>
</tr>
<tr>
<td></td>
<td>• “forms object” on page 111</td>
</tr>
<tr>
<td>New online message posting feature that posts messages to Twitter from the VWorks software</td>
<td>“Setting up automatic online notification” on page 203</td>
</tr>
<tr>
<td>Improved functionality in the hit pick replication feature</td>
<td>“Hit Pick Replication (Bravo)” on page 368</td>
</tr>
</tbody>
</table>
Software version

This guide describes VWorks Automation Control, installer 11.0 or later.

Related guides

This guide should be used in conjunction with the following user documents:

- **VWorks Automation Control Setup Guide.** The setup guide explains how to install the VWorks software, define labware, specify pipetting speed and accuracy, track and manage labware in storage, manage user accounts, and use VWorks ActiveX control.
- **Automation Solutions device user guides.** These documents explain how to set up and use Automation Solutions devices.
- **Third-party device user documents.** These documents explain how to set up and use third-party devices.

Related information

<table>
<thead>
<tr>
<th>For information about...</th>
<th>See...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accessing related user guides</td>
<td>"Accessing Automation Solutions user guides" on page xii</td>
</tr>
<tr>
<td>Reporting problems with the software</td>
<td>"Reporting problems" on page 545</td>
</tr>
</tbody>
</table>
About this topic

This topic describes the different formats of Automation Solutions user information and explains how to access the user information.

Where to find user information

The Automation Solutions user information is available in the following locations:

- **Knowledge base.** The help system that contains information about all of the Automation Solutions products is available from the Help menu within the VWorks software.

- **PDF files.** The PDF files of the user guides are installed with the VWorks software and are on the software CD that is supplied with the product. A PDF viewer is required to open a user guide in PDF format. You can download a free PDF viewer from the internet. For information about using PDF documents, see the user documentation for the PDF viewer.

- **Agilent Technologies website.** You can search the online knowledge base or download the latest version of any PDF file from the Agilent Technologies website at www.agilent.com/lifesciences/automation.

Accessing safety information

Safety information for the Agilent Technologies devices appears in the corresponding device user guide.

You can also search the knowledge base or the PDF files for safety information.

Using the knowledge base

Knowledge base topics are displayed using web browser software such as Microsoft Internet Explorer and Mozilla Firefox.

Note: If you want to use Internet Explorer to display the topics, you might have to allow local files to run active content (scripts and ActiveX controls). To do this, in Internet Explorer, open the **Internet Options** dialog box. Click the **Advanced** tab, locate the **Security** section, and select **Allow active content to run in files on my computer**.

To open the knowledge base, do one of the following:

- From within VWorks software, select **Help > Knowledge Base** or press F1.
- From the Windows desktop, select **Start > All Programs > Agilent Technologies > VWorks > User Guides > Knowledge Base.**
Opening the help topic for an area in the VWorks window

1. In the main window of the VWorks software, click the help button 📚. The pointer changes to 🤔. Notice that the different icons or areas are highlighted as you move the pointer over them.

2. Click an icon or area of interest. The relevant topic or document opens.
Features in the Knowledge Base window

1 **Navigation area.** Consists of four tabs:
 - **Contents.** Lists all the books and the table of contents of the books.
 - **Index.** Displays the index entries of all of the books.
 - **Search.** Allows you to search the Knowledge Base (all products) using keywords. You can narrow the search by product.
 - **Favorites.** Contains bookmarks you have created.

2 **Navigation buttons.** Enable you to navigate through the next or previous topics listed in the Contents tab.

3 **Content area.** Displays the selected online help topic.

4 **Toolbar buttons.** Enable you to print the topic or send documentation feedback by email.
Related information

<table>
<thead>
<tr>
<th>For information about...</th>
<th>See...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Who should read this guide, what this guide covers, software version covered, and related guides</td>
<td>“About this guide” on page x</td>
</tr>
<tr>
<td>Reporting problems with the software</td>
<td>“Reporting problems” on page 545</td>
</tr>
</tbody>
</table>
1

VWorks software overview

This chapter contains the following topics:
- "VWorks software description" on page 2
- "Supported devices" on page 3
- "Relationship of VWorks components" on page 4
- "Overview of VWorks software user interface" on page 8
VWorks software description

Description

The VWorks Automation Control software (or VWorks software) manages and controls both standalone devices and integrated devices in a laboratory automation system. You use VWorks software to:

- **Set up and manage user accounts.** You can set up different user accounts to enforce access policies.
- **Define labware.** Labware definitions describe the labware you will use during protocol runs.
- **Manage inventory.** The Inventory Editor helps you track barcodes and labware as you move them into and out of storage or incubation.
- **Set up devices.** During setup, you need to add standalone or integrated devices in the software.
- **Create protocols.** Protocols determine the sequence of tasks you want to automate in a run. For example, you can use a protocol to apply barcode labels to 100 microplates.
- **Run, pause, monitor, and stop protocols.** You can start, pause, monitor, and stop a protocol run from the controlling computer.

Related information

<table>
<thead>
<tr>
<th>For information about...</th>
<th>See...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supported devices</td>
<td>“Supported devices” on page 3</td>
</tr>
<tr>
<td>Introduction to the software user interface</td>
<td>“Overview of VWorks software user interface” on page 8</td>
</tr>
<tr>
<td>Relationship of software components</td>
<td>“Relationship of VWorks components” on page 4</td>
</tr>
<tr>
<td>VWorks software installation and setup</td>
<td>VWorks Automation Control Setup Guide</td>
</tr>
<tr>
<td>Defining labware and creating liquid classes</td>
<td>VWorks Automation Control Setup Guide</td>
</tr>
<tr>
<td>Managing and tracking labware in storage</td>
<td>VWorks Automation Control Setup Guide</td>
</tr>
<tr>
<td>Managing user accounts</td>
<td>VWorks Automation Control Setup Guide</td>
</tr>
<tr>
<td>Using VWorks ActiveX control</td>
<td>VWorks Automation Control Setup Guide</td>
</tr>
<tr>
<td>Device setup</td>
<td>Device user guide or third-party device driver user guide</td>
</tr>
</tbody>
</table>
Supported devices

The VWorks software manages and controls all Automation Solutions devices and a large number of third-party devices.

Automation Solutions devices

All of Automation Solutions devices can be used with the VWorks software, including:

- BenchCel Microplate Handling Workstation
- BioCel System
- Bravo Automated Liquid Handling Platform
- Labware Stacker
- Microplate Labeler
- Microplate Centrifuge
- Microplate Seal Piercer
- PlateLoc Thermal Microplate Sealer
- Vertical Pipetting Station

Third-party devices

A large number of third-party devices can be used with the VWorks software. For a comprehensive list, go to www.agilent.com/lifesciences/automation.

If you would like to add other devices, contact Automation Solutions Customer Service.

Related information

<table>
<thead>
<tr>
<th>For information about…</th>
<th>See…</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device setup</td>
<td>Device user guide or the third-party device driver user guide</td>
</tr>
<tr>
<td>Relationship of VWorks software components</td>
<td>“Relationship of VWorks components” on page 4</td>
</tr>
<tr>
<td>Introduction to the VWorks software user interface</td>
<td>“Overview of VWorks software user interface” on page 8</td>
</tr>
<tr>
<td>VWorks software installation and setup</td>
<td>VWorks Automation Control Setup Guide</td>
</tr>
</tbody>
</table>
Relationship of VWorks components

The VWorks software uses different components (files and databases) to run protocols. It is important to understand the way each of the components in the software relate. Changing settings or options in one component will affect one or more of the other components.

Component descriptions

The following table lists and describes the VWorks software components.

Note: The device, teachpoint, and protocol files are stored in locations you specify. Agilent Technologies recommends that you create folders within the c:\VWorks Workspace folder for storing these files.

<table>
<thead>
<tr>
<th>Component</th>
<th>Description</th>
<th>Extension</th>
<th>Opening this component loads...</th>
</tr>
</thead>
</table>
| Device file | A file that contains: | .dev | • Device profile
 | • The list of devices the software will communicate with and control | | • Teachpoint file (applicable to some devices such as the robot in the BioCel System and the BenchCel device) | |
| | • Configuration information of each device | | |
| | • Communication settings (profile) | | |
| Device profile | A collection of settings, stored in the Windows registry, that the VWorks software uses to control a specific device. | None | Teachpoint file (applicable to some devices such as the robot in the BioCel System and the BenchCel device) |
| Teachpoint file | A device-dependent file that contains your teachpoint settings. | .xml | Teachpoint definitions |
| Protocol file | A file that contains instructions for performing a run. | .pro | • VWorks software (if it is not already open) |
| | | | • Device file |
| Labware definition | Labware properties stored in the Windows registry. | None | Labware definitions |
| Liquid class | Pipetting settings, setup for different liquid types, stored in the Windows registry. | None | Liquid class information |
| Pipette technique | A file that specifies the x- and y-axis offset when pipetting. | .xml | Pipette x- and y-axis offset information |
| Hit-pick format | A file used by the Hit Pick Replication task and specifies the dispense pattern in destination microplates. | .xml | Dispense information in destination microplates |
The following diagram summarizes the relationship of the components. Notice the following:

- Labware definitions and user information are used by all protocols. Liquid classes, pipetting techniques, and hit-pick formats are used by protocols containing liquid-handling tasks. In particular, hit-pick formats are used by the Hit Pick Replication task.
- Each protocol references a single device file that contains one or more devices.
- More than one protocol can reference the same device file.
- Each device (or robot) references a single profile.
- Some devices, such as the robot in the BioCel System and BenchCel device, reference a single teachpoint file.
Impact of changes to the components

The following table describes the consequences of making changes to one or more components.

<table>
<thead>
<tr>
<th>If you...</th>
<th>Then...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Make a change to the</td>
<td>• All profiles that use that teachpoint file are affected</td>
</tr>
<tr>
<td>teachpoint file</td>
<td>• All device files that use those profiles are affected</td>
</tr>
<tr>
<td></td>
<td>• All protocols that use those device files are affected</td>
</tr>
<tr>
<td>Create a new profile</td>
<td>You must specify the new profile in your device file</td>
</tr>
</tbody>
</table>

* Applicable to protocols containing liquid-handling tasks only
** Individual device, not a device type
Relationship of VWorks components

<table>
<thead>
<tr>
<th>If you...</th>
<th>Then...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Want to use two different teachpoint files</td>
<td>You must create two:</td>
</tr>
<tr>
<td></td>
<td>• Device files</td>
</tr>
<tr>
<td></td>
<td>• Profiles</td>
</tr>
<tr>
<td></td>
<td>• Teachpoint files</td>
</tr>
<tr>
<td></td>
<td>• Protocol files</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Want to copy a protocol to another system or computer</th>
<th>Use the File > Export command to export all components:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• Protocol file</td>
</tr>
<tr>
<td></td>
<td>• Device file</td>
</tr>
<tr>
<td></td>
<td>• Device profiles</td>
</tr>
<tr>
<td></td>
<td>• Labware definitions and classes</td>
</tr>
<tr>
<td></td>
<td>• Liquid classes</td>
</tr>
<tr>
<td></td>
<td>• Pipette techniques</td>
</tr>
<tr>
<td></td>
<td>• Hit-pick format or input files</td>
</tr>
<tr>
<td></td>
<td>• Plate map database</td>
</tr>
</tbody>
</table>

The exported .vzp file can be imported in another computer.

Related information

<table>
<thead>
<tr>
<th>For information about...</th>
<th>See...</th>
</tr>
</thead>
<tbody>
<tr>
<td>VWorks software description</td>
<td>“VWorks software description” on page 2</td>
</tr>
<tr>
<td>VWorks software user interface</td>
<td>“Overview of VWorks software user interface” on page 8</td>
</tr>
<tr>
<td>Supported devices</td>
<td>“Supported devices” on page 3</td>
</tr>
<tr>
<td>Device setup, including creating profiles and setting teachpoints</td>
<td>Device user guide or the third-party device driver user guide</td>
</tr>
<tr>
<td>VWorks software installation and setup</td>
<td>VWorks Automation Control Setup Guide</td>
</tr>
<tr>
<td>Defining labware and creating liquid classes</td>
<td>VWorks Automation Control Setup Guide</td>
</tr>
<tr>
<td>Managing and tracking labware in storage</td>
<td>VWorks Automation Control Setup Guide</td>
</tr>
<tr>
<td>Managing user accounts</td>
<td>VWorks Automation Control Setup Guide</td>
</tr>
<tr>
<td>Using VWorks ActiveX control</td>
<td>VWorks Automation Control Setup Guide</td>
</tr>
<tr>
<td>Exporting protocols and associated components</td>
<td>“Exporting and importing protocols and associated components” on page 512</td>
</tr>
</tbody>
</table>
Overview of VWorks software user interface

The VWorks software user interface consists of menus and menu commands, toolbars, tabbed areas, and a status bar. The content of each of these items can change depending on whether you are viewing a device file or protocol file.

Basic terminology

The following diagram shows the basic VWorks software user interface elements.

<table>
<thead>
<tr>
<th>Item</th>
<th>Terminology</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Title bar</td>
<td>Displays the name of the window.</td>
</tr>
<tr>
<td>2</td>
<td>Menus</td>
<td>Lists menu commands.</td>
</tr>
<tr>
<td>3</td>
<td>Toolbars</td>
<td>Displays button commands.</td>
</tr>
<tr>
<td>4</td>
<td>Work area</td>
<td>Displays either device files or protocols.</td>
</tr>
<tr>
<td>5</td>
<td>Log and progress area</td>
<td>Displays the Main Log, Pipette Log, Time Constraint Log, Progress, and Runset Manager. You use these tabs primarily to set up multiple protocol runs in a sequence and monitor various aspects of the run.</td>
</tr>
<tr>
<td>6</td>
<td>Status bar</td>
<td>Displays the state of the software.</td>
</tr>
</tbody>
</table>
Device file terminology

To display device file information, click the tab that displays the name of the device file. The following diagram shows the device file user-interface terminology. In the example, the device file name is Device File - 1.

<table>
<thead>
<tr>
<th>Item</th>
<th>Terminology</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Available Devices area</td>
<td>Displays the following tabs:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Available Devices. The list of devices you can add to the device file.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Workspace. The list of protocols and devices that are currently open.</td>
</tr>
<tr>
<td>2</td>
<td>Device file area</td>
<td>Displays the list of devices that are added to the device file. The area</td>
</tr>
<tr>
<td></td>
<td></td>
<td>also allows you to:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Initialize all devices.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Initialize selected devices.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Close selected devices.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Delete selected devices.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Open the diagnostics software of the selected device.</td>
</tr>
<tr>
<td>3</td>
<td>Device properties area</td>
<td>Displays the properties you can set for the selected device.</td>
</tr>
</tbody>
</table>
Protocol terminology

To display the protocol information, click the tab that displays the name of the protocol. The following diagram shows the protocol user-interface terminology. In the example, the protocol name is Serial Dilution.

<table>
<thead>
<tr>
<th>Item</th>
<th>Terminology</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Available Tasks area</td>
<td>Displays the following tabs:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Available Tasks. The list of tasks you can add to a protocol. The list of tasks can vary, depending on the devices added in the device file and the process or subprocess selected.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Note: You can use the filter buttons beneath the tasks to display only the tasks in a selected category.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Workspace. The list of protocols and devices that are currently open.</td>
</tr>
</tbody>
</table>
Protocol area

Displays the following:

- **Startup Protocol.** Contains tasks that must be run before the main protocol starts.
- **Main Protocol.** Contains tasks of the protocol.
- **Cleanup Protocol.** Contains tasks that must be run after the main protocol finishes.
- **Protocol Options.** References the device file and contains additional information associated with the protocol.

Task Parameters area

Displays one or more of the following, depending on the task selected:

- **Task Parameters.** Contains parameters associated with the selected process plate or task.
- **Custom Parameters.** Allows you to create variables to be used by the selected task. Might also contain parameters or options associated with the task.
- **Device Selection.** Contains the list of devices that will perform the selected task. Also allows you to set up a pool of devices for the same task to increase throughput and backup devices in case the primary devices are in an error state.
- **Advanced Settings.** Allows you to add JavaScript to change the task parameters or pass information to and from an external database during a protocol run.

Related information

<table>
<thead>
<tr>
<th>For information about...</th>
<th>See...</th>
</tr>
</thead>
<tbody>
<tr>
<td>VWorks software description</td>
<td>“VWorks software description” on page 2</td>
</tr>
<tr>
<td>Quick reference of menu and toolbar commands</td>
<td>“Quick reference” on page 547</td>
</tr>
<tr>
<td>Supported devices</td>
<td>“Supported devices” on page 3</td>
</tr>
<tr>
<td>Agilent Technologies devices</td>
<td>Agilent Technologies device user guide</td>
</tr>
</tbody>
</table>
1 VWorks software overview

Overview of VWorks software user interface

<table>
<thead>
<tr>
<th>For information about...</th>
<th>See...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Third-party devices</td>
<td>Third-party device user guide and the corresponding device driver user guide</td>
</tr>
<tr>
<td>VWorks software installation and setup</td>
<td>VWorks Automation Control Setup Guide</td>
</tr>
<tr>
<td>Defining labware and creating liquid classes</td>
<td>VWorks Automation Control Setup Guide</td>
</tr>
<tr>
<td>Managing and tracking labware in storage</td>
<td>VWorks Automation Control Setup Guide</td>
</tr>
<tr>
<td>Managing user accounts</td>
<td>VWorks Automation Control Setup Guide</td>
</tr>
<tr>
<td>Using VWorks ActiveX control</td>
<td>VWorks Automation Control Setup Guide</td>
</tr>
</tbody>
</table>
2
Creating a protocol: basic procedure

Read this chapter if you are an administrator or technician who writes protocols.

This chapter contains the following topics:
• “About protocols, processes, and tasks” on page 14
• “Workflow for creating a basic protocol” on page 18
• “Preparing for protocol writing” on page 19
• “Logging in, logging out, and changing passwords” on page 22
• “Adding devices” on page 25
• “Creating a new protocol” on page 30
• “Setting protocol options” on page 31
• “Adding an alarm” on page 35
• “Configuring labware” on page 38
• “Adding processes” on page 42
• “Setting plate parameters” on page 44
• “Adding and deleting tasks” on page 51
• “Specifying time constraints between dependent tasks” on page 55
• “Setting up Startup and Cleanup Protocol processes” on page 58
• “Saving the protocol” on page 59
• “Opening a plugin” on page 60
• “Compiling the protocol” on page 61
• “Simulating the protocol run” on page 62
• “Printing protocols” on page 66

For details on using macros to help create your protocols, see “Using macros to create protocols” on page 119.
About protocols, processes, and tasks

Concept overview

The VWorks software enables you to create protocols to specify the laboratory tasks to automate. A protocol (1) consists of one or more processes (2). Each process consists of one or more tasks (3).

Protocols

A protocol is a schedule of tasks to be performed by a standalone device or devices integrated in the lab automation system. The purpose of a protocol is to process or perform tasks on labware.

Protocols appear in the Protocol area of the VWorks window. The following example shows a protocol called Serial Dilution3 displayed in the VWorks window.
Processes

A process is a sequence of tasks that are performed on a particular labware or a group of labware. A process is represented by a lane with white background in the Protocol area.

Each process lane starts with a microplate icon. The icon typically represents the labware or group of labware that you are processing. The labware is called the process plate.

In the previous example, the process plate is called Source Plate and is associated with a specific labware type (the type is defined in the Labware Editor). The process contains a sequence of tasks for processing the Source Plate: Set head mode, Tips On, Aspirate, Dispense, and Tips Off. (For a description of the tasks, see “Setting parameters for liquid-handling tasks” on page 333.)

A process lane can also be used as a control to initiate other processes in the protocol. In this case, the microplate icon at the beginning of the process lane is not associated with any labware.
In the following example, the process lane named Control is used to initiate other processes in the protocol. Notice that the protocol can contain more than one process.

The example also shows a lane with gray background. The gray lane displays activities of configured labware. For more information about configured labware, see “Configuring labware” on page 38.

Plate instances

When a process plate icon represents a group of labware, each labware in the group is called a plate instance. Using the previous example, if you have 10 microplates that need to be processed as the Source Plate, then microplate 1 is Source Plate instance 1, microplate 2 is Source Plate instance 2, microplate 3 is Source Plate instance 3, and so on.

IMPORTANT All labware represented by a process plate must be the same labware type.

Subprocesses

A subprocess is a sequence of tasks performed as a subroutine within a protocol. A subprocess is performed by a single device type, such as the Bravo device.
IMPORTANT Within a given protocol, ensure that any main process and subprocess do not share the same name.

Subprocesses are represented by a subprocess icon in the protocol. You can expand or collapse the subprocess to show or hide the subprocess tasks. In the following example, the Bravo Subprocess is expanded to show the following tasks: Set Head Mode, Tips On, Aspirate, Dispense, and Tips Off. (For a description of the tasks, see “Setting parameters for liquid-handling tasks” on page 333.)

Tasks

A task is an operation performed on one or more labware, and is represented by an icon in the protocol. It has associated parameters that are set in the Task Parameters area.

In the following example, the tasks in the Bravo subprocess are highlighted. Notice that the Aspirate task is selected, and the parameters for the Aspirate task are displayed in the Task Parameters area on the right.

Related information

<table>
<thead>
<tr>
<th>For information about...</th>
<th>See...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Defining labware</td>
<td>VWorks Automation Control Setup Guide</td>
</tr>
</tbody>
</table>
Workflow for creating a basic protocol

The following table presents the workflow for creating a protocol.

<table>
<thead>
<tr>
<th>Step</th>
<th>For this task...</th>
<th>See...</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Prepare for protocol writing</td>
<td>“Preparing for protocol writing” on page 19</td>
</tr>
<tr>
<td>2</td>
<td>Log in to the VWorks software.</td>
<td>“Logging in, logging out, and changing passwords” on page 22</td>
</tr>
<tr>
<td>3</td>
<td>Add devices and create a profile for each device.</td>
<td>“Adding devices” on page 25</td>
</tr>
<tr>
<td>4</td>
<td>Create a protocol.</td>
<td>“Creating a new protocol” on page 30</td>
</tr>
<tr>
<td>5</td>
<td>Set protocol options.</td>
<td>“Setting protocol options” on page 31</td>
</tr>
<tr>
<td>6</td>
<td>Add an alarm.</td>
<td>“Adding an alarm” on page 35</td>
</tr>
<tr>
<td>7</td>
<td>Configure labware.</td>
<td>“Configuring labware” on page 38</td>
</tr>
<tr>
<td>8</td>
<td>Adding processes.</td>
<td>“Adding processes” on page 42</td>
</tr>
<tr>
<td>9</td>
<td>Set plate properties.</td>
<td>“Setting plate parameters” on page 44</td>
</tr>
<tr>
<td>10</td>
<td>Add tasks.</td>
<td>“Adding and deleting tasks” on page 51</td>
</tr>
<tr>
<td></td>
<td>Optional. Set up startup and cleanup protocols.</td>
<td>“Setting up Startup and Cleanup Protocol processes” on page 58</td>
</tr>
<tr>
<td>11</td>
<td>Save the protocol.</td>
<td>“Saving the protocol” on page 59</td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Before you create a protocol, determine the following:

- The devices and accessories you need for the protocol.
 A device is a robot, instrument, or location in the lab automation system that can hold a piece of labware. For more information, see “Adding devices” on page 25.
 An accessory is an option that can be added to a robot, instrument, or location to enhance existing functions and facilitate operation (for example, an Auto Filling Reservoir).
- The labware that will be used or processed during the protocol run and their starting and ending locations.
- Whether the macro library contains any task sequences that you can use. For details on using macros, see “Using macros to create protocols” on page 119.

This topic explains how you plan for and specify the different devices, accessories, and labware in a protocol and the terminology that is used.

Planning device and accessory use

When planning for devices and accessories:

- Determine the devices and accessories you will need in the protocol.
• Determine the locations of the accessories on devices such as the Bravo Platform or the Vertical Pipetting Station. You do this when you configure the accessory in the diagnostics software. For instructions, see the device user guide.

IMPORTANT Accessory locations are displayed in the diagnostics Configuration tab only. You need to remember their locations when configuring labware in the protocol.

Note: Devices and accessories stay at the same location throughout a protocol run.

For the list of available devices and accessories you can use in the lab automation system, see the device user guide or the Agilent Technologies website at www.agilent.com/lifesciences/automation.

Planning labware use

In a lab automation system, labware can either:

- Transfer into and out of the system for processing.
- Start and stay in the system during the entire protocol run.

When you plan a protocol, you should determine how the labware will be used or processed and how they will move in the system. For example, if you are writing a microplate replication protocol, you need to decide whether the source microplates or destination microplates will be moved into the system while the other will remain stationary in the system. The decision can depend on many factors, including your preferences.

In the VWorks software, labware can be categorized as follows:

- Process plates
- Configured labware
- Static labware

Process plates

A process plate is a labware that:

- Is transferred into the system automatically or manually during the protocol run.
- Is the object of one or more tasks in the protocol run.
- Might move to different locations during the run.
- Is transferred out of the system automatically or manually during the protocol run.

For more information about process plates, see “About protocols, processes, and tasks” on page 14. To create a protocol process, see “Workflow for creating a basic protocol” on page 18.

Configured labware

A configured labware is a labware that:

- Starts at a location on a device.
- Is used by one or more tasks in the protocol process.
- Might move to different locations during the run.
- Returns to the original location after the protocol run is finished.
For the Bravo Platform, configured labware represents the single physical labware on the deck, such as a tip box. For example, if you are using two different tip boxes in a protocol, you would configure two labware in the software, one for each tip box on the deck.

Like accessories, you must let the software know the labware's starting location. To do this, see “Configuring labware” on page 38.

Configured labware is displayed in a protocol with a gray background. If it is used by a task in a Bravo sub-process, a copy of the sub-process tasks are shown next to the configured labware. You cannot add or remove tasks in the duplicated process. However, whenever the sub-process is updated, the duplicate copy is also updated automatically.

You have the option of converting a configured labware into a process plate. For instructions, see “Configuring labware” on page 38.

Static labware

IMPORTANT The latest version of the VWorks software is backward-compatible with Bravo Platform protocols created in VWorks4 version 6.2.3 or earlier and will continue to support static labware configuration procedures. However, Agilent Technologies recommends that you use the configured labware when writing new protocols.

A static labware is a labware that will start on the Bravo deck and will remain at the same location during the protocol run. For example, a tip box can be a static labware.

To specify its starting location, you must configure the static labware using one of the following methods:

- The Bravo Sub-Process task in a Main Protocol
- The Configure Static Labware task in the Startup Protocol
- In general, you configure static labware before the first task in a protocol. If you have multiple processes in the protocol, configure the labware once before the first task of the first process.

Configure static labware in a Startup Protocol if it will be used in all the Main Protocol subprocesses. Configure static labware in the Main Protocol subprocess if you want to override the labware configuration in the Startup Protocol.

Related information

<table>
<thead>
<tr>
<th>For information about...</th>
<th>See...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protocols, processes, and tasks</td>
<td>“About protocols, processes, and tasks” on page 14</td>
</tr>
<tr>
<td>Workflow for creating a basic protocol</td>
<td>“Workflow for creating a basic protocol” on page 18</td>
</tr>
<tr>
<td>Using advanced features</td>
<td>“Creating a protocol: advanced topics” on page 69</td>
</tr>
<tr>
<td>Using macros to expedite protocol writing</td>
<td>“Using macros to create protocols” on page 119</td>
</tr>
<tr>
<td>Creating a custom interface for the operator who runs the protocol</td>
<td>“Creating protocol forms for operators” on page 135</td>
</tr>
</tbody>
</table>
2 Creating a protocol: basic procedure
Logging in, logging out, and changing passwords

Logging in, logging out, and changing passwords

About this topic

To create, modify, or run a protocol, you must first log in. Contact your lab manager or administrator to set up a user account or to find out your access privileges. If you are an administrator, see the VWorks Automation Control Setup Guide for instructions on setting up user accounts.

This topic explains the following:
• “Logging in” on page 22
• “Logging out” on page 23
• “Changing passwords” on page 23

Logging in

To log in VWorks software:

1 Start VWorks software. To do this, double-click the VWorks icon on the Windows desktop.

2 In the VWorks window that opens, click Log in on the toolbar.

The User Authentication dialog box opens.

3 Type your VWorks user name and password, and then click OK. (If no user account is set up, contact the administrator.)

In the VWorks window, the Log in button changes to Log out. In addition, the status bar indicates that the login is successful.
Logging out

To log out of VWorks software:

In the VWorks window, click Log out on the toolbar.

Changing passwords

You can change your password if you have administrator or technician privileges. If you have an operator or guest user account, you must contact the administrator to change your password.

To change your password:

1. In the VWorks window, select Tools > User Management. If you have administrator privileges, the User Editor dialog box opens.
If you have technician privileges, the User Management dialog box opens.
2 Click **Set Password**. If you have technician privileges, click **Change Password**. The Set Password or Change Password dialog box opens.

3 Type the new password in the **New password** and **Confirm new password** boxes, and then click **OK**. A message appears and lets you know that the password was successfully changed.

Related information

<table>
<thead>
<tr>
<th>For information about...</th>
<th>See...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Setting up and managing user accounts</td>
<td>VWorks Automation Control Setup Guide</td>
</tr>
<tr>
<td>Workflow for running a protocol</td>
<td>“Workflow for running a protocol” on page 188</td>
</tr>
<tr>
<td>Creating a new protocol</td>
<td>“Creating a protocol: basic procedure” on page 13</td>
</tr>
</tbody>
</table>

Adding devices

About devices

In the VWorks software, a device is an item in your lab automation system that can be added to the VWorks device file. A device can be a robot, an instrument, or a location on the lab automation system that can hold a piece of labware. The following are examples of devices:

- The robot in the BioCel System
- PlateLoc Sealer
- Microplate Labeler
- Labware Stacker
- Platepad
- A third-party device integrated in the lab automation system

About device files

To communicate with and to control the robot and integrated devices, the VWorks software uses a device file that contains the following information:

- List of devices the software will communicate with and control
2 Creating a protocol: basic procedure

Adding devices

- Device type of each device (for example, the robot in the lab automation system, PlateLoc Sealer, and any integrated device)
- Configuration information of each device (for example, approach height, allowed or prohibited labware, barcode reader access, and so on)
- The communication settings (profile) needed for communication between the devices and the VWorks software

You provide the device information in the VWorks window. The device information is stored in a device (.dev) file that is located in a folder you specify when saving the file.

Creating a device file

To create a device file:

1. In the VWorks window, select `File > New > Device`. A Device File tab appears.
2. Select `File > Save` to save the device file. The file name appears in the Device File tab.

Adding devices to the device file

To add a device to the device file:

1. In the Available Devices area, double-click the device that you want to add. Alternatively, you can drag a device from the Available Devices area into the Device File area.

 If you do not see the device in the Available Devices list, check that the device plugin file is stored in the ...\Agilent Technologies\VWorks\Plugins folder.

 If you added a device plugin file in the Plugins folder and you have already started the VWorks software, be sure to reload the plugin. To do this, close any open device files and protocol files, and then select `Tools > Reload Plugins`.

 In the following example, the Bravo Pipettor device type is added. Notice that the first Bravo device is labeled Bravo-1. If you add another Bravo device, it will appear as Bravo-2 under the Bravo Pipettor.
2 Type a name for the device and set the device properties. For detailed description of the properties, see the device user guide.

In the following example, Bravo-1 is the default name of the Bravo Pipettor device. The only property shown is the profile selection.

3 Create a profile for the device:
 a Select the device in the Devices list.
 b Click Device diagnostics.
2 Creating a protocol: basic procedure

Adding devices

- In the device diagnostics dialog box, name the profile, select the connection type (Ethernet or serial), and locate and connect to the device in the Discovered Bionet Devices dialog box (Ethernet connections only).

- For devices such as the Bravo Platform and the Vertical Pipetting Station, set the teachpoints.

For detailed instructions on creating device profiles and setting teachpoints, see the device user guide.

4 Select the profile in the device properties area.

5 Select **File > Save** to save the device file. The file name appears in the Device File tab.

6 Repeat steps 1 through 5 to add other devices.

7 In the **Device File** area, click **Initialize all devices** to establish communication with the devices.

8 If you are adding devices to the BenchCel Workstation or the BioCel System, enable the robot to move to the correct locations during a protocol run as follows:

 a In the BenchCel or the BioCel robot diagnostics dialog box, set teachpoints at each device or location. Save and reference the teachpoint file in the diagnostics dialog box.

 For detailed instructions, see the *BenchCel Microplate Handling Workstation User Guide* or the *BioCel System User Guide*.

 b In the VWorks window, select each of the devices in the device file, and select the correct robot teachpoint in the device properties area.

 The following example shows a device file for a BioCel System. To ensure that the BioCel robot will move correctly to and from Platepad - 1, **Platepad - 1 Stage** is selected in the **Device File** area, and the defined teachpoint called Plate Pad 1 is selected in the **PlatePad Stage Location Properties** area.
9. Select **File > Save** to save the changes.

10. In the **Device File** area, click **Initialize all devices**.

Related information

<table>
<thead>
<tr>
<th>For information about...</th>
<th>See...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device-specific properties</td>
<td>Device user guide</td>
</tr>
<tr>
<td>Creating a new protocol</td>
<td>“Workflow for creating a basic protocol” on page 18</td>
</tr>
</tbody>
</table>
Creating a new protocol

Procedure

To create a new protocol:

Related information

For information about... See...
Setting protocol options "Setting protocol options" on page 31
Adding tasks "Adding and deleting tasks" on page 51
Setting up startup and cleanup protocols "Setting up Startup and Cleanup Protocol processes" on page 58
Using advanced protocol features "Creating a protocol: advanced topics" on page 69
Setting protocol options

When you create a protocol, you need to specify which device file to use with the protocol. Optionally, you can specify additional information to associate with your protocol.

This topic explains the following:
- Specifying the device file for a protocol
- Adding information about the protocol
- Specifying protocol rules

Specifying the device file for a protocol

To specify the device file:

1. In the Protocol area, click Protocol Options to view the properties.

2. Click the field adjacent to Device file path, and then click the button that appears. The Open dialog box opens.

3. Locate and select the correct device (.dev) file, and then click Open. The path of the device file appears in the Device file path box.

Adding information about the protocol

You can add information about your protocol. For example, you can provide a description and some notes about the protocol.

To add information about the protocol:

In the Protocol Options area, type the following information:
<table>
<thead>
<tr>
<th>Optional protocol information</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Form to use</td>
<td>The option that specifies a VWorks form for operators to use as the graphical interface to run a protocol. For details on how to create forms and specify which form to use, see “Creating protocol forms for operators” on page 135.</td>
</tr>
<tr>
<td>Automatically load form file</td>
<td>The option that opens the form that is specified in the Form to use field anytime the corresponding protocol is opened.</td>
</tr>
<tr>
<td>Protocol alias</td>
<td>Another name for the protocol. The alias is displayed in the software, but the protocol file name is not changed.</td>
</tr>
<tr>
<td>Description</td>
<td>A brief description of the protocol.</td>
</tr>
<tr>
<td>Notes</td>
<td>Special notes about the protocol.</td>
</tr>
<tr>
<td>Bar code file directory</td>
<td>The location of the files that contain the barcodes you want to track in the software. The list of files in this folder will be available in the Plate Properties area. For details, see “Setting plate parameters” on page 44 and “Tracking barcodes” on page 70.</td>
</tr>
<tr>
<td>Use global context for this protocol</td>
<td>The option that permits variables to be available across all protocols that also use the global context for variables. CAUTION Variables with the same name in other protocols, which also use the global context, will interfere with each other. Always make sure the variable values you want to use globally are applicable to the other protocols that use the global context.</td>
</tr>
</tbody>
</table>
Creating a protocol: basic procedure

Setting protocol options

Specifying protocol rules

You can specify certain actions to occur before or after the protocol run.

To specify the protocol rules:
In the Protocol Options area, specify the following rules:

- Allow this protocol to execute while other protocols are running
- Automatically load stacker racks
- Automatically release stacker racks
- Dynamically assign empty slot to load to storage device
- Handle plate in instance order
- Pipette plates in instance order

<table>
<thead>
<tr>
<th>Optional protocol information</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Startup script</td>
<td>The JavaScript code you want to run before the Startup or Main Protocol begins.</td>
</tr>
<tr>
<td>Finish script</td>
<td>The JavaScript code you want to run after the Main or Cleanup Protocol finishes.</td>
</tr>
<tr>
<td>Delete hit pick output files</td>
<td>The option to delete hit-pick output files after the protocol run finishes.</td>
</tr>
</tbody>
</table>

Allow this protocol to execute while other protocols are running
This rule allows you to specify the following:

- Select the check box (default). Enables the Runset Manager to run the protocol simultaneously with another protocol.
IMPORTANT Simultaneously running protocols must specify the same static or configured labware.

- Clear the check box. Prevents the protocol from running simultaneously with another protocol.

Automatically load stacker racks
Select the **Automatically load stacker racks** rule to require that all racks on stacking devices (such as the BenchCel Workstation and the Labware Stacker) be automatically loaded before either one of the following starts:
- Startup Protocol
- Main Protocol

Automatically release stacker racks
Select the **Automatically release stacker racks** rule to require that all racks on stacking devices (such as the BenchCel Workstation and the Labware Stacker) be automatically released after the protocol finishes.

Dynamically assign empty slot to load to storage device
Select the rule to have the software assign slots in the storage device according to what is available at that moment. Under this rule, labware can be placed in different locations (not grouped together).

Clear the check box if you want to store labware consecutively in the same carousel or stacker.

Handle plate in instance order
Select the **Handle plate in instance order** rule to require that microplates be processed in the order as they enter the system.
For example:
Two PlateLoc Sealers are used in a BioCel System to seal microplates. One of the PlateLoc Sealers runs out of seal material and stops on a microplate.
If this rule is selected, the second sealer would also stop until you load a new roll of seal, start the first sealer, and the microplate at the first sealer is upstacked to its position in the expected order.
If this rule is not selected, the second sealer would continue sealing and upstacking microplates. The microplate at the stopped sealer would be omitted, thus the sequence of microplates will be out of order.

Pipette plates in instance order
Select the **Pipette plate in instance order** rule to require that microplates be processed at pipetting devices in the order as they enter the system.
Select the check box if time-sensitive assays require that each microplate be processed the same way within the same length of time. Doing so ensures the data are comparable across the microplates.
Clear the check box if:
- The protocol has more than one pipette process that uses the same Vertical Pipetting Station.
- The duration of one of the pipetting operations is much longer than another.
For example:
A protocol has two processes and both have a pipetting operation that uses the same Vertical Pipetting Station.
If the rule is selected, the pipetting operations for one process are completed before the pipetting operations begin for the other process. The first pipetting operation takes significantly longer to complete than the second operation, and the protocol is run several times in succession. The overall time taken for the protocol to complete is much greater than it needs to be because during each cycle the system had to wait for the slower pipetting operations to complete for all the microplates in the process before it could continue.

If the rule is not selected, a microplate from the fast pipetting process can be delivered to the Vertical Pipetting Station after a microplate from the slow pipetting process, followed by another microplate from the slow pipette process, and so on. This reduces the bottleneck at the Vertical Pipetting Station because it allows the faster process to continue, and its second cycle in the series to start before the first cycle is complete.

Related information

<table>
<thead>
<tr>
<th>For information about...</th>
<th>See...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specifying a device file for the protocol</td>
<td>“Specifying the device file for a protocol” on page 31</td>
</tr>
<tr>
<td>Adding other information about the protocol</td>
<td>“Adding information about the protocol” on page 31</td>
</tr>
<tr>
<td>Adding an alarm</td>
<td>“Adding an alarm” on page 35</td>
</tr>
</tbody>
</table>

Adding an alarm

You can set an alarm to create an error message when a measurement falls outside the range that you specify. For example, you can specify that the alarm creates an error message when:

- The bottle on the Weigh Pad becomes too heavy or too light.
- A particular temperature, humidity, or gas concentration level is reached.
- A system door is open.
- The battery power in the uninterruptible power supply (UPS) is low.

Note: The alarm can only be used if your lab automation system is equipped with doors, a Weigh Pad, a StoreX incubator with environmental control, an iSeries controller in a BioCel System, or a UPS.

IMPORTANT You can add User Message tasks in the protocol to remind the operator to empty or fill containers or reservoirs at the appropriate steps in the protocol. For instructions on adding User Message tasks, see “User Message” on page 491.

Procedure

IMPORTANT The alarm settings apply only to the current protocol and do not impact other protocols.
To set up alarms:

1. In the Protocol area, click Protocol Options.
2. Click the Measurement Manager tab and specify the alarm parameters.

The Measurement Manager tab displays all the measurements for the devices you want to monitor (for example, the Weigh Pad). If you do not see the information in the tab, check that you have added the devices you want to monitor in the device file. See “Adding devices” on page 25 for instructions.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device Name</td>
<td>The name of the device for which the alarm is set.</td>
</tr>
<tr>
<td></td>
<td>If you have two devices of the same type, each device is distinguished by its device name. In the example shown, two Weigh Pads are listed: Weigh Pad - 1 and Weigh Pad - 2.</td>
</tr>
<tr>
<td>Device Type</td>
<td>The type of device. The device type can be the Weigh Pad, the UPS (ACPUPS), StoreX incubator, Cytomat incubator, or the iSeries controller.</td>
</tr>
<tr>
<td>Measurement Name</td>
<td>The measurement you want to monitor. For example, you monitor the battery level in the UPS. The measurement is device dependent. In the example shown, the two Weigh Pads have different measurement names.</td>
</tr>
<tr>
<td>Unit</td>
<td>The unit of measure. For example, if you are monitoring the battery, the unit of measure is percent (%). If you are monitoring the mass on the Weigh Pad, the unit of measure is grams (g).</td>
</tr>
<tr>
<td>Poll Frequency</td>
<td>The frequency at which the software takes the measurements. For example, 1 s means the software will check the device every second and display the measurement in the log.</td>
</tr>
</tbody>
</table>
Adding an alarm

Critical Time
The length of time the measurement is allowed to be above the upper limit or below the lower limit before it is considered to be out of range.

For example, the upper limit of a measurement is 5 volts and you specify a 2 s critical time. When the software takes a measurement, the reading fluctuates and is at 6 volts for longer than 2 s overall. So it is considered to be out of range.

Lower Limit
The low value at which the alarm is turned on.

Upper Limit
The high value at which the alarm is turned on.

Log Action
The action to record the error:
- LOG_ACTION_ALWAYS. Records the measurements in the log. For example, if the Poll Frequency is 1 s, the measurement for every second is recorded in the log.
- LOG_ACTION_NONE. Does not record the measurement in the log.
- LOG_ACTION_LOW. Records the measurement when it exceeds the lower limit.
- LOG_ACTION_HIGH. Records the measurement when it exceeds the upper limit.
- LOG_ACTION_HIGHLow. Records the measurement when it exceeds the upper or lower limit.

Pause Action
The action to pause the run:
- PAUSE_ACTION_NONE. Does not pause the run when the measurement is out of range.
- PAUSE_ACTION_LOW. Pauses the run when the measurement exceeds the lower limit.
- PAUSE_ACTION_HIGH. Pauses the run when the measurement exceeds the upper limit.
- PAUSE_ACTION_HIGHLow. Pauses the run when the measurement exceeds the upper or lower limit.

3 When you are finished, click Apply.
Related information

<table>
<thead>
<tr>
<th>For information about...</th>
<th>See...</th>
</tr>
</thead>
<tbody>
<tr>
<td>BioCel I/O Interface</td>
<td>BioCel System User Guide</td>
</tr>
<tr>
<td>I/O-handling tasks</td>
<td>“Setting parameters for I/O-handling tasks” on page 233</td>
</tr>
<tr>
<td>Adding User Message tasks</td>
<td>“User Message” on page 491</td>
</tr>
<tr>
<td>Protocol options</td>
<td>“Setting protocol options” on page 31</td>
</tr>
</tbody>
</table>

Configuring labware

About this topic

After you create a new protocol, you can configure labware for devices that have locations for labware placement. When labware is configured at a device location, the labware might be moved from its location for deadlock avoidance, but returned to the same location by the end of the run.

For example, you can configure labware that will be stored at Bravo deck location 2. During the protocol, the labware will be moved to deck location 5 temporarily for processing, and then returned to deck location 2.

This topic explains how to configure labware. For more information about configured labware and how it is used in a protocol, see “Planning labware use” on page 20.

Procedure

To configure labware:

1. In the Main Protocol of the VWorks window, in the area below the protocol process, click Configure Labware.
In the **Device to use** list, select the device on which you want to configure labware.

Note: Devices that are in the device file and have labware placement locations appear in the list. Exceptions include storage devices such as the Plate Hub Carousel or incubators, centrifuge devices, and stacking devices.
In the **Location** table:

a. In the **Plate type** column, select the labware for the corresponding location.

b. In the **Plate name** column, double-click the text box, and then type a name for the labware you selected.

Note: For the Bravo Platform, configured static labware (from protocols created in VWorks4 version 6.2.3 or earlier) will appear in the table and graphic. However, configured accessories do not appear in the table and graphic.

When you are finished, click **OK** to save the information and close the Configure Labware dialog box.

In the Main Protocol area, the labware appears. Click + to expand and view the labware icon. Notice that two Place Plate tasks are automatically added, one to indicate its starting location and the other to make sure it returns to its starting location at the end of the protocol.

Select the configured labware icon. In the **Task Parameters** area, set the plate properties. For a description of the plate properties, see “Setting plate parameters” on page 44.

If you want to remove the configured labware, click **Remove**.
7 To convert a configured labware to a process plate (labware that is transferred into the system and out of the system during the run), in the Process Control area, clear the Automatically update labware check box.

The background in the configured labware process area becomes white, indicating that it is converted to a protocol process.

Note: You can use the Automatically update labware option to update a labware location throughout the protocol. For example, clear the check box, and then update a configured labware location from Bravo deck location 3 to location 5. Then select Automatically update labware. The software automatically makes the changes throughout the protocol.
2 Creating a protocol: basic procedure

Adding processes

Using configured labware

When you add a task in the process, you can use available configured labware by selecting it from the Location, plate list. In addition, if more than one subprocess uses the same configured labware, and the subprocesses are in different protocol processes, you can specify the sequence in which the subprocesses will be performed. For instructions, see “SubProcess (Bravo, Vertical Pipetting Station)” on page 334.

Related information

<table>
<thead>
<tr>
<th>For information about...</th>
<th>See...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Planning labware use</td>
<td>“Planning labware use” on page 20</td>
</tr>
<tr>
<td>Process plates</td>
<td>“About protocols, processes, and tasks” on page 14</td>
</tr>
<tr>
<td>Planning for devices and accessories in the protocol</td>
<td>“Planning device and accessory use” on page 19</td>
</tr>
<tr>
<td>Static labware</td>
<td>“Configure Static Labware” on page 250</td>
</tr>
</tbody>
</table>

Adding processes

About processes

You can add processes at any time when you are creating the protocol. In addition, you can add multiple processes in one protocol.

Procedure

To add a new process:

In the Main Protocol, click Add Process.
A new process lane appears.

Related information

For information about... See...
Processes “About protocols, processes, and tasks” on page 14
Process plates “About protocols, processes, and tasks” on page 14
Configured labware “Configuring labware” on page 38
2 Creating a protocol: basic procedure
Setting plate parameters

About this topic

You need to set parameters for process plates and configured labware. This topic explains how to set the parameters for both.

Procedure

To set plate parameters:

1 In the Protocol area, select the process plate icon or the configured labware icon.

2 In the Plate identity area, set the following parameters:
Property Description

<table>
<thead>
<tr>
<th>Property</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plate name</td>
<td>The name of the labware that will help you identify the labware. For example, you can use Source Plate or Destination Plate.</td>
</tr>
<tr>
<td>Plate type</td>
<td>The type of labware. The list of labware types is created in the Labware Editor.</td>
</tr>
<tr>
<td>Plates have lids</td>
<td>The indicator that the labware entering the system has a lid. Select the check box if the labware has a lid. Clear the check box if the labware does not have a lid. Note: The selection is only available if the Can have lid option is selected in the Labware Editor.</td>
</tr>
<tr>
<td>Plates enter the system sealed</td>
<td>The indicator that the labware entering the system is sealed. Select the check box if the labware is sealed. Clear the check box if the labware is not sealed. Note: The selection is only available if the Can be sealed option is selected in the Labware Editor.</td>
</tr>
</tbody>
</table>

3 In the **Process control** area, set the following parameters:
### Property	Description
Simultaneous plates | The maximum number of labware instances that are processed in the system at one time. For details about how to determine the optimum number, see “Determining the number of simultaneous plates” on page 48.
Use single instance of plate | The indicator that the plate type has only one instance and will be used repeatedly during the run. For example, you might have a single source plate from which you will aspirate repeatedly during a protocol. Select the check box if the labware has only one instance. Clear the check box if the labware has more than one instance.
Automatically update labware | The indicator that the labware is configured labware. Select the check box if the labware is a configured labware and will be used by one or more tasks in the protocol process. When you revise the protocol, the changes are automatically reflected in the configured labware's process. Clear the check box if you want to convert the configured labware to a process plate.
Enable timed release | The indicator that the labware is delivered into the system in timed intervals. If you select this property, you also need to set the Release time. Select the check box if you want the system to deliver the labware in timed intervals. Clear the check box if the system can deliver the labware without waiting the specified time.
Release time (Sec) | The length of time to wait before delivering the next labware instance into the system. For details about how to determine the release time, see “Determining the correct microplate release rate” on page 49.

In the **Barcode information** area, set the following parameters:
Creating a protocol: basic procedure

Setting plate parameters

Optional. Reserve a device to store quarantined labware. Labware can be quarantined (moved aside and not processed) if a barcode label is misread, the labware orientation is incorrect, or the wrong labware type is detected. The quarantine option allows the system to continue running the protocol even though it is unable to resolve problems with the labware.

To reserve a device to store quarantined labware:

a Click Advanced Settings.

<table>
<thead>
<tr>
<th>Property</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Barcode file name</td>
<td>The file you want to use to verify barcodes on incoming labware. For more information, see “Input files” on page 70. Select from the list of barcode files. If you do not see a list, make sure you specified the file location in the Protocol Options.</td>
</tr>
<tr>
<td>Has header</td>
<td>The indicator that the first line of the barcode file contains a header. Select if the code file name contains a header. Clear the check box if the file does not contain a header.</td>
</tr>
<tr>
<td>Barcode or header South/West/North/East</td>
<td>The column ID in the barcode file. Select the column ID for the side of the labware. For example, if the barcode is on the east side of the labware, select the column ID in the Barcode or header East field. Select from the list of column IDs. If you do not see a list, make sure you specified the file location in the Protocol Options and selected the file from the Barcode file name property.</td>
</tr>
</tbody>
</table>
b In the Available devices list, double-click the device you want to use to store quarantined labware. The device appears in the Quarantined devices list.

c Select Quarantine plate after process completed if you want to quarantine labware after the protocol is finished. Clear the check box if you want to quarantine the labware as soon as it is encountered in the run.

For more information about how to set up quarantine criteria, see “Setting up automated error responses” on page 537.

Determining the number of simultaneous plates

Factors to consider
The number of simultaneous plates you specify depends on the following:

• The number of positions available during a protocol process.

 In general, you can specify one simultaneous plate for every task in the protocol, because each task typically uses one microplate position. For example, if your protocol downstacks a microplate, seals the microplate, labels the microplate, and then upstacks the microplate, you have three positions available: one in the robot grippers, one on the microplate sealer, and one on the microplate labeler.

 Exceptions to this generalization include cases where the same microplate position is used for more than one task and when a Vertical Pipetting Station is used. Several microplates can be positioned on a Vertical Pipetting Station at the same time.

• The number of positions in the system that will incubate microplates.

 A 10-position plate hotel contains 10 possible microplate positions. If your protocol downstacks a plate, dispenses liquid, incubates the microplate at a 10-position plate hotel, and then dispenses more of the same liquid, you have 12 positions available: one in the robot grippers, one on the dispenser, and 10 in the plate hotel.

• The number of microplates in a Reorder task.
If the protocol includes a Reorder task, the number of simultaneous plates must be equal to, or greater than, the number of microplates in the Reorder task.

- The slowest or rate-limiting task.

 A task such as a long read step or wash task on a single device can impact the number of microplates that can enter the system.

How throughput is impacted

The number of simultaneous plates you specify can impact throughput as follows:

- *The value is too high.* The protocol run might slow down because the robot will move around to avoid a deadlock. (A deadlock occurs when the number of locations available in the system is less than the number of microplates in the system, and the protocol stops.)

- *The value is too low.* The time for the protocol run can be longer than desired.

Determining an optimum number of simultaneous plates

By default, the number of simultaneous plates is set to one for each protocol process. If your protocol process uses multiple devices, you can increase the throughput of the system by increasing the number of plate instances to be processed simultaneously. The optimum number should balance high throughput and deadlock avoidance.

To determine the optimum number of simultaneous plates:

1. Run the protocol in simulation, noting the protocol process time in the log.
2. Increase the number of simultaneous plates.
3. Repeat steps 1 and 2 until the simulated process time no longer decrease.

 The simultaneous plates value is optimum when the process time no longer decreases.

IMPORTANT If “Attempting to avoid deadlock by...” messages appear in the log, the protocol might have too many simultaneous plates. Decrease the number of simultaneous plates to decrease the likelihood of a deadlock during the protocol run.

Determining the correct microplate release rate

You can use the *Enable timed release* and *Release time* plate properties to control the microplate release rate and prevent bottlenecks and deadlocks. An optimum release rate should balance the number of microplates entering into the system with the number of microplates exiting the system.

Bottlenecks can occur when tasks or incubation times cause the number of incoming microplates to be greater than the number of outgoing microplates. To prevent the bottleneck, you can limit the rate of microplates entering into the system.

IMPORTANT Make sure you determine the optimum number of simultaneous plates before you change the microplate release rate.

To determine the optimum microplate release rate:

1. Run the protocol using empty labware.
2 During or after the run, open the Gantt Chart dialog box to find the task that is causing the bottleneck and determine the length of time for the task to finish. (For information about the Gantt Chart dialog box, see “Tracking the run progress of instances or devices” on page 223.)

3 Select Enable timed release. Type the length of the bottlenecking task time in the Release time box.

4 Run the protocol again using empty labware.

5 Determine whether the bottleneck is still occurring.
 • If the bottleneck is resolved, determine if previous tasks can process microplates during the wait time so that you can improve throughput. If so, decrease the release time.
 • If the bottleneck still occurs, increase the release time.

6 Repeat steps 1 through 5 until the bottleneck is resolved and the throughput is optimized.

For example:
A protocol is running with three simultaneous plates. A pipetting task in the middle of the protocol takes 3 minutes. During this time, two other microplates have already entered the system and must wait for the pipetting task to finish. A deadlock error occurs, because the system is unable to find a storage location for the third microplate that entered the system.

By turning on the timed release property and setting the release time to 180 seconds (or 3 minutes), the system will wait 3 minutes after the first microplate is in the system before delivering the next microplate. However, a microplate-piercing task and a microplate-shaking task take a total of 1 minute before the pipetting task. So the release time can be decreased to 120 seconds (or 2 minutes) to improve throughput.

Note: Bottlenecks in a protocol might not always cause a deadlock error. Instead, microplates might wait in plate hotels or on platepads. Monitor the dry protocol run to check for non-error-causing bottlenecks.

Related information

<table>
<thead>
<tr>
<th>For information about...</th>
<th>See...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Labware Editor</td>
<td>VWorks Automation Control Setup Guide</td>
</tr>
<tr>
<td>Barcode file folder location</td>
<td>“Setting protocol options” on page 31</td>
</tr>
<tr>
<td>Monitoring run progress of instances, processes, and devices</td>
<td>“Tracking the run progress of instances or devices” on page 223</td>
</tr>
<tr>
<td>Setting up quarantine criteria</td>
<td>“Setting up automated error responses” on page 537</td>
</tr>
<tr>
<td>Quarantining labware that are downstacked from a BenchCel stacker</td>
<td>“Downstack” on page 307</td>
</tr>
</tbody>
</table>
Adding and deleting tasks

Viewing the list of available tasks

The list of available tasks you can use in the protocol are in the Available Tasks area.

The tasks that are available depend on a number of factors:

- **Devices.** Tasks are associated with devices. Only the tasks associated with the devices in the current device file are displayed.
- **Startup or Cleanup protocol.** Some tasks appear only in the Startup or Cleanup protocols. For a description of Startup and Cleanup protocols, see “Setting up Startup and Cleanup Protocol processes” on page 58.
- **Subprocess.** Some tasks are grouped in a device subprocess, so you can view the tasks only when you select the subprocess.

Filtering the list of available tasks

You can filter and display a subset of the task icons using one of the following methods:

- Click a task filter button.
- Type filtering text.

Using the task filter buttons

To use the filter buttons:

Click one of the following filter buttons below the list of available tasks:
Typing filtering text

To type filtering text:

1. Click one of the filter buttons. See “Using the task filter buttons” on page 51.

 For example, if you want to search all the tasks, click **All**. However, if you only want to search the liquid-handling tasks, click the **Liquid Handling** filter button.

2. Type text you want to use to filter the task list in the **Enter text to filter on** box below the list of available tasks. As you type each character, the Available Tasks list changes to meet the filter requirement.

 For example, if you type `dil`, only the dilution tasks remain in the Available Tasks list.

<table>
<thead>
<tr>
<th>Item</th>
<th>Task display filter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>IO Device Handling</td>
<td>Displays tasks that perform signal input and output operations.</td>
</tr>
<tr>
<td>2</td>
<td>Plate Handling</td>
<td>Tasks that move labware or might change the labware characteristics without changing its contents. For example, Centrifuge, delid, and Seal are plate-handling tasks.</td>
</tr>
<tr>
<td>3</td>
<td>Plate Storage</td>
<td>Tasks that move labware into or out of storage devices such as the Plate Hotel. For example, Downstack and Reorder are plate storage tasks.</td>
</tr>
<tr>
<td>4</td>
<td>Liquid Handling</td>
<td>Tasks that perform liquid-handling operations. For example, Aspirate and Dispense are liquid handling tasks.</td>
</tr>
<tr>
<td>5</td>
<td>Reading</td>
<td>Tasks that perform microplate-scanning operations. For example, the Read task is a microplate-scanning task using the Perkin Elmer Fusion Reader.</td>
</tr>
<tr>
<td>6</td>
<td>Other</td>
<td>Displays scheduling tasks, such as Define Variable, Loop, and Spawn Process.</td>
</tr>
<tr>
<td>7</td>
<td>All</td>
<td>Displays all the available tasks.</td>
</tr>
</tbody>
</table>
Adding tasks in a protocol

For details on how to use macros to insert a series of tasks, see “Using macros to create protocols” on page 119.

To add a task in a protocol:

1. In the Available Tasks area, double-click a task. Alternatively, drag a task from the Available Tasks area into the Protocol area. The task icon appears in the Protocol area.

In the following example, the Place Plate task is added to the protocol.

2. Set the task parameters. For a description of the task parameter, see one of the following:
 - “Setting parameters for I/O-handling tasks” on page 233
 - “Setting parameters for microplate-handling tasks” on page 241
 - “Setting parameters for microplate storage tasks” on page 305
Deleting tasks from a protocol

To delete tasks from a protocol:

1. In the Protocol area, select a task.
2. Press DELETE. A confirmation message dialog box opens.
3. Click Yes to confirm the delete action. The task icon is removed from the protocol.

CAUTION Be aware of dependencies between tasks before you delete them. For example, the Tips On (Bravo) task relies on the pipette channel specifications in the Set Head Mode (Bravo) task to determine the number and position of pipette tips to install.

Related information

<table>
<thead>
<tr>
<th>For information about...</th>
<th>See...</th>
</tr>
</thead>
<tbody>
<tr>
<td>I/O-handling tasks</td>
<td>“Setting parameters for I/O-handling tasks” on page 233</td>
</tr>
<tr>
<td>Microplate-handling tasks</td>
<td>“Setting parameters for microplate-handling tasks” on page 241</td>
</tr>
<tr>
<td>Microplate-storage tasks</td>
<td>“Setting parameters for microplate storage tasks” on page 305</td>
</tr>
<tr>
<td>Liquid-handling tasks</td>
<td>“Setting parameters for liquid-handling tasks” on page 333</td>
</tr>
<tr>
<td>Scheduling tasks</td>
<td>“Setting parameters for scheduling tasks” on page 459</td>
</tr>
<tr>
<td>Using a macro to add a series of tasks</td>
<td>“Using macros to create protocols” on page 119</td>
</tr>
</tbody>
</table>
Specifying time constraints between dependent tasks

About dependent tasks and time constraints

After you add tasks to a protocol, you can specify a time interval between two dependent tasks. For example, you can specify that a microplate must be read within 30 minutes after a stop solution is added.

You can specify time constraints between any two non-scheduling tasks in the Startup, Main, or Cleanup Protocol. In addition:

- Both time-dependent tasks can be within a subprocess or a loop. If a Change Instance task is used in a loop, the time limit is used for every plate instance.
- One of the tasks can be within a subprocess and the other outside of the subprocess.
- One of the tasks can be within a loop and the other outside of the loop. If the constraining task is before a loop and the constrained task is within the loop, the constraint applies to the first loop only. If the constraining task is within the loop and the constrained task is after the loop, the constraint applies to the last loop only.
- Any number of tasks can be added between the two dependent tasks. However, if the time it takes to complete the enclosed tasks exceeds the time constraint of the dependent tasks, a compiler error results.

During a protocol run, if the time limit is exceeded, the run continues, but a message appears in the Time Constraint Log to alert you of this occurrence. If the task is finished before the time limit, the software waits until the minimum time limit is reached before proceeding to the next task.

Adding a time constraint

To set a time constraint between two dependent tasks:

1. In the protocol, CTRL+click the two dependent tasks to select both tasks.
2. Right-click one of the two tasks, and then select *Add time constraint.*
The Edit Time Constraint dialog box opens. Notice that the task that runs first is the constraining task, and the second task is the constrained task.

3 Specify the length of time between the two dependent tasks.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>From</td>
<td>The first of the two dependent tasks you selected. You cannot edit this field.</td>
</tr>
<tr>
<td>To</td>
<td>The second of the two dependent tasks you selected. You cannot edit this field.</td>
</tr>
<tr>
<td>Time</td>
<td>The length of time, in minutes, that is permitted for the first task. The minimum value is 1 minute.</td>
</tr>
<tr>
<td>+/-</td>
<td>The time tolerance. For example, if you specified a total time of 25 minutes +/- 5 minutes, the range of time permitted for the first task is 20–30 minutes. The minimum tolerance is 0.5 minute.</td>
</tr>
</tbody>
</table>

4 Click OK to save the changes and return to the protocol.

A clock appears on each of the two task icons to indicate that they are time-dependent. An arrow pointing away from the clock indicates that the task sets a constraint. (In the following example, the Dispense task is the constraining task.) An arrow pointing into the clock indicates that the task is constrained by an earlier task. (In the example, the Run the protocol file task is the constrained task.)

When you rest the cursor on either task icon, a dotted line and the specified time interval appear.

Note: A task can both constrain a later task and be constrained by an earlier task within a protocol. A clock icon with an arrow pointing into and away from it indicates that the task serves both time constraints.
Editing a time constraint

Note: The software allows you to edit time constraints during protocol runs. The time constrained tasks must be downstream from the task that is currently running. However, an edited time constraint that is too close to the running task will not likely be applied.

To edit a time constraint between two dependent tasks:

1. In the protocol, right-click one of the two dependent tasks, and then select Edit time constraint. The Edit Time Constraint dialog box opens. All constraints relevant to the selected task appear in the dialog box.

2. Change the Time and tolerance values, and then click OK to save the changes and return to the protocol.

To display and edit all time constraints in a process or subprocess:

1. In the protocol, right-click the process plate or subprocess icon, and then select Edit time constraint. The Edit Time Constraint dialog box opens. All constraints relevant to the selected task appear in the dialog box.

2. Change the Time and tolerance values, and then click OK to save the changes and return to the protocol.

Removing time constraints

To remove a time constraint between two dependent tasks:

In the protocol, right-click one of the two dependent tasks, and then select one of the following:

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Edit time constraint</td>
<td>Allows you to remove a selected time constraint between two tasks. When you use this command, the Edit Time Constraints dialog box opens. Select the time constraint you want to remove, and then click Remove.</td>
</tr>
<tr>
<td>Remove all time constraints</td>
<td>Removes all time constraints relevant to the selected task.</td>
</tr>
</tbody>
</table>
Related information

<table>
<thead>
<tr>
<th>For information about...</th>
<th>See...</th>
</tr>
</thead>
<tbody>
<tr>
<td>I/O-handling tasks</td>
<td>“Setting parameters for I/O-handling tasks” on page 233</td>
</tr>
<tr>
<td>Microplate-handling tasks</td>
<td>“Setting parameters for microplate-handling tasks” on page 241</td>
</tr>
<tr>
<td>Microplate-storage tasks</td>
<td>“Setting parameters for microplate storage tasks” on page 305</td>
</tr>
<tr>
<td>Liquid-handling tasks</td>
<td>“Setting parameters for liquid-handling tasks” on page 333</td>
</tr>
<tr>
<td>Scheduling tasks</td>
<td>“Setting parameters for scheduling tasks” on page 459</td>
</tr>
</tbody>
</table>

Setting up Startup and Cleanup Protocol processes

About Startup and Cleanup Protocols

Startup Protocols are processes that are run before the Main Protocol starts. For example, you can use the Startup Protocol to prime pumps with fluid.

Cleanup Protocols are processes that are run after the main protocol finishes. For example, you can use the Cleanup Protocol to purge lines with a buffer or cleaning solution.

Procedure

To set up a startup protocol or cleanup protocol process:

1. In the protocol area, click Startup Protocol or Cleanup Protocol.
Add processes, set plate properties, and add tasks as you would in the Main Protocol.

Related information

<table>
<thead>
<tr>
<th>For information about...</th>
<th>See...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adding processes</td>
<td>“Adding processes” on page 42</td>
</tr>
<tr>
<td>Setting plate properties</td>
<td>“Setting plate parameters” on page 44</td>
</tr>
<tr>
<td>Adding tasks</td>
<td>“Adding and deleting tasks” on page 51</td>
</tr>
</tbody>
</table>

Saving the protocol

CAUTION When you edit a protocol, the changes take effect immediately. You must save the changes before you exit the VWorks software or the changes will be lost.

IMPORTANT You must have administrator or technician privileges to save a protocol.

To save a protocol:
Select File > Save.
If you just created a new protocol, the Save As dialog box opens to allow you to assign a name to the protocol before saving the file.
2 Creating a protocol: basic procedure

Opening a plugin

IMPORTANT You should regularly back up the protocol and associated components in case they become damaged or lost. For instructions, see “Exporting and importing protocols and associated components” on page 512.

Related information

<table>
<thead>
<tr>
<th>For information about...</th>
<th>See...</th>
</tr>
</thead>
<tbody>
<tr>
<td>User accounts and privileges</td>
<td>VWorks Automation Control Setup Guide</td>
</tr>
<tr>
<td>Adding notes about a protocol</td>
<td>“Setting protocol options” on page 31</td>
</tr>
<tr>
<td>Compiling a protocol</td>
<td>“Compiling the protocol” on page 61</td>
</tr>
<tr>
<td>Simulating a protocol run</td>
<td>“Simulating the protocol run” on page 62</td>
</tr>
<tr>
<td>Backing up protocol and associated components</td>
<td>“Exporting and importing protocols and associated components” on page 512</td>
</tr>
</tbody>
</table>

Opening a plugin

About this topic

The VWorks can interact with plugins that have been developed using the VWorks Hooks Interface. You might want to open a plugin to further configure a protocol or perform some additional tasks at run time.

If your team has developed plugins and the plugins are installed on the computer, you can use the following procedure to open the plugin.

Procedure

To display the graphical interface for your plugin:

1. In the VWorks main window, choose Tools > Open Hooks Plugin, and then click the file name (.dll) of the plugin that you want to open.
2. Perform the tasks required in the plugin.

Related information

<table>
<thead>
<tr>
<th>For information about...</th>
<th>See...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Using a plugin</td>
<td>User documentation for the plugin</td>
</tr>
<tr>
<td>How to save a protocol</td>
<td>“Saving the protocol” on page 59</td>
</tr>
<tr>
<td>VWorks Hooks Interface</td>
<td>User guide for the VWorks Hooks Interface</td>
</tr>
</tbody>
</table>
Compiling the protocol

You can compile a protocol before you run it. During the compiling process, the software reports errors found in the protocol. You can use the error information to troubleshoot the protocol.

Note: The software automatically compiles the protocol whenever you start a run.

To compile a protocol:

1. On the toolbar, click **Compile**. The Main Log area displays any errors found. For troubleshooting information, see “Maintenance and troubleshooting” on page 509.

2. Review the error and warning messages in the Main Log. You should fix all the errors. Depending on the protocol-writing stage, you can choose to ignore some of the warnings.

3. Repeat steps 1 and 2 until the protocol compiles error-free.

4. Save the changes you made to the protocol.

Related information

<table>
<thead>
<tr>
<th>For information about...</th>
<th>See...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Troubleshooting compile errors</td>
<td>“Maintenance and troubleshooting” on page 509</td>
</tr>
<tr>
<td>Saving the protocol</td>
<td>“Saving the protocol” on page 59</td>
</tr>
</tbody>
</table>
Simulating the protocol run

About run simulations

A protocol simulation is a virtual run where the software performs the tasks without moving robots or labware. Simulation runs are useful for troubleshooting scheduling and placement errors and optimizing throughput. After checking for compiler errors, you can start a simulation to verify that tasks are completed and sequenced correctly. In addition, the simulation can help you find:

• Deadlocks
• Periods of inefficiency, such as when the robot is not being used
• Microplates spending different times at critical steps when they should be run under identical conditions
• A number of simultaneous plates that is too high or too low

Note: You can simulate the scheduling of multiple protocol runs, including those that run simultaneously.

Simulation time

The software uses the following lengths of time to simulate robot motions:

<table>
<thead>
<tr>
<th>Robot movement</th>
<th>Time (sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Direct Drive Robot and 3-Axis Robot</td>
<td>Slow: 8</td>
</tr>
<tr>
<td></td>
<td>Medium: 6</td>
</tr>
<tr>
<td></td>
<td>Fast: 4</td>
</tr>
<tr>
<td>Peak KiNEDx Robot</td>
<td>Slow: 16</td>
</tr>
<tr>
<td></td>
<td>Medium: 10</td>
</tr>
<tr>
<td></td>
<td>Fast: 4</td>
</tr>
<tr>
<td>Phantom Robot</td>
<td>Slow: 16</td>
</tr>
<tr>
<td></td>
<td>Medium: 10</td>
</tr>
<tr>
<td></td>
<td>Fast: 4</td>
</tr>
</tbody>
</table>

Task

Specified in the task Advanced Settings area. The default value is 5.0.
Creating a protocol: basic procedure

Simulating the protocol run

Note:
- The robot movement times are averages and might be conservative. The robots might take more or less time during a real protocol run.
- When using the Phantom Robot in a simulation, the software does not prompt the operator to move labware. Instead, the software uses the simulation time shown in the table.

You can override the default task simulation time in two ways:
- Perform a number of dry runs and allow the software to determine the average task time as it reaches a steady-state. The software then uses the average of the times during the subsequent simulation. See “Optimizing simulation time” on page 63.
- Manually set the desired task time in the Advanced Settings area of a task. See “Setting desired task times” on page 63.

Optimizing simulation time
To increase the accuracy of the run time, you can determine the optimum simulation time.

To determine the optimum task simulation time:
1. Start the simulation with the default task run times and the number of microplates expected for a run.
2. Resolve deadlocks and major errors in the protocol. Use the Gantt Chart to identify rate-limiting tasks and make adjustments to improve throughput. For instructions, see “Tracking the run progress of instances or devices” on page 223.
3. Turn off the simulation mode and perform a dry run with empty labware. Make sure the number of plate instances processed equals the number of simultaneous plates allowed. Doing so allows the run to reach a steady state and enables the software to update the task simulation times with actual times.
 IMPORTANT If the number of plate instances does not reach the number of simultaneous plates allowed, the software will not be able to update the task simulation times.
4. Save the protocol to save the updated task simulation times.

Setting desired task times
You can manually set task times to override the default task time or the optimized task time.

IMPORTANT The manually specified time is only retained and used for simulations. The optimized time will override the manually specified time if you turn off the simulation mode and run the protocol.

To set a desired task simulation time:
1. Select a task in the protocol.
2. In the Task Parameters area, click Advanced Settings.
3 At the bottom of the **Advanced Settings** area, view the existing value or type a new value for **Estimated time** for the selected task. To provide optimal simulation times, see “Optimizing simulation time” on page 63.

Note: Only some tasks have adjustable run times.
Procedure

To run the simulator:

1. Select Tools > Options. In the Options dialog box, select the simulation quality you want to use:

<table>
<thead>
<tr>
<th>Simulation quality</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard</td>
<td>Protocol tracking (green dots) is close to accurate, but not exact. This option results in faster simulation, because certain physical constraints are not simulated. In addition, less time is devoted to refreshing the graphical user interface.</td>
</tr>
<tr>
<td>Improved graphical protocol tracking</td>
<td>Protocol tracking is more accurate but results in longer simulation time than the Standard quality option. Similar to the Standard quality option, the software does not query the device plugins for physical constraints. However, the software ensures the green dots in the Protocol area are positioned accurately during the simulation.</td>
</tr>
<tr>
<td>Improved graphical protocol tracking with device communication</td>
<td>Protocol tracking is the most accurate. The software queries the device plugins to ensure every move is physically permissible, resulting in a slower but more accurate simulation.</td>
</tr>
</tbody>
</table>

2. Turn on the simulation mode: Click Simulation is off on the toolbar. The button changes to Simulation is on.
3 Start the protocol run. See “Starting the protocol run” on page 205 for the different ways you can start a run.

The simulation starts. The Run Configuration Wizard and other dialog boxes open as they would in a real protocol run. Follow the instructions in the dialog boxes to proceed with the simulation. For detailed information about Run Configuration Wizard, see “Starting the protocol run” on page 205.

Related information

<table>
<thead>
<tr>
<th>For information about...</th>
<th>See...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compiling the protocol</td>
<td>“Compiling the protocol” on page 61</td>
</tr>
<tr>
<td>Selecting simulation qualities</td>
<td>“Setting general and view options” on page 193</td>
</tr>
<tr>
<td>Changing the robot speed</td>
<td>“Setting general and view options” on page 193</td>
</tr>
<tr>
<td>Scheduling multiple runs</td>
<td>“Starting the protocol run” on page 205</td>
</tr>
<tr>
<td>Managing runsets</td>
<td>“Managing runsets” on page 211</td>
</tr>
<tr>
<td>Monitoring runs</td>
<td>“Monitoring the overall run progress” on page 222</td>
</tr>
<tr>
<td>Pausing runs</td>
<td>“Pausing the run” on page 229</td>
</tr>
<tr>
<td>Deadlock recovery</td>
<td>“Recovering from deadlocks” on page 532</td>
</tr>
</tbody>
</table>

Printing protocols

You can use a printout of your protocol to:

- Troubleshoot the protocol
- Present in a report
Before you start

Make sure:
• The computer is connected to the printer you want to use.
• The printer driver is installed on the computer that has VWorks software installed.

Procedure

To print a protocol:
1. Open the protocol you want to print.
2. In the VWorks window, select File > Print.

The protocol printout shows the following:

```
Serial Dilution3.pro

Plate Process: (96 Greiner 655101 PS C lr Rnd Well Flat Btm) called process - 1:
Place Plate:Place plate at Bravo - 1 7

Plate Process: (96 Velocity11 06980.002 Tip Box ST200) called Tip Box - Full (configured):
Place Plate:Place plate at Bravo - 1 9
Place Plate:Place plate at Bravo - 1 9

Plate Process: (96 Velocity11 06980.002 Tip Box LT200) called Tip Box - Empty (process):

SubProcess: "Bravo Sub Process 2":
Set head mode to 4 rows: A-D, 3 columns: 1-3
Tips On in 1 selection(s) from Tip Box - Full (configured)
Serial dilute process - 1, putting tips-on in 6, putting tips-off in 3
Tips Off in 1 selection(s) from 8

SubProcess: "Bravo Sub Process 3":
Tips On in 1 selection(s) from Tip Box - Empty (process)

Bravo Pipette
- Bravo - 1
```

<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protocol name</td>
<td>The name of the protocol.</td>
</tr>
<tr>
<td>Process name</td>
<td>The name of the process and the associated labware type.</td>
</tr>
<tr>
<td>Tasks</td>
<td>The tasks in the process, the devices used in the task, and location information.</td>
</tr>
<tr>
<td>Subprocesses</td>
<td>The subprocess and all tasks in the subprocess.</td>
</tr>
</tbody>
</table>
Related information

<table>
<thead>
<tr>
<th>For information about...</th>
<th>See...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compiling protocols</td>
<td>“Compiling the protocol” on page 61</td>
</tr>
<tr>
<td>Simulating protocol runs</td>
<td>“Simulating the protocol run” on page 62</td>
</tr>
<tr>
<td>Troubleshooting problems</td>
<td>“Maintenance and troubleshooting” on page 509</td>
</tr>
</tbody>
</table>
3 Creating a protocol: advanced topics

Read this chapter if you are an administrator or technician who writes protocols.

This chapter contains the following topics:

- “Tracking barcodes” on page 70
- “Using simple variables” on page 73
- “Using JavaScript” on page 80
- “VWorks-defined functions” on page 83
- “plate object” on page 85
- “plates[] object” on page 89
- “task object” on page 91
- “About scripting the Print and Apply task” on page 101
- “plateDB object” on page 104
- “runset object” on page 108
- “forms object” on page 111
- “Using start and finish protocol scripts” on page 112
- “Using JavaScript utilities” on page 113
Tracking barcodes

About this topic

The VWorks software allows you to track barcodes that are read or applied at a device. This topic explains how to set up barcode tracking in the software.

Barcode readers

Barcode readers can be installed on a number of devices in the lab automation system. For example, a barcode reader can be installed on a platepad so that every time a labware is placed there, the barcode is automatically read.

If your lab automation system contains a Microplate Labeler, you have the ability to print and apply barcode labels on microplates. If the Microplate Labeler includes an optional reader, barcode labels can be read.

To track barcodes in the system, you need the following:

- Input files
- Data files

Input files

Description

Created by upstream applications such as LIMS or created manually, barcode input files can be used to verify barcodes on incoming labware. As barcoded labware enter the system through tasks such as Downstack, the barcodes are scanned and compared against the barcodes in the barcode input file. You specify the input file to use when you set the process plate parameters. You can also specify a device to use to quarantine plates for which the barcode label is misread or incorrect. For details see “Setting plate parameters” on page 44.

Note: The software remembers where you are in the input file. For example, if you have 10 entries in the file, and the first protocol run processes the first six microplates, the next run will start at entry seven. To reset the file to the first row, reload the file. Barcode files are reloaded when you open a protocol file, when you update the Barcode file directory in Protocol Options, or when you update the Barcode filename or Has header option when setting up the plate parameters.

Requirements

Input files must meet the following requirements:

- The file must be a comma-separated value format with the .bar, .csv, or .txt file name extension.
- Optional. The file can contain a header that describes the columns in the file (for example, Plate Barcode).
- The file must contain at least one column.
- One of the columns must list the barcodes.
The following example shows an input file that is displayed in Excel. The file contains a header that labels two columns: Plate ID and Barcode.

<table>
<thead>
<tr>
<th>Plate ID</th>
<th>Barcode</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plate001</td>
<td>100001</td>
</tr>
<tr>
<td>Plate002</td>
<td>100002</td>
</tr>
<tr>
<td>Plate003</td>
<td>100003</td>
</tr>
<tr>
<td>Plate004</td>
<td>100004</td>
</tr>
<tr>
<td>Plate005</td>
<td>100005</td>
</tr>
<tr>
<td>Plate006</td>
<td>100006</td>
</tr>
<tr>
<td>Plate007</td>
<td>100007</td>
</tr>
<tr>
<td>Plate008</td>
<td>100008</td>
</tr>
<tr>
<td>Plate009</td>
<td>100009</td>
</tr>
<tr>
<td>Plate010</td>
<td>100010</td>
</tr>
<tr>
<td>Plate011</td>
<td>100011</td>
</tr>
</tbody>
</table>

The input file can be stored anywhere on the computer that runs the VWorks software. However, you must specify its location in the Protocol Options area.

Data files

Description

Created by upstream applications such as LIMS or created manually, barcode data files are used by the Print task or the Print and Apply task to:

- Print barcodes on labels. For example, the software reads a row in the file and prints the barcode presented in that row.
- Look up barcodes to print on labels. For example, the software reads the east-side barcode on a labware, looks up the barcode in the file, and prints the north-side barcode that is in the corresponding column (same row).

You specify the data file to use when you specify the task parameters for the Print or Print and Apply task. See “Print” on page 477 and “Print and Apply” on page 273.

Requirements

Barcode data files must meet the following requirements:

- Be a comma-delimited text file with the .csv file name extension
- Optional. Contain a header, which can be in any format.
- Contain at least one column. For example, the file can contain four columns, each representing a side of the microplate.
The following example shows a data file displayed in Excel. The file contains four columns, each representing a side of the microplate. In addition, the file contains a header in row 1.

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>North</td>
<td>South</td>
<td>East</td>
<td>West</td>
</tr>
<tr>
<td>2</td>
<td>A00001</td>
<td>B00001</td>
<td>C00001</td>
<td>D00001</td>
</tr>
<tr>
<td>3</td>
<td>A00002</td>
<td>B00002</td>
<td>C00002</td>
<td>D00002</td>
</tr>
<tr>
<td>4</td>
<td>A00003</td>
<td>B00003</td>
<td>C00003</td>
<td>D00003</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The data file can be stored anywhere on the computer that runs the VWorks software.

Related information

<table>
<thead>
<tr>
<th>For information about...</th>
<th>See...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microplate Labeler</td>
<td>Microplate Barcode Labeler User Guide</td>
</tr>
<tr>
<td>Print task</td>
<td>“Print” on page 477</td>
</tr>
<tr>
<td>Print and Apply task</td>
<td>“Print and Apply” on page 273</td>
</tr>
</tbody>
</table>
Using simple variables

About this topic

This topic presents the following:

• “About variables” on page 73
• “Variable and snippet syntax” on page 74
• “Defining variables and adding code snippets” on page 74
• “Adding user message prompts” on page 78

About variables

You can use variables to assign operator-supplied values to task parameters, provide an initial value for looping, or reference an array in another task. An example of variable usage is as follows: During a protocol run, the software will prompt the operator for aspirate and dispense volumes. The software will use the operator-supplied values during the run.

Instead of writing detailed JavaScript code in the JavaScript task Advanced Settings area, you can type a simple variable assignment and a code snippet directly in a field in the Task Parameters area. The following example shows how to assign a variable called x to the Dispense Volume parameter in the Task Parameters area.

Assigning the variable in the Task Parameters area is equivalent to providing the following line of code in the Advanced Settings area:

```javascript
task.Volume = x;
```

You can also add a snippet of code after the variable assignment. For example, you can assign the Dispense Volume to x, and then increment it by the same amount in each loop during the protocol run.
To prompt the operator for the values to use during the protocol run, you can select the option in the Define Variables task or add User Message tasks at the desired points in the protocol. See “Adding user message prompts” on page 78.

Variable and snippet syntax

When adding a variable and code snippet in the Task Parameters area, use the following syntax:

```
=x; <code snippet>
```

where x is the variable name and <code snippet> is additional code you want to run during the task. Use standard JavaScript rules for the variable name and for the code snippet.

Note: Variables defined here must be predefined in the protocol in the Define Variables task, User Message task, a previous JavaScript code snippet, or in the Advanced Settings area.

Defining variables and adding code snippets

You can define variables using the following:

- **Define Variables task.** In the Define Variables task, you can define multiple variables and set initial values. For more information, see “Define Variables” on page 464.
- **Define Plate Set task.** In the Define Plate Set task, you can define a variable that identifies a group of process plates to be processed identically. For more information, see “Define Plate Set” on page 460.
- **Task parameter variables.** You can define a variable for almost any parameter. For example, in the Aspirate task, you can define a variable for the Volume parameter.
- **Startup Protocol JavaScript task.** Using the JavaScript task in the Startup Protocol, you can define multiple variables and assign initial values to them.

Task parameter variables

The way you define a variable for other tasks depends on the field input style:

- **Text box format**
- **List format**
- **Time format**

Note: Parameters that require fixed values do not accept variables. For example, passwords, deck locations, and IP addresses cannot be assigned the value of a variable.

To assign a variable to a parameter whose value is displayed in a text box:

In the parameter value text box, type the variable assignment and optional code snippet. For syntax requirements, see “Variable and snippet syntax” on page 74.
To assign a variable to a parameter whose value can only be selected from a list:

1. In the list, select **Variable**.

The Script variable dialog box opens.

2. Type the variable assignment and optional code snippet. For syntax requirements, see “Variable and snippet syntax” on page 74.

Note: The = symbol in front of the text box indicates that the software will automatically add the = symbol in front of the variable.

3. Click **OK**. The new variable and optional code snippet appear in the parameter value list.

To add a variable to a parameter whose value is in the time format (h:mm:ss):

1. In the parameter value box, type = in the h, mm, or ss field. The Script variable dialog box opens.
2 Type the variable assignment and optional code snippet. For syntax requirements, see “Variable and snippet syntax” on page 74.

Note: The = symbol in front of the text box indicates that the software will automatically add the = symbol in front of the variable.

3 Click OK. The new variable and optional code snippet appear in the parameter field.

Startup Protocol JavaScript task

To create multiple variables and assign initial values to them:

1 In the protocol, click Startup Protocol.
2 Click **Add Process**. A Startup process appears.

3 Add the **JavaScript** task.
In the **Advanced Settings** area, type the variable assignments.

Adding user message prompts

After adding variables to the desired task parameters, you can add User Message tasks to prompt operators for values at the beginning of the protocol run or at the desired points during the protocol run.
Note: You do not need to add the User Message task when using the Define Variables task. The Define Variables task contains an option to add a user message prompt.

To add User Message tasks:

1. In the Startup Protocol:
 - Add a User Message task for each variable assigned in a task parameter input field.
 - Add a User Message task for any variable that you assigned in the Advanced Settings area of a given task. If you added variables in the Advanced Settings area, add the User Message task after the task in the startup protocol.

Alternatively, at the desired points in the Main Protocol, add a User Message task for each variable assigned in a task parameter input field.

2. In the Task Parameters area, type values and select the desired options in the User Message Properties table. For a description of the properties, see “User Message” on page 491.

3. Select User data entry into variable and type the name of the variable in the Variable name box. During the protocol run, the software will prompt the operator for a value and assign it to this variable.

 IMPORTANT If you added multiple variables in the startup protocol, do not use the Variable name property. Instead, use the Body property to instruct the operator to set the variable values in the Advanced Settings area. For details on the Body property, see “User Message” on page 491.
Related information

<table>
<thead>
<tr>
<th>For information about...</th>
<th>See...</th>
</tr>
</thead>
<tbody>
<tr>
<td>User Message task</td>
<td>“User Message” on page 491</td>
</tr>
<tr>
<td>JavaScript task</td>
<td>“JavaScript” on page 472</td>
</tr>
<tr>
<td>Using JavaScript in the VWorks software</td>
<td>“Using JavaScript” on page 80</td>
</tr>
<tr>
<td>Using JavaScript utilities</td>
<td>“Using JavaScript utilities” on page 113</td>
</tr>
<tr>
<td>Startup protocols</td>
<td>“Setting up Startup and Cleanup Protocol processes” on page 58</td>
</tr>
</tbody>
</table>

Using JavaScript

About this topic

This topic explains how to use JavaScript in the VWorks software. For a full description of the JavaScript language, see the Mozilla Developer Center at http://www.mozilla.org/js/.

Read this topic if you have administrator or technician privileges. This topic assumes that you know how to write programs in JavaScript or have basic programming knowledge.

How JavaScript is used in the software

A comprehensive JavaScript engine is implemented in the VWorks software so that you can customize the software as follows:

- Change the existing task parameters.
- Skip a task if certain conditions are met.
- Repeat a task if certain conditions are met.

The task parameters can change dynamically during a run based on conditions such as:

- Information passed from an external source, such as a database
- The number of times the protocol has cycled
- Feedback on changing conditions or data values during the run

Examples of use

You can use JavaScript in the VWorks software to:

- Print the parameters of a task to the main log.
- Run a command that launches an external application, such as a batch file or database-updating program.
- Reduce the length of the protocol.
Where to write JavaScript

You can write JavaScript in the Advanced Settings area of any task or in the JavaScript task in the Startup, Main, and Cleanup Protocols. JavaScript written in any task is run differently than code written in the JavaScript task:

- **Any task.** During a protocol run, the software will run the JavaScript first before evaluating whether the task is possible.

 Note: In the previous version of the VWorks software, the software ran the script after evaluating whether the task was possible.

- **JavaScript task.** You can add the JavaScript task to run a program that is independent of any task. During a protocol run, the software will run the JavaScript as it reaches the JavaScript task.

The following example shows JavaScript written in the Advanced Settings area of the Aspirate task. Notice that the script is written directly in the text box.

You can add JavaScript in the following ways:

- Directly in the text box in the Advanced Settings area (see the previous example)
- As an external file that is called by the open() function in the text box
About JavaScript variables

By default, the values of all variables are cleared (set to undefined) before the next protocol is run. To retain the value of all variables from protocol to protocol, select the **Use global context for this protocol** option in the Protocol Options tab. When the option is turned on, a variable and its value assigned in one protocol can be used by other protocols that have the same variable until you exit the software. If using the global context option, the values of variables are not reset until the software is restarted.

CAUTION If you select the Use global context for this protocol option, variables with the same name in different protocols will overwrite each other.

Cautions

Before running a protocol containing JavaScript, compile the protocol and run it in simulation mode.

During the compiling process, the software uses values displayed in the Task Parameters area and not the values set by JavaScript. Therefore, some errors might not be detected during compilation. The values that appear in the Task Parameters area do not reflect the effects of the JavaScript.

Be aware that JavaScript does not check pipetting volumes before the run begins. Therefore, you must make sure that the pipetting steps make logical sense. For example, the software does not alert you if a JavaScript attempts to aspirate 1 µL from a microplate well that can only hold 0.5 µL.

Related information

<table>
<thead>
<tr>
<th>For information about...</th>
<th>See...</th>
</tr>
</thead>
<tbody>
<tr>
<td>JavaScript language</td>
<td>Mozilla Developer Center</td>
</tr>
<tr>
<td>Using script variables directly in task parameters</td>
<td>“Using simple variables” on page 73</td>
</tr>
<tr>
<td>JavaScript task</td>
<td>“JavaScript” on page 472</td>
</tr>
<tr>
<td>Using JavaScript utilities</td>
<td>“Using JavaScript utilities” on page 113</td>
</tr>
<tr>
<td>Startup and cleanup protocols</td>
<td>“Setting up Startup and Cleanup Protocol processes” on page 58</td>
</tr>
</tbody>
</table>
VWorks-defined functions

Function descriptions

The VWorks JavaScript interpreter supports the JavaScript 1.5 or later core functions and objects. VWorks also has its own functions and objects that can be used.

The following VWorks-defined functions are available globally, so they are not restricted to a particular object or programming context.

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
</table>
| GetGlobalObject() | Provides the ability to get the global context from a JavaScript that is executed in a context other than the global context. Returns an object that has all the variables of the global context. For example, in a protocol that uses the local context for variables, you can have a JavaScript task that includes a variable in the global context. Example:
```javascript
//(0) Create a reference to global object from this context.
var g_ref = GetGlobalObject();
//(1) Declare a var xx in GlobalObject.
g_ref.xx = 4
//(2) Increment the variable.
g_ref.xx++
//(3) Print the variable.
print(g_ref.xx)
```

 Note: In this example, lines (2) and (3) could be executing from different protocols, each in their own private context, with shared data results.

 Note: You can set a breakpoint on the task that uses this function to open the Debugger dialog box and view the variable (g_ref). For details on setting breakpoints, see “Using breakpoints to monitor and troubleshoot tasks” on page 527.
| open() | Opens a text file and immediately executes the file contents as script. Parameter: Text string
Examples:
```javascript
open("c:\VWorks workspace\script.js")
open("c:\VWorks workspace\script.txt")
```

 Make sure the file is in ANSI text format. The file extension is not important.

 Note: Microsoft Notepad saves in ANSI text format by default.
Function Description

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
</table>
| print() | Prints time-stamped messages to the VWorks log.
Parameter: Text string
Example: `print(plate.name)` |
| run() | Runs a Microsoft Windows script as though it is being called from a command line.
Parameters:
- *Text string*. Required. Allows you to initiate a command that you could otherwise enter into the Windows Run dialog box, such as notepad text.txt (opens a file named text.txt in Windows Notepad).
- *Boolean True/False*. Optional. Default is False. If True, the software waits for the function to complete before continuing (blocking).
Examples:
- `run("notepad")`
- `run("notepad",true)`
The first example starts Notepad. The second example starts Notepad and pauses the VWorks software until you exit Notepad. |

Related information

<table>
<thead>
<tr>
<th>For information about...</th>
<th>See...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Using JavaScript in the VWorks software</td>
<td>“Using JavaScript” on page 80</td>
</tr>
<tr>
<td>VWorks-defined plate objects, properties, and methods</td>
<td>“plate object” on page 85</td>
</tr>
<tr>
<td>VWorks-defined task objects, properties, and methods</td>
<td>“task object” on page 91</td>
</tr>
<tr>
<td>Using JavaScript utilities</td>
<td>“Using JavaScript utilities” on page 113</td>
</tr>
<tr>
<td>JavaScript task</td>
<td>“JavaScript” on page 472</td>
</tr>
<tr>
<td>Startup and cleanup protocols</td>
<td>“Setting up Startup and Cleanup Protocol processes” on page 58</td>
</tr>
<tr>
<td>Using script variables directly in task parameters</td>
<td>“Using simple variables” on page 73</td>
</tr>
<tr>
<td>How to specify the JavaScript context for a protocol</td>
<td>“Setting protocol options” on page 31</td>
</tr>
<tr>
<td>JavaScript context and form design</td>
<td>“Understanding JavaScript context in form design” on page 183</td>
</tr>
</tbody>
</table>
plate object

About the plate object

The VWorks JavaScript interpreter provides the following objects that can be accessed by a script.

- plate object
- plates[] object
- task object
- plateDB object
- runset object
- forms object

This topic describes the plate object properties and methods. plate provides access to properties of the labware that the current task is operating on. You use the plate object in non-subprocess tasks such as the Place Plate task.

IMPORTANT To access labware properties in a subprocess task, use the plates[] object.

Properties

To see the properties of a plate object:

1. Open a protocol and select a task in the protocol area.
2. In the Advanced Settings area, type plate. The software automatically displays the list of available properties for the plate object.

Instead of displaying the list of plate properties in the Advanced Settings area, you can also list them in the Main Log. Doing so allows you to print the log file and retain a copy of the properties for reference.

To list the plate properties in the Main Log:

1. Open a protocol.
2. Select a task in the Protocol area.
3. In the Task Parameters area, click Advanced Settings.
4 Type the following in the **Script to be executed before task** area:

```javascript
for (x in plate) {
    print("plate." + x + " = " + plate[x]);
}
```

5 Run the protocol. The plate properties appear in the Main Log.

The following table lists the plate properties.

<table>
<thead>
<tr>
<th>Property</th>
<th>Data type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>plate.name</td>
<td>String</td>
<td>Name of the plate. The property is read-only.</td>
</tr>
<tr>
<td>plate.instance</td>
<td>Integer</td>
<td>Plate instance number. The property is read-only.</td>
</tr>
<tr>
<td>plate.labware</td>
<td>String</td>
<td>Name of the labware type. The property is read-only.</td>
</tr>
<tr>
<td>plate.barcode</td>
<td>Array</td>
<td>Array of four strings where, SOUTH=0, WEST=1, NORTH=2, EAST=3. The property is read-only, and can be changed by the plate.setBarcode() method. Example: <code>plate.barcode[SOUTH]</code></td>
</tr>
<tr>
<td>plate.volume</td>
<td>Array of array of floats</td>
<td>An array consisting of one or more arrays of floating point numbers. The array size depends on the number of wells in the labware (96, 384, or 1536), arranged in row, column format. This property is available only in VWorks software that has the volume-tracking database option. The property is read-only. Example: <code>plate.volume[row][column]</code> For 96-well microplates, the maximum row value is 8, and the maximum column value is 12. For 384-well microplates, the maximum row value is 16, the maximum column value is 24. For 1536-well microplates, the maximum row value is 32, the maximum column value is 48.</td>
</tr>
</tbody>
</table>
Methods

Methods are JavaScript functions invoked through an object. The plate object has the following methods, available on systems that have the volume-tracking database option. Use these methods to track microplate-specific data.

Note: You can use the plate.getUserData() method to retrieve information stored by the plates[n].setUserData() method.

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>plate.setUserData(string key, string value)</td>
<td>Stores value under the key in a database record associated with this microplate. The data is retained across runs. The method is only available if the database is installed.</td>
</tr>
</tbody>
</table>
Related information

<table>
<thead>
<tr>
<th>For information about...</th>
<th>See...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Using JavaScript in the VWorks software</td>
<td>“Using JavaScript” on page 80</td>
</tr>
<tr>
<td>VWorks-defined functions</td>
<td>“VWorks-defined functions” on page 83</td>
</tr>
<tr>
<td>Other VWorks-defined objects</td>
<td>• “runset object” on page 108</td>
</tr>
<tr>
<td></td>
<td>• “plates[] object” on page 89</td>
</tr>
<tr>
<td></td>
<td>• “plateDB object” on page 104</td>
</tr>
<tr>
<td></td>
<td>• “task object” on page 91</td>
</tr>
<tr>
<td></td>
<td>• “forms object” on page 111</td>
</tr>
<tr>
<td>Using JavaScript utilities</td>
<td>“Using JavaScript utilities” on page 113</td>
</tr>
<tr>
<td>JavaScript task</td>
<td>“JavaScript” on page 472</td>
</tr>
<tr>
<td>Startup and cleanup protocols</td>
<td>“Setting up Startup and Cleanup Protocol processes” on page 58</td>
</tr>
</tbody>
</table>
plates[] object

About the plates[] object

The VWorks JavaScript interpreter provides the following objects that can be accessed by a script.

- plates[] object
- plate object
- task object
- plateDB object
- runset object
- forms object

This topic describes the plates[] object properties and methods.

plates[] is a VWorks-defined array of plate objects that provides access to properties of one or more microplates upon which the current task is operating. You use the plates[] object only for subprocess tasks that reference at least one microplate. For subprocess tasks that do not employ microplates, such as the curly-brace task, the plates[] object is not relevant.

IMPORTANT To access microplate properties in a non-subprocess task, use the plate object.

In a subprocess, the plates[] object is defined only for those tasks that employ a microplate, such as Aspirate or Dispense. Each element in the plates[] object references a single microplate that is referenced by the current instance of the task. The array elements refer to actual process plates, not just instances of a plate. The first element of the plates[] object is the first plate associated with that subprocess task. Therefore, plates[0] in the Aspirate task refers to the Source plate, while in the Dispense task, plates[0] is the Destination plate.

The array elements are in the order that they appear in the task. For example, the Dilute to Final Volume task uses two microplates: Source (plate[0]) and Destination (plate[1]). Suppose the task is in a loop and a Change Instance task changes the Destination microplate each time through the loop. The Source microplate remains plates[0] and the Destination microplate remains plates[1] each time the Dilute to Final Volume task is performed.

Properties

IMPORTANT You can list plates[] properties only for a subprocess task that has at least one microplate associated with it.

You can list the plate properties of each plate[n]. For example, you can list the properties for plate[0] and plate[1] to identify and determine the differences between them.

To list the plates[] properties in the Main Log:
1. Open a protocol.
2. In the Protocol area, select a subprocess task that references at least one microplate.
3. In the Task Parameters area, click Advanced Settings.
4 Type the following in the **Script to be executed before task** area:

```javascript
for (x in plates[n])
{
    print ("plates[n]." + x + " = " + plates[n][x]);
}
```

Where `n` is the array index.

5 Run the protocol. The plate properties appear in the Main Log.

The `plates[]` properties are the same as the plate properties. For the list and description of the plate properties, see “plate object” on page 85.

Methods

Methods are JavaScript functions invoked through an object. The `plates[]` object has the following methods, available on those systems with the volume-tracking database option. Use these methods to track microplate-specific data.

Note: You can use the `plates[n].getUserData()` method to retrieve information stored by the `plate.setUserData()` method.

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>plates[n].setUserData(string key, string value)</code></td>
<td>Stores the <code>value</code> under the <code>key</code> in a database record associated with this microplate. The data is retained across runs. The method is only available if the database is installed.</td>
</tr>
<tr>
<td><code>plates[n].getUserData(string key)</code></td>
<td>Returns the <code>value</code> stored earlier using <code>plates[n].setUserData</code> or <code>plate.setUserData</code>. (See “plate object” on page 85.) The method is only available if the database is installed.</td>
</tr>
<tr>
<td><code>plates[n].reportErrorToPlugin(string error)</code></td>
<td>Calls the VWorks Hooks ScriptPlateError method to pass <code>error</code> to the Hooks plugin.</td>
</tr>
<tr>
<td><code>plates[n].setBarcode(SIDE, string barcode)</code></td>
<td>Manually stores the barcode data in <code>plates[n].barcode[SIDE]</code>. For example: <code>plates[0].setBarcode(WEST, "A1234")</code></td>
</tr>
</tbody>
</table>

Related information

<table>
<thead>
<tr>
<th>For information about...</th>
<th>See...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Using JavaScript in the VWorks software</td>
<td>“Using JavaScript” on page 80</td>
</tr>
</tbody>
</table>
About the task object

The VWorks JavaScript interpreter provides the following objects that can be accessed by a script.
- task object
- plate object
- plates[] object
- plateDB object
- runset object
- forms object

This topic describes the task object properties and methods.

task refers to the currently running task. It allows the properties of the task to be accessed using a standard syntax. Depending on which task is running, a different set of properties might be available.

Properties

The properties available for a task correspond to its task parameters in the Task Parameters area.

To see the properties of a task:

1. Open a protocol that contains the task.
2. Select the task in the Protocol area.
3. In the Advanced Settings area, type task in the Script to be executed before task box. The software automatically displays the list of available properties for the task object.
In the following example, the properties for the Aspirate (Bravo) task is shown in the Advanced Settings area. Notice that they correspond to the parameters in the Task Parameters area.

Instead of displaying the list of task properties in the Advanced Settings area, you can also list them in the Main Log. Doing so allows you to print the log file and retain a hardcopy of the properties for reference.

To list the task properties in the Main Log:

1. Open a protocol that contains the task.
2. Select the task in the Protocol area.
3. In the Task Parameters area, click Advanced Settings.
4. Type the following in the Script to be executed before task area:
   ```
   for (x in task) {
       print("task." + x + " = " + task[x]);
   }
   ```
5. Run the protocol. The task properties appear in the Main Log.

The following example shows the properties for the Aspirate (Bravo) task.
Task property data types

A task property can be one of the following data types. You can use the default task parameter value to determine the data type.

<table>
<thead>
<tr>
<th>Data type</th>
<th>Example task parameter</th>
</tr>
</thead>
</table>
| Array | Aspirate task, well selection
| | ![Well selection](image)
| | For more information about the array data type, see "Array data types" on page 94. |
| Boolean | Aspirate task, Perform tip touch option
| | ![Tip Touch](image) |
| Float | Aspirate task, Volume parameter
| | ![Volume](image) |
| Integer | Loop task, Number of times to loop parameter
| | ![Loop properties](image) |
| String | Name of a process plate
| | ![Plate identity](image) |
Array data types

In JavaScript, an array is a built-in object that stores a collection of like values called elements. Each element is accessed by an index value that is enclosed in square brackets. Index values must be non-negative integers. The following example script declares an array with three elements:

```javascript
var vehicle_type = new Array(3);
vehicle_type[0] = "car";
vehicle_type[1] = "truck";
vehicle_type[2] = "van";
```

In the VWorks software, the array data type applies to properties that specify:

- The sides of a microplate for barcode reading or labeling
- The well selection in liquid-handling tasks, such as the Aspirate task

Sides of a microplate

In properties that specify the sides of a microplate, the array contains four elements, each representing a side of the microplate, for example:

- `task.side[SOUTH]`
- `task.side[EAST]`
- `task.side[NORTH]`
- `task.side[WEST]`

Well selection

In properties that specify well selection, the array identifies the location of wells and quadrants in a microplate. Well locations are represented by a pair of integers that describe its row and column coordinates: `[row, column]`.

A quadrant is an evenly spaced array of locations that are accessible by the tips on a pipette head. The following table lists the types of pipette heads and the number of accessible quadrants in various microplates.

<table>
<thead>
<tr>
<th>Pipette head channels/pin tool pins</th>
<th>Microplate</th>
<th>Number of quadrants</th>
</tr>
</thead>
<tbody>
<tr>
<td>96</td>
<td>96-well</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>384-well</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>1536-well</td>
<td>16</td>
</tr>
<tr>
<td>384</td>
<td>384-well</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>1536-well</td>
<td>4</td>
</tr>
<tr>
<td>1536 (pin tool only)</td>
<td>1536-well</td>
<td>1</td>
</tr>
</tbody>
</table>

The following diagram demonstrates the concept of quadrants. The diagram shows a portion of a 384-well microplate and highlights the four quadrants (Q1, Q2, Q3, and Q4) that are accessible by the A1 tip of a 96-channel pipette head. Notice that the green color highlights all of the quadrant 1 (Q1) wells across the microplate.
When specifying well selection, you provide both the well location and quadrant location. For example, the designation for the four quadrants highlighted in the previous diagram is:

\[
[[1,1],[1,2],[2,1],[2,2]]
\]

where the Q1 coordinates are [1,1], Q2 coordinates are [1,2], Q3 coordinates are [2,1], and Q4 coordinates are [2,2].

You can also use variables to represent the row and column coordinates, as the following example shows:

```javascript
task.WellSelection = [[disp_row, disp_col]]
```

IMPORTANT Quadrant specifications in the Well Selection dialog box will override task.WellSelection values assigned in the Advanced Settings area.

To cycle through the quadrants in a liquid-handling task, you can use a series of `if` statements as the following example shows.

```javascript
var Dispense_Loop;
if (Dispense_Loop == undefined) {
   Dispense_Loop = 1;
}
if (isNaN(Dispense_Loop)) {
   Dispense_Loop = 1;
}
if ((Dispense_Loop < 1) || (Dispense_Loop > 4)) {
   Dispense_Loop = 1;
}
if (Dispense_Loop == 1) {
   task.WellSelection = [[1,1]];
}
if (Dispense_Loop == 2) {
   task.WellSelection = [[1,2]];
}
if (Dispense_Loop == 3) {
   task.WellSelection = [[2,1]];
}
if (Dispense_Loop == 4) {
   task.WellSelection = [[2,2]];
}
```
Methods

The task object methods, and the properties of the methods, are specific to the selected task. The following table lists some of the shared methods:

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>task.skip()</td>
<td>Skips the current task. Use this function to conditionally run a task, such as in this example which skips the task if the simulator is not running:</td>
</tr>
<tr>
<td>task.isSimulatorRunning()</td>
<td>Returns true if this is a simulated run. Has no arguments.</td>
</tr>
<tr>
<td>task.pause()</td>
<td>Pauses the protocol and opens a dialog box that asks you whether you want to continue or abort the run.</td>
</tr>
<tr>
<td>task.repeat()</td>
<td>Schedules the task to be repeated.</td>
</tr>
<tr>
<td>task.repeatDelay(int timeseconds)</td>
<td>Requests the task to wait the specified time (in seconds), and then repeats. For example, you can use this method to wait for a value to change.</td>
</tr>
<tr>
<td>task.setGlobalData(string name, string value)</td>
<td>Stores value in name in the Global database.</td>
</tr>
<tr>
<td>task.getGlobalData(string name)</td>
<td>Returns the value stored earlier using task.setGlobalData.</td>
</tr>
<tr>
<td>task.getProtocolName()</td>
<td>Retrieves the full protocol path (string).</td>
</tr>
</tbody>
</table>
task.Headmode method

Available only for SubProcess (Bravo). The following method enables selection of a subset of the barrels in the pipette head:

`task.Headmode(string hst,hso,row,col)`

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>hst</td>
<td>Specifies the barrel selection as follows:</td>
</tr>
<tr>
<td></td>
<td>0 = all_barrels</td>
</tr>
<tr>
<td></td>
<td>1 = column</td>
</tr>
<tr>
<td></td>
<td>2 = row</td>
</tr>
<tr>
<td></td>
<td>3 = partial_column_row</td>
</tr>
<tr>
<td></td>
<td>4 = single_barrel</td>
</tr>
<tr>
<td>hso</td>
<td>Specifies the region of the barrel selection, where,</td>
</tr>
<tr>
<td></td>
<td>0 = front_right</td>
</tr>
<tr>
<td></td>
<td>1 = back_right</td>
</tr>
<tr>
<td></td>
<td>2 = back_left</td>
</tr>
<tr>
<td></td>
<td>3 = front_left</td>
</tr>
<tr>
<td>row</td>
<td>Specifies the row dimensions of the barrel selection, for example,</td>
</tr>
<tr>
<td></td>
<td>• 96-barrel head, the maximum row value is 8, and the maximum column value is 12.</td>
</tr>
<tr>
<td></td>
<td>• 384-barrel head, the maximum row value is 16, the maximum column value is 24.</td>
</tr>
<tr>
<td>col</td>
<td>Specifies the column dimensions of the barrel selection, for example,</td>
</tr>
<tr>
<td></td>
<td>• 96-barrel head, the maximum row value is 8, and the maximum column value is 12.</td>
</tr>
<tr>
<td></td>
<td>• 384-barrel head, the maximum row value is 16, the maximum column value is 24.</td>
</tr>
</tbody>
</table>

The following examples show how to use task.Headmode.
3 Creating a protocol: advanced topics

task object

<table>
<thead>
<tr>
<th>Barrel selection options</th>
<th>Example task. Headmode script and comparable view in the Head Mode Selector dialog box</th>
</tr>
</thead>
</table>
| Select partial row/column | Selecting 35 barrels (7-by-5 region)
 task. **Headmode** = “3,1,7,5” |

Note: Row specified is ignored.

Select column or columns

Selecting 5 columns
Note: Row specified is ignored.
task. **Headmode** = “1,2,1,5”
Barrel selection options

<table>
<thead>
<tr>
<th>Select row or rows</th>
<th>Example task.Headmode script and comparable view in the Head Mode Selector dialog box</th>
</tr>
</thead>
<tbody>
<tr>
<td>Selecting 4 rows</td>
<td><code>task.HeadMode = "2,3,4,1"</code></td>
</tr>
<tr>
<td>Note: Column specified is ignored.</td>
<td></td>
</tr>
</tbody>
</table>

Select single barrel

Selecting single barrel in the back left

Note: Row and column specified are ignored; region is always 1-by-1.

`task.HeadMode = "4,2,1,1"`
Related information

<table>
<thead>
<tr>
<th>For information about...</th>
<th>See...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Writing JavaScript for the Print and Apply task</td>
<td>“About scripting the Print and Apply task” on page 101</td>
</tr>
<tr>
<td>Using JavaScript in the VWorks software</td>
<td>“Using JavaScript” on page 80</td>
</tr>
<tr>
<td>VWorks-defined functions</td>
<td>“VWorks-defined functions” on page 83</td>
</tr>
<tr>
<td>Other VWorks-defined objects</td>
<td>• “plate object” on page 85</td>
</tr>
<tr>
<td></td>
<td>• “plates[] object” on page 89</td>
</tr>
<tr>
<td></td>
<td>• “plateDB object” on page 104</td>
</tr>
<tr>
<td></td>
<td>• “runset object” on page 108</td>
</tr>
<tr>
<td></td>
<td>• “forms object” on page 111</td>
</tr>
<tr>
<td>Using JavaScript utilities</td>
<td>“Using JavaScript utilities” on page 113</td>
</tr>
<tr>
<td>JavaScript task</td>
<td>“JavaScript” on page 472</td>
</tr>
<tr>
<td>Startup and cleanup protocols</td>
<td>“Setting up Startup and Cleanup Protocol processes” on page 58</td>
</tr>
<tr>
<td>Specifying a quadrant pattern in the Well Selection dialog box</td>
<td>• “Aspirate (Bravo, Vertical Pipetting Station)” on page 338</td>
</tr>
<tr>
<td></td>
<td>• “Dispense (Bravo, Vertical Pipetting Station)” on page 358</td>
</tr>
<tr>
<td></td>
<td>• “Mix (Bravo, Vertical Pipetting Station)” on page 398</td>
</tr>
</tbody>
</table>
About scripting the Print and Apply task

Print and Apply task parameter exceptions

Unlike other tasks, the Print and Apply task parameters have the following exceptions:

- The number of parameters can vary, because each labeling device has a different number of formats, and each format has a different number of fields. (In the software, the contents of each field are specified in the Field Composer dialog box.)

- If parameters are used more than once within the task, prefixes will be assigned to the parameter names so that each will be unique.

In the following example, MyFormat is specified for the south and west sides of a microplate. The field names (1 and 2) are identical for both sides. So the software will append a prefix to each to indicate the side. The new field names will be South_1, South_2, West_1, and West_2.

CAUTION If you specify the same format for another side after the script for the first side is already written, the software will append a prefix to the field names for the new side, but the existing field names will remain unchanged, and the script will be invalid.

Scripting what to print (label content)

When scripting the task parameters for the Print and Apply task, the field parameter must be assigned to a string that encodes what is to be printed. The following table lists the task parameters and the corresponding string options.

Note: When in doubt about available task parameters, add the following script into the task and run: `for(x in task){print(x + "::" + task[x])}` This script prints all the current task parameters.
### Parameter	JavaScript string
Date	"[DATE:enum1]"
Where enum1:	
0 – Use System Format	
1 – YYYY/MM/DD	
2 – DD/MM/YYYY	
3 – MM/DD/YYYY	
4 – YY/MM/DD	
5 – DD/MM/YY	
6 – MM/DD/YY	
Example:	
task._1 = "[DATE:0]"	

Time | "[TIME:enum1]"
| Where enum1:
| 0–12 (12-hour time AM/PM)
| 1–24 (24-hour time)
| Example:
| task._1 = "[TIME:0]"

Counter | "[COUNTER:StartAt:IncBy:TotalNumberOfDigits:IncEveryNPlates:enum1]"
| Where enum1:
| 0 – Numeric (0–9)
| 1 – Alphanumeric (0–Z)
| Example:
| task._1 = "[COUNTER:0:1:3:2:1]"

File With Lookup | "[FILEWLOOKUP:filename:keyCol:ValueCol]"
| Example:
| task._1 = "[FILEWLOOKUP:c:/temp.csv:1:1]"

File Start at row/col and increment row | "[FILE:filename:startRow:startCol]"
| Example:
| task._1 = "[FILE:c:/temp.csv:1:1]"

Static Text | "[STATIC:staticText]"
| Example:
| var my_string = "hello world"
| task._1 = "[STATIC:" + my_string + "]";
Creating a protocol: advanced topics

About scripting the Print and Apply task

Guidelines for scripting where to print the barcode label

About scripting which field to print to

The way in which a field is referenced through JavaScript varies depending on the number of sides to be labeled.

If printing:

- **Only on a single side.** For example, if printing to the east side in field 1, you would use the following syntax:
  ```javascript
task._1
  ```
- **On more than one side.** For example, if field 1 exists more than once in the task, and `task._1` is ambiguous, you would use the following syntax:
  ```javascript
task.East_1
  ```

About scripting the format

Although it is possible to script the format, you must ensure that the scripted format has the same number of fields as the format specified in the protocol.

```javascript
task.West_Format=3
//script the format
task._3 = "[FILEWLOOKUP:C:\bcf.csv:1:3]"
//script field 3 of format 3
```

Note: To read and write the field task parameters, the values used are pre-evaluation. For example, to print the current time, you would set the task parameter for field 1 to `[TIME:0]`. If you print this from JavaScript using `print(task._1)`, the result will be `[TIME:0]`, not as the actual time.

Related information

<table>
<thead>
<tr>
<th>Parameter</th>
<th>JavaScript string</th>
</tr>
</thead>
</table>
| CopyBarcode from a different side | `task._1= "[BARCODE:copyFromSideEnum1]"` Where `copyFromSideEnum1:`
0 – south
1 – west
2 – north
3 – east
Example: `task._1= "[BARCODE:2]"`

For information about... | See... |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Print and Apply task</td>
<td>“Print and Apply” on page 273</td>
</tr>
</tbody>
</table>
| Label formats | *Microplate Barcode Labeler User Guide*
| Field contents | “Print and Apply” on page 273 |
| Using JavaScript in the VWorks software | “Using JavaScript” on page 80 |
plateDB object

About the plateDB object

The VWorks JavaScript interpreter provides the following objects that can be accessed by a script.

- plateDB object
- plate object
- plates[] object
- task object
- runset object
- forms object

This topic describes the plateDB object properties and methods.

plateDB enables control of the database through JavaScript. You can use the plateDB object to create plate groups, add plates to existing plate groups (if they exist in a location group), remove plates from plate groups, and delete plate groups.

Properties

The plateDB object has no properties.

Methods

Methods are JavaScript functions invoked through an object. The plateDB object has the following methods, which are available on systems with the microplate-tracking database option.

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>createPlateGroup(string plateGroup)</td>
<td>Creates a new plate group. Returns true on success, or returns false on failure. The method also prints to the log the reason for failure. Example: plateDB.createPlateGroup("myplate group")</td>
</tr>
<tr>
<td>deletePlateGroup(string plateGroup)</td>
<td>Deletes a plate group. Returns true on success, or returns false on failure. The method also prints to the log the reason for failure. Example: plateDB.deletePlateGroup("myplate group")</td>
</tr>
<tr>
<td>Method</td>
<td>Description</td>
</tr>
<tr>
<td>--------</td>
<td>-------------</td>
</tr>
<tr>
<td><code>addPlateToGroup(int side, string barcode, string locationGroup, string plateGroup)</code></td>
<td>Adds a plate that exists in a location group to a plate group. Returns true if successful, or returns false upon failure. The method also prints the reason for failure to the log. Note: The plate must exist in a <code>locationGroup</code>, and the given <code>barcode</code> must be on the specified side of the plate. Example: <code>plateDB.addPlateToGroup(WEST, "BC01", "locationGroup", "plateGroup")</code></td>
</tr>
<tr>
<td><code>deleteAllPlatesFromGroup(string plateGroup)</code></td>
<td>Deletes all plates from a specified plate group. Returns false upon failure, and prints the reason for failure to the log. Note: The plate group must exist. Example: <code>plateDB.deleteAllPlatesFromGroup("plateGroupName")</code></td>
</tr>
<tr>
<td><code>enumeratePlateGroup(string plateGroup)</code></td>
<td>Returns the plate IDs from the plate database for this plate group. Returns an array of database plate IDs. If the method fails, the reason for failure prints to the log. Note: The plate group must exist. Example: <code>plateDB.enumeratePlateGroup("plateGroupName")</code> See additional example in <code>getPlateBarcode</code> method, below.</td>
</tr>
<tr>
<td><code>getPlateBarcode(int side, array plateID)</code></td>
<td>Returns the plate barcode (string) for the specified plate ID and the side of the plate. If the method fails, the reason for failure prints to the log. Example: var <code>plateIDs = plateDB.enumeratePlateGroup("plateGroupName")</code> for(var <code>plateID</code> in <code>plateIDs</code>){ print(plateDB.getPlateBarcode(WEST, plateIDs[plateID])) }</td>
</tr>
</tbody>
</table>
Method Description

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
</table>
| addPlateToGroup(int side, string barcode, string locationGroup, string plateGroup) | Adds a plate that exists in a location group to a plate group. Returns true if successful, or returns false upon failure. The method also prints the reason for failure to the log.

Note: The plate must exist in a locationGroup, and the given barcode must be on the specified side of the plate.

Example:

```csharp
plateDB.addPlateToGroup(WEST, "BC01", "locationGroup", "plateGroup")
```

| deleteAllPlatesFromGroup (string plateGroup) | Deletes all plates from a specified plate group. Returns false upon failure, and prints the reason for failure to the log.

Note: The plate group must exist.

Example:

```csharp
plateDB.deleteAllPlatesFromGroup("plateGroupName")
```

| enumeratePlateGroup(string plateGroup) | Returns the plate IDs from the plate database for this plate group. Returns an array of database plate IDs. If the method fails, the reason for failure prints to the log.

Note: The plate group must exist.

Example:

```csharp
plateDB.enumeratePlateGroup("plateGroupName")
```

See additional example in getPlateBarcode method, below.

| getPlateBarcode(int side, array plateID) | Returns the plate barcode (string) for the specified plate ID and the side of the plate.

If the method fails, the reason for failure prints to the log.

Example:

```csharp
var plateIDs = plateDB.enumeratePlateGroup("plateGroupName")
for(var plateID in plateIDs){
    print(plateDB.getPlateBarcode(WEST, plateIDs[plateID]))
}
```
Related information

<table>
<thead>
<tr>
<th>For information about...</th>
<th>See...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Using JavaScript in the VWorks software</td>
<td>“Using JavaScript” on page 80</td>
</tr>
<tr>
<td>VWorks-defined functions</td>
<td>“VWorks-defined functions” on page 83</td>
</tr>
<tr>
<td>Other VWorks-defined objects</td>
<td>• “plate object” on page 85</td>
</tr>
<tr>
<td></td>
<td>• “plates[] object” on page 89</td>
</tr>
<tr>
<td></td>
<td>• “runset object” on page 108</td>
</tr>
<tr>
<td></td>
<td>• “task object” on page 91</td>
</tr>
<tr>
<td></td>
<td>• “forms object” on page 111</td>
</tr>
<tr>
<td>Using JavaScript utilities</td>
<td>“Using JavaScript utilities” on page 113</td>
</tr>
<tr>
<td>JavaScript task</td>
<td>“JavaScript” on page 472</td>
</tr>
<tr>
<td>Startup and cleanup protocols</td>
<td>“Setting up Startup and Cleanup Protocol processes” on page 58</td>
</tr>
</tbody>
</table>
runset object

About the runset object

The VWorks JavaScript interpreter provides the following objects that can be accessed by a script.

- runset object
- plate object
- plates[] object
- task object
- plateDB object
- forms object

This topic describes the runset object properties and methods.

Runset enables control of the Runset Manager through JavaScript. You can use the runset object to clear the runs from a runset or append protocols to a runset. You can also query the Runset Manager and retrieve various fields of interest, such as barcodes. For more information on runsets, see “Managing runsets” on page 211.

Note: If you are using the VWorks Watcher, the runset object can be used in a script that is called by Watcher to create runsets automatically. For details, see “Setting up and using the Watcher tool” on page 565.

Properties

The runset object has no properties.

Methods

Methods are JavaScript functions invoked through an object. The runset object has the following methods.

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>clear()</td>
<td>Clears all of the entries in the runset manager, except for currently executing protocols, which are not affected. Example: \nrunset.clear()</td>
</tr>
</tbody>
</table>
Method Description

appendProtocolFileToRunset

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>appendProtocolFileToRunset(protocolPath: string, runtimes: int, protocolNotes: string, formToUse: string)</code></td>
<td>Appends the contents of the protocol file at <code>protocolPath</code> to the Runset Manager. Specifies the number of <code>runtimes</code>, and provides any <code>protocolNotes</code>. Optionally, specifies the form to be associated with the protocol once the protocol starts running. The <code>formToUse</code> argument is for use with a scripted pushbutton in a form, where the script contains a call to <code>appendProtocolFileToRunset()</code>. <code>formToUse</code> must specify the file name (not the path) of the form that contains the pushbutton. The third argument, <code>protocolNotes</code>, must be an empty string in this case. Returns true if successful or false upon failure. If a failure occurs, for example, the .pro file is missing, errors are written to the log.</td>
</tr>
</tbody>
</table>

Example:

```
ruset.appendProtocolFileToRunset("c:/some dir/someprotocol.pro", 10, "", "FormName1.VWForm");
```

appendRunsetFileToRunset

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>appendRunsetFileToRunset(runsetPath: string, formToUse: string)</code></td>
<td>Appends the contents of a runset file, located at <code>runsetPath</code>, to the Runset Manager. Optionally, specifies the form to be associated with the runset. <code>formToUse</code> is for a scripted pushbutton in a form, and the argument must specify the file name (not the path) of the form that contains the pushbutton. Returns true if successful or false upon failure. If a failure occurs, for example, the .rst file is missing, errors are written to the log.</td>
</tr>
</tbody>
</table>

Examples:

```
ruset.appendRunsetFileToRunset("c:/runset.rst");
ruset.appendRunsetFileToRunset("c:/runset.rst", "FormName1.VWForm");
```

openRunsetFile

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>openRunsetFile(runsetPath: string, formToUse: string)</code></td>
<td>Opens the runset located at <code>runsetPath</code>. Optionally, opens the form to use to run the runset. <code>formToUse</code> is for a scripted pushbutton in a form, and the argument must specify the file name (not the path) of the form that contains the pushbutton. Returns true if successful or false upon failure. If a failure occurs, for example, the .rst file is missing, errors are written to the log.</td>
</tr>
</tbody>
</table>

Examples:

```
ruset.openRunsetFile("c:/temp/my_runset.rst");
ruset.openRunsetFile("c:/temp/my_runset.rst", "FormName1.VWForm");
```
Creating a protocol: advanced topics

runset object

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>getRunsetXML()</td>
<td>Returns the XML contents of a runset file (.rst).</td>
</tr>
</tbody>
</table>

Example for getRunsetXML()

```javascript
// Note: In this example, runsetParser is a hypothetical JavaScript function.
var runsetXML = runset.getRunsetXML();
var runsetParser = new runsetParser(runsetXML);
var numRunningProtocols = runsetParser.GetNumberOfRunningProtocols();

for( var running_protocol_idx = 0; running_protocol_idx < numRunningProtocols; running_protocol_idx++){
    print(runsetParser.GetRunningProtocol(running_protocol_idx).GetFilename());
    print(runsetParser.GetRunningProtocol(running_protocol_idx).GetRunsetNotes());
    //The runset notes might include items such as barcodes.
}
```

Related information

<table>
<thead>
<tr>
<th>For information about...</th>
<th>See...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Using JavaScript in the VWorks software</td>
<td>“Using JavaScript” on page 80</td>
</tr>
<tr>
<td>VWorks-defined functions</td>
<td>“VWorks-defined functions” on page 83</td>
</tr>
</tbody>
</table>
| Other VWorks-defined objects | • “plate object” on page 85
 • “plates[] object” on page 89
 • “plateDB object” on page 104
 • “task object” on page 91
 • “forms object” on page 111 |
| Using JavaScript utilities | “Using JavaScript utilities” on page 113 |
| JavaScript task | “JavaScript” on page 472 |
| Startup and cleanup protocols | “Setting up Startup and Cleanup Protocol processes” on page 58 |
| VWorks Watcher tool | “Setting up and using the Watcher tool” on page 565 |
| How to create a runset | “Managing runsets” on page 211 |
forms object

About the forms object

The VWorks JavaScript interpreter provides the following objects that can be accessed by a script.

- forms object
- plate object
- plates[] object
- task object
- plateDB object
- runset object

This topic describes the forms object usage.

forms provides the same function as the Toggle Full Screen button, which is one of the specialized buttons that you can include on a form that runs a protocol. For more information on forms, see “Creating protocol forms for operators” on page 135.

Properties

The forms object has no properties.

Methods

Methods are JavaScript functions invoked through an object. The forms object has the following method.

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>setFullScreen(Boolean True/False)</td>
<td>Changes the display of the VWorks window between a full-screen view of a protocol form and a normal tabbed view.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
</tr>
<tr>
<td></td>
<td>forms.setFullScreen(true)</td>
</tr>
<tr>
<td></td>
<td>forms.setFullScreen(false)</td>
</tr>
</tbody>
</table>

Related information

For information about...	See...
Designing forms to run protocols | “Creating protocol forms for operators” on page 135
VWorks-defined functions | “VWorks-defined functions” on page 83
3 Creating a protocol: advanced topics
Using start and finish protocol scripts

Using start and finish protocol scripts

About start and finish scripts

A startup protocol script is a JavaScript that runs before the Startup Protocol begins. A finish protocol script is a JavaScript that runs after the Cleanup Protocol finishes. For example, you can use an open () statement to open and load a file.

Procedure

To add start or finish scripts:

1. Open the protocol file, and then click Protocol Options.
2. Click the Startup Script or the Finish Script field, and then click the button that appears.

The Input Text dialog box appears.
3 Do one of the following:
 • Type the JavaScript code in the box.
 • Click **Browse**. In the **Open** dialog box, select a file that contains the JavaScript code, and click **Open**.

4 Click **OK** to save the changes and return to the VWorks window.

Related information

<table>
<thead>
<tr>
<th>For information about...</th>
<th>See...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Opening protocols</td>
<td>“Opening a protocol” on page 189</td>
</tr>
<tr>
<td>Setting protocol options</td>
<td>“Setting protocol options” on page 31</td>
</tr>
<tr>
<td>Using script variables directly in task parameters</td>
<td>“Using simple variables” on page 73</td>
</tr>
<tr>
<td>Using JavaScript in the VWorks software</td>
<td>“Using JavaScript” on page 80</td>
</tr>
<tr>
<td>Startup and cleanup protocols</td>
<td>“Setting up Startup and Cleanup Protocol processes” on page 58</td>
</tr>
</tbody>
</table>

Using JavaScript utilities

Utilities description

Two JavaScript utilities are available:

- **ActiveX Wrapper**. Allows you to create an ActiveX object and use the associated ActiveX methods.
- **File Object**. Allows you to create a file object to read from and write to a file.
You can write JavaScript using these utilities in the VWorks Advanced Settings area. For instructions on how to add the JavaScript task and display the Advanced Settings area, see “Where to write JavaScript” on page 81.

ActiveX Wrapper

ActiveX controls are software components that allow different software products to interact. For example, if you want to use the VWorks software to control a third-party device, you can use the device’s ActiveX control to invoke the device’s operations.

The ActiveX Wrapper utility in the VWorks software allows you to use another product's ActiveX control to invoke the product's operations. Make sure you install the product's ActiveX control software before you run the JavaScript.

To use the ActiveX utility, you need to:

1. Create an ActiveX object to reference the ActiveX control.
2. Call the associated ActiveX methods to invoke the ActiveX operations.
3. Use the Set and Get methods to access the ActiveX properties.

Create an ActiveX object

To create an ActiveX object:

In the Advanced Settings area, type the JavaScript code to create an ActiveX object.

For example, if the ActiveX control PROG_ID is PlateLocCtrl.2, you can create the object as follows:

```javascript
var ocx
if( ocx == undefined){
ocx = new ActiveX( "PLATELOC.PlateLocCtrl.2");
}
```

The `var` statement declares a JavaScript variable. In this example, the variable is `ocx`.

The `if` statement prevents the software from creating the ActiveX multiple times if the script is run repeatedly.

The `ocx = new ActiveX` statement passes the PlateLoc PROG_ID to the ActiveX object generator. Using the ID, the generator calls the CreateInstance API. The resulting ActiveX object is then wrapped in the scripting layer that translates arguments and returns values that are understood by both the PlateLoc Sealer and the VWorks software.

Calling the ActiveX methods

To call the ActiveX methods:

Call the methods using the following syntax:

`objectname.method`

For example, if you want to call the AboutBox() method, you can type the following:

`ocx.AboutBox()`

To list the available ActiveX methods, use the following JavaScript statements:

```javascript
for( x in ocx.members)
print( x)
```
Accessing the ActiveX properties

To access the ActiveX properties:
Use the Set or Get method and the following syntax:

- `comm.set("property_name", value)`
- `comm.get("property_name")`

For example, if you want to access the ActiveConnection property of an ADO command object, you can type the following:

```javascript
var db = new ActiveX( "ADODB.Connection")
var comm = new ActiveX( "ADODB.Command")
comm.set("ActiveConnection", db)
```

The first `var` statement creates an ADO object and assigns it to a variable named `db`.

The second `var` statement creates an ADO command object and assigns it to a variable named `comm`.

The `comm.set` statement sets the ActiveConnection property to the connection object in the `db` variable.

File Object

The File Object utility allows you to create a file object so that you can read from and write to a file.

To use the File Object utility:

1. Create the file object.
2. Call the desired file object methods:
 - `Open()`
 - `Close()`
 - `Read()`
 - `Write()`
 - `IsOpen()`
 - `Exists()`
 - `Delete()`

IMPORTANT The JavaScript language is case-sensitive. Make sure you use the correct upper- and lower-case letters when calling the methods.

Creating a file object

To create a file object:

In the Advanced Settings area, type the following JavaScript code:

```javascript
var fileobjectname
if( fileobjectname == undefined){
  fileobjectname = new File()
}
```

Note: `fileobjectname` is the name of the file object you want to create.
Calling the Open() method

To call the Open() method:
Type the following JavaScript code:
fileobjectname.Open("filepath", 0, 0)
fileobjectname is the name of the file object you created.
filepath (the first argument) is the location of the file you are creating. For example, you can type c:\fileobjectname.txt.
0 (the second argument) specifies how new information will be added to the file. 0 adds new information after the existing information. A non-zero value erases the existing file contents before adding the new information. If you do not specify this argument, the system will use the default value of 0.
0 (the third argument) specifies how the line endings in binary files will be translated. 0 translates line endings to a carriage return followed by a line feed. 1 does not translate the existing line ending. If you do not specify this argument, the system will use the default value of 0.

Calling the Close() method

To call the Close() method:
Type the following JavaScript code:
fileobjectname.Close()
fileobjectname is the name of the file object you created.
The Close method closes the file and releases any locks on the file so that other software can access it.

Calling the Read() method

To call the Read() method:
Type the following JavaScript code:
var result = fileobjectname.Read()
The Read() method returns the entire file contents as a string into the variable called result. Although line-by-line reading is not available, you can use built-in JavaScript string methods to parse the file.
If another process is concurrently adding information to the file, later calls to the Read method will read the newly added information.

Calling the Write() method

To call the Write() method:
Type the following JavaScript code:
fileobjectname.Write("writeoutput" + "\n")
fileobjectname is the name of the file object you created.
writeoutput is the string you want to add to the file.
\n adds a new line at the end of the string.

Calling the IsOpen() method

To call the IsOpen() method:
Type the following JavaScript code:
var open = fileobjectname.IsOpen()
The var statement checks to see if the file opening call was successful.
Calling the Exists() method

To call the Exists() method:
Type the following JavaScript code:
```
var exists = fileobjectname.Exists("filepath")
```
filepath is the location of the file you are checking.
The var statement checks to see if the file exists in the specified folder and returns true if the file is present.

Calling the Delete() method

To call the Delete() method:
Type the following JavaScript code:
```
fileobjectname.Delete("filepath")
```
filepath is the location of the file you are deleting. For example, you can type `c:\\fileobjectname.txt`.

Related information

<table>
<thead>
<tr>
<th>For information about...</th>
<th>See...</th>
</tr>
</thead>
<tbody>
<tr>
<td>JavaScript language</td>
<td>Mozilla Developer Center</td>
</tr>
<tr>
<td>Using JavaScript in the VWorks software</td>
<td>“Using JavaScript” on page 80</td>
</tr>
<tr>
<td>Using script variables directly in task parameters</td>
<td>“Using simple variables” on page 73</td>
</tr>
<tr>
<td>JavaScript task description</td>
<td>“JavaScript” on page 472</td>
</tr>
<tr>
<td>Startup and cleanup protocols</td>
<td>“Setting up Startup and Cleanup Protocol processes” on page 58</td>
</tr>
<tr>
<td>Setting protocol options</td>
<td>“Setting protocol options” on page 31</td>
</tr>
</tbody>
</table>
3 Creating a protocol: advanced topics
Using JavaScript utilities
4

Using macros to create protocols

This chapter describes the VWorks macros that you can use to help simplify and expedite the protocol writing process. You must have VWorks Administrator or Technician access to create macros, and you should have an understanding of how to create VWorks protocols.

This chapter contains the following topics:

- “About protocol macros and the macro library” on page 120
- “Adding macros to and removing macros from the macro library” on page 123
- “Inserting macros in protocols” on page 126
- “Editing a macro” on page 128
- “Copying macros to a different computer” on page 132
About protocol macros and the macro library

About this topic

This topic describes the VWorks macros and the macro library that you can create to help simplify and expedite the protocol writing process. To create macros and protocols, you must have VWorks Technician- or Administrator-level access.

Macros defined

A VWorks macro is a sequence of protocol tasks and associated task parameters grouped together in an abbreviated form. You can insert the macro easily at other places within the same protocol or throughout other protocols where the same task sequence is required.

A macro eliminates the need to recreate a repeated task sequence within the same protocols or subsequent protocols that you write. Therefore, protocol writing can be easier, faster, and less error-prone.

Suppose you want to create a protocol that has multiple wash routines, where each wash routine consists of a sequence of Tips On, Aspirate, Dispense, and Tips Off tasks. You could do the following using a macro:

1. Create the wash routine task sequence once, including setting all the task parameters.
2. Highlight the task sequence and add it as a macro to the macro library.
3. Insert the macro at the other points in the protocol where the wash routine is required.

For the subsequent protocols that you create, which require the wash routine, you can insert the macro from the macro library.

Later, if you want to modify a parameter, you can do so once in the macro. The change can be replicated to all the other instances of the macro in the protocol.

Types of macros

You can create the following types of macros in the VWorks software:

<table>
<thead>
<tr>
<th>Macro</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Startup or cleanup macro</td>
<td>Available for use in the Startup Protocol area and the Cleanup Protocol area.</td>
</tr>
<tr>
<td>Main process macro</td>
<td>Available for use in the Main Protocol area only within the main process.</td>
</tr>
</tbody>
</table>
4 Using macros to create protocols
About protocol macros and the macro library

Macros have the following requirements:
• All tasks in the macro must be sequential.
• A macro can contain subprocess or process tasks, but not both.
• A macro cannot contain another macro.

Macro library

The macro definitions are stored in a macro library. Although different versions of a given macro may be in use in the protocols, the software maintains only one official version in the macro library. The VWorks software uses an .mlb file to store the macro library. By default, the file path is as follows:

`...\VWorks Workspace\VWorks\MacroLibrary.mlb`

The Available Macros area in the VWorks window displays the contents of the macro library.

Figure Available Macros area displaying the contents of the macro library

The Available Macros area lists the macros alphabetically. If no protocol is open, the macro list includes all types of macros. If a protocol is open, a subset of the macro library appears in the list depending on which area of the protocol tab is active and which devices are used in the protocol. For example, in the following figure only the subprocess macros for the Bravo Platform appear.
About exporting and importing protocols that have macros

If you export a protocol (.vzp file), any macros in the protocol are included in the exported protocol. If you import a protocol that includes macros, the macros are included with the imported protocols. However, the macros in the imported protocol are not added to the macro library.

Related information

<table>
<thead>
<tr>
<th>For information about...</th>
<th>See...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Creating macros</td>
<td>“Adding macros to and removing macros from the macro library” on page 123</td>
</tr>
<tr>
<td>Editing macros and macro version control</td>
<td>“Editing a macro” on page 128</td>
</tr>
<tr>
<td>Using a macro in a protocol</td>
<td>“Inserting macros in protocols” on page 126</td>
</tr>
<tr>
<td>Exporting the macro library</td>
<td>“Copying macros to a different computer” on page 132</td>
</tr>
<tr>
<td>Creating a basic protocol</td>
<td>“Creating a protocol: basic procedure” on page 13</td>
</tr>
<tr>
<td>Working with JavaScript</td>
<td>“Creating a protocol: advanced topics” on page 69</td>
</tr>
</tbody>
</table>
Adding macros to and removing macros from the macro library

About this topic

This topic describes how to create macros and add them to the macro library and how to delete macros.

The procedures in this topic assume that a protocol task sequence that you want to replicate as a macro is already created. For details on how to set up tasks and create a protocol, see “Workflow for creating a basic protocol” on page 18.

Creating a macro and adding it to the macro library

To create a macro and add it to the macro library:

1. In the protocol area, drag the pointer around the task or series of tasks that you want to include in the macro. Make sure that only the desired tasks are highlighted.

2. Right-click the selection, and then choose Add to macro library from the shortcut menu. The Add to Macro Library dialog box opens.
Type a name for the macro, and click **OK**. A descriptive name can be more helpful for other macro users than a generic name. A version number is appended to the macro name, starting with version 1.

The corresponding macro icon appears in the Available Macros area and in the protocol. Any future edits of the macro will increment the version number by 1.

IMPORTANT To ensure version control, you should not change the macro name after the macro has been used in a protocol. Although you can rename a macro in the macro library, doing so removes any association to instances of the macro with the former name that are already in use in a protocol.

In the protocol area, expand the macro icon to view and to verify the macro contents.

Adding a copy of a macro or saving the macro by a different name

You can create a copy of a macro to add to the macro library. For example, you might want to copy a macro and use the copy as the starting point for creating a similar but slightly different macro.

To create a copy of a macro from the Available Macros tab:

1. In the **Available Macros** tab, right-click the macro icon, and then choose **Make a copy** from the shortcut menu.

2. In the **Create Macro Copy** dialog box, type a new name for the copy, and click **OK**. The new macro icon appears in the Available Macros area.

To save a copy of a macro from a protocol:

1. In the protocol, right-click the macro icon, and then choose **Save macro as** from the shortcut menu.

2. In the **Add to Macro Library** dialog box, type a new name for the copy, and click **OK**. The new macro icon appears in the Available Macros area.
Deleting a macro from the macro library or a protocol

You can delete a macro from the macro library or a macro instance from a protocol:

- **Deleting a macro from the macro library.** In this case, instances of the deleted macro can still remain in your protocols. However, the instances of the deleted macro no longer have version control or any association with other instances.

- **Deleting an instance of a macro from a protocol.** In this case, only the selected instance is deleted from the protocol. The macro remains in the macro library and in other protocols where it is used.

Note: In a protocol where you no longer want a macro, yet you still want to retain a macro’s contents (task sequence), you can revert the macro. See “Reverting an instance of a macro to an ungrouped task sequence” on page 128.

To delete a macro from the macro library:
In the Available Macros area, right-click the macro icon, and then choose **Delete** from the shortcut menu. The macro icon disappears from the Available Macros list.

To delete an instance of a macro from a protocol:
In the protocol, right-click the macro icon, and then choose **Delete** from the shortcut menu. The macro icon and macro task contents disappear from the protocol.

Related information

<table>
<thead>
<tr>
<th>For information about...</th>
<th>See...</th>
</tr>
</thead>
<tbody>
<tr>
<td>How to edit macros and macro version control</td>
<td>“Editing a macro” on page 128</td>
</tr>
<tr>
<td>Using a macro in a protocol</td>
<td>“Inserting macros in protocols” on page 126</td>
</tr>
<tr>
<td>Exporting the macro library</td>
<td>“Copying macros to a different computer” on page 132</td>
</tr>
<tr>
<td>Creating a basic protocol</td>
<td>“Creating a protocol: basic procedure” on page 13</td>
</tr>
<tr>
<td>Using JavaScript</td>
<td>“Creating a protocol: advanced topics” on page 69</td>
</tr>
</tbody>
</table>
Inserting macros in protocols

About this topic

This topic describes how to insert macros into the protocols that you are creating. You must have VWorks Technician- or Administrator-level access to create protocols and work with macros.

Viewing and filtering the list of macros

In the VWorks window, the Available Macros area lists only the macros from the macro library that are relevant for the protocol type (startup, cleanup, main process, or subprocess) and associated devices selected in the protocol tab.

In the following figure, a Bravo subprocess appears in the Main Protocol area and the Available Macros area lists only subprocess macros for the Bravo Platform.

Figure Available Macros area displaying subprocess macros for the Bravo Platform

You can filter the Available Macros list even further.

To view and filter the list of macros in the macro library:

1 In the VWorks window, choose View > Available Macros to display the Available Macros area if not already displayed.

2 In the Available Macros area, type the text in the Enter text to filter on box that you want to use to filter the list of macro names. As you type each character, the Available Macros list changes to meet the filter requirement. For example, if you type wash, only the macros that include the name wash remain in the Available Macros list.
Using macros to create protocols

Inserting macros in protocols

Note: To preview a macro’s contents, right-click the macro icon in the **Available Macros** tab, and then choose **Edit** from the shortcut menu. A macro editor tab appears in protocol area, as the following figure shows. To close the macro editor tab, click the corresponding x button.

Inserting a macro in a protocol

To insert a macro in a protocol:

1. Click the position in the protocol where you want to insert the macro.
2. In the **Available Macros** area, double-click the macro icon. The selected icon appears in the protocol at the location you selected.
 Alternatively, you can drag the macro from the **Available Macros** area into position in the protocol.
3. To view the contents of the macro within the protocol, expand the macro icon.
Reverting an instance of a macro to an ungrouped task sequence

If you have an instance in a protocol where you no longer want a macro, yet you still want to retain a macro’s contents (task sequence), you can revert the macro.

To revert an instance of a macro:
In the protocol area, right-click the macro icon, and then choose Ungroup macro. The macro icon disappears from the protocol, and the tasks from the macro remain inserted in the protocol position where the macro formerly resided.

Related information

<table>
<thead>
<tr>
<th>For information about...</th>
<th>See...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adding macros and removing macros from the macro library</td>
<td>“Adding macros to and removing macros from the macro library” on page 123</td>
</tr>
<tr>
<td>How to edit macros and macro version control</td>
<td>“Editing a macro” on page 128</td>
</tr>
<tr>
<td>Exporting the macro library</td>
<td>“Copying macros to a different computer” on page 132</td>
</tr>
<tr>
<td>Creating a basic protocol</td>
<td>“Creating a protocol: basic procedure” on page 13</td>
</tr>
<tr>
<td>Using JavaScript</td>
<td>“Creating a protocol: advanced topics” on page 69</td>
</tr>
</tbody>
</table>

Editing a macro

About this topic
To edit a macro, you must have VWorks Technician- or Administrator-level access.

Editing options and macro version control
The macro library stores the latest version of a macro that has been edited in the macro editor tab. You can use different versions of a given macro in your protocols, but the different versions reside only in the protocols.
You can edit the VWorks macros in the following ways:

- *Editing a macro from the macro library in the macro editor tab.*
 Replaces the version of the same name in the macro library, incrementing the version number by 1.
Later, if you open a protocol that has a different version number than the macro in the macro library, the following Macro Change History dialog box opens. You can choose whether to update the macros in the protocol to match the definition in the macro library.

- **Editing a macro directly in the protocol tab.** Updates the macro in the protocol only. Macros in the macro library remain unchanged. Instead, you have the following options:
 - Keep a derivative of the definition from the macro library in the selected protocol.
 - Replace the modified instances in the protocol with the definition from the macro library.
 - Add the modified definition under a new name in the macro library.

The software does not maintain a change history of the macros that are edited in the protocol tab. However, you can easily update all instances of a macro in a protocol to match the version of the same name in the macro library. See “Updating instances of a macro to match the version in the macro library” on page 131.

Editing a macro from the library in the macro editor tab

To edit a macro from the library in the macro editor tab:

1. In the Available Macros tab, right-click the macro icon, and then choose Edit from the shortcut menu.

 A macro editor tab appears in protocol area, displaying the contents of the macro, as the following figure shows.
2 Edit the macro as desired:
 - **Add a task.** Either drag the task icon from the Available Tasks area to the macro editor tab, or double-click the task icon in the Available Tasks area to add the task to the macro editor tab.
 - **Change task parameters.** In the macro editor tab, click the task icon. The corresponding parameters appear in the Task Parameters area. Edit the task parameters as you typically do when creating a protocol.
 - **Delete a task.** In the macro editor tab, right-click the task icon, and then choose Delete from the shortcut menu.

3 Choose **File > Save.** The Macro Change Notes dialog box opens:

4 Type a description of your edits, and then click **OK.** Later, if you open a protocol containing a different version of this macro, the software displays this change history for reference.

5 When the message appears, asking if you want to update the macro in the protocol:
 - Click **Yes** to update all instances of the macro with the same name in the specified protocol, regardless of version number. The software increments the macro version number by 1 in the macro library.
 - Click **No** to increment the macro version number by 1 in the macro library only. Any previous versions of the macro in the protocol with the same macro name remain in the protocol intact.
If any unopened protocols also contain the previous version of the macro, you have the option to update the macros when you open each protocol.

Editing a macro directly in the protocol tab

Macros in the macro library remain unchanged when you edit an instance of a macro in the protocol.

To edit a macro in the protocol tab:

1. In the protocol, expand the macro icon so that you can view the macro task contents.
2. Edit the tasks as desired:
 - *Add a task.* Drag the task icon from the Available Tasks area to the macro in the protocol, or double-click the task icon in the Available Tasks area. Alternatively, you can copy a task icon from elsewhere in the protocol. To do this, right-click the task icon, and then choose Copy. Click the target location in the macro, right-click, and then choose Paste.
 - *Change task parameter values.* Click the task icon. Edit the values in the Task Parameters area as you typically do when creating a protocol.
 - *Delete a task.* Right-click the task icon, and then choose Delete from the shortcut menu.
3. Do one of the following:
 - *To rename the edited macro and add it to the macro library.* In the protocol, right-click the icon of the edited macro, and then choose Save macro as. The Add to Macro Library dialog box opens.
 - *To keep the edited macro definition in the protocol only.* Choose File > Save. The changes are applied to all instances in the protocol that have the same name and version number. The name of the edited instance changes to “macro_name Derived from Version n”.

Note: If you subsequently add an additional macro of the same name from the macro library to this protocol, the Add macro to protocol dialog box opens. You can choose which definition to use for all the macros in the protocol that have the same name.

Updating instances of a macro to match the version in the macro library

If a protocol contains a derivative version of a macro or a different version than one of the same name in the macro library, you can choose to update all instances in the open protocol to the definition in the macro library or to keep the definition from the protocol.
To update a macro in the protocol tab to the current version in the macro library:
In the protocol tab, right-click the macro icon, and then choose one of the following:

- **Update this macro.** Replaces the selected macro instance in the open protocol with the definition from the macro library.
- **Update all revisions of this macro.** Replaces all macro instances of the same name with the definition from the macro library, regardless of the version number of the other macro instances in the protocol.

Renaming a macro in the macro library

CAUTION Renaming a macro in the macro library removes any association to the macro instances of the former name that are in the protocols.

To rename a macro in the macro library:
1. In the **Available Macros** tab, right-click the macro icon, and then choose **Rename** from the shortcut menu.
2. In the **Rename Macro** dialog box, type the new name and click **OK**.

Related information

<table>
<thead>
<tr>
<th>For information about...</th>
<th>See...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adding macros and removing macros from the macro library</td>
<td>“Adding macros to and removing macros from the macro library” on page 123</td>
</tr>
<tr>
<td>Using macros in protocols</td>
<td>“Inserting macros in protocols” on page 126</td>
</tr>
<tr>
<td>Exporting the macro library</td>
<td>“Copying macros to a different computer” on page 132</td>
</tr>
<tr>
<td>Creating a basic protocol</td>
<td>“Creating a protocol: basic procedure” on page 13</td>
</tr>
<tr>
<td>Using JavaScript</td>
<td>“Creating a protocol: advanced topics” on page 69</td>
</tr>
</tbody>
</table>

Copying macros to a different computer

About this topic

To work with macros, you must have VWorks Technician- or Administrator-level access.
About exporting and importing protocols that have macros

If you export a protocol (.vzp file), any macros in the protocol are included in the exported protocol. When the exported protocol is imported on a different computer, the macros associated with the imported protocols are not added to the macro library even though instances of the macro remain in the protocols.

Copying the macro library and verifying the file path

To copy the macro library to a different computer:

1. Copy and paste the library file (.mlb) from one computer to another. By default, the file path is as follows:
 ...
 \VWorks Workspace\VWorks\MacroLibrary.mlb
2. On each computer, verify that the file path for the macro library is set in the VWorks software.

To verify or change the file path for the macro library:

1. In the VWorks window, choose Tools > Options. The Options dialog box opens.
2. Under Directories and Paths, verify that the file path in the Macro Library file path field is correct.

3. If the file path is not displayed or is not correct:
 a. Click the Macro Library file path field, and then click the button that appears.
 b. In the Open dialog box, locate and select the .mlb file (for example, MacroLibrary.mlb), and then click Open. The new file path appears in the Macro Library file path field.

Related information

<table>
<thead>
<tr>
<th>For information about...</th>
<th>See...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Macros and the macro library</td>
<td>“About protocol macros and the macro library” on page 120</td>
</tr>
<tr>
<td>Creating macros</td>
<td>“Adding macros to and removing macros from the macro library” on page 123</td>
</tr>
</tbody>
</table>
4 Using macros to create protocols

Copying macros to a different computer

<table>
<thead>
<tr>
<th>For information about...</th>
<th>See...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Using macros to help create protocols</td>
<td>“Inserting macros in protocols” on page 126</td>
</tr>
<tr>
<td>Creating a basic protocol</td>
<td>“Creating a protocol: basic procedure” on page 13</td>
</tr>
<tr>
<td>Working with JavaScript</td>
<td>“Creating a protocol: advanced topics” on page 69</td>
</tr>
</tbody>
</table>
Creating protocol forms for operators

You can create forms with custom user interfaces for the operators who run your protocols. A form provides a simplified interface, which can be helpful for users who have limited or infrequent experience with the VWorks software.

You must have VWorks Administrator or Technician access to create protocol forms, and you should also have an understanding of how to create VWorks protocols.

This chapter contains the following topics:

- “About forms for running protocols” on page 136
- “Workflow for creating or editing a form” on page 141
- “Opening the Form Designer” on page 143
- “Configuring a run button and other specialized buttons in a form” on page 145
- “Adding indicators for elapsed time and progress to a form” on page 155
- “Adding form controls that allow editing or runtime data display” on page 158
- “Example: Creating a scripted Pushbutton control in a form” on page 175
- “Setting the form properties” on page 180
- “Understanding JavaScript context in form design” on page 183
Creating protocol forms for operators

About forms for running protocols

About this topic

To create or edit forms, you must have VWorks Technician- or Administrator-level access. You should also have an understanding of how to create protocols in the VWorks software.

This topic describes the VWorks forms and the Form Designer window.

Forms defined

A form is a customized user interface that enables operators to run an associated VWorks protocol. A VWorks user who creates protocols (Technician or Administrator access) can design forms to simplify the operator duties when it comes time to run the associated protocols.

The form can be simple or relatively complex, depending on the requirements of a target group of operators. At a minimum, the form should have buttons for starting and pausing the associated protocol. You may also want to include the Full Screen On/Off button (default) to enable the form users to toggle the VWorks window between a full screen form view and the normal tabbed view. The form design can allow the operator to enter task parameter values for the associated protocol or limit the operator to a read-only display of task parameter values, progress, and other protocol data that the form’s author wants to display.

Figure Example of VWorks window displaying a form in full screen view without the logs
Form Designer overview

The following figure shows four primary areas in the Form Designer window, and the table describes these four areas.

Figure Form Designer window

<table>
<thead>
<tr>
<th>Item</th>
<th>Area</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Available Controls</td>
<td>The control palette, which includes three categories from which to select controls and indicators.</td>
</tr>
<tr>
<td>2</td>
<td>Form Canvas</td>
<td>The work area where the form’s author arranges the form controls while viewing a representation of the form. Three buttons are included in this area by default: Run Protocol, Pause, and Full Screen on/off. As you drag controls into position in the Form Canvas, invisible grid lines assist with the alignment based on the controls that are already in the form. Note: To disable the autogrid, press ALT while dragging the controls into place.</td>
</tr>
<tr>
<td>3</td>
<td>Control Properties</td>
<td>The properties associated with a control that is currently selected in the Form Canvas. The figure shows the Run Protocol Properties because the Run Protocol button is selected.</td>
</tr>
</tbody>
</table>
Creating protocol forms for operators

About forms for running protocols

Available controls overview

The Available Controls area of the Form Designer window contains the following areas, each of which provides different types of controls that you can use in your form design:

- "General Controls area" on page 138
- "Specialized Buttons area" on page 139
- "Specialized Display Controls area" on page 140

General Controls area

Most of the controls in the General Controls area can be assigned a JavaScript variable. By assigning a JavaScript variable, you can allow form users to edit task parameter values or enable the display of runtime data. The JavaScript variable must be assigned in both the control properties and in the corresponding task parameter in the protocol.

The following table provides an overview of the general controls. For more details about the general controls and how to configure them, see "Adding form controls that allow editing or runtime data display" on page 158.

<table>
<thead>
<tr>
<th>Control</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Static (text)</td>
<td>Displays read-only text in the form. The Static control can be used to:</td>
</tr>
<tr>
<td></td>
<td>• Provide a caption for another control.</td>
</tr>
<tr>
<td></td>
<td>• Display runtime data if a JavaScript variable is assigned in the control properties and in the corresponding task parameter in the protocol.</td>
</tr>
<tr>
<td>Edit control</td>
<td>Allows the form users to enter or edit data for a task parameter.</td>
</tr>
<tr>
<td>Droplist</td>
<td>Presents a drop-down list of choices for a task parameter.</td>
</tr>
<tr>
<td>Dropdown</td>
<td>Allows the form users to type arbitrary text into the edit field or choose from a drop-down list of choices for a task parameter.</td>
</tr>
<tr>
<td>Slider</td>
<td>Lets users set a value on a continuous range of possible values for a task parameter.</td>
</tr>
<tr>
<td>Progress bar</td>
<td>Provides a visual indication of progress for a task.</td>
</tr>
<tr>
<td>Pushbutton</td>
<td>Allows you to write your own script for the action the button will perform for the form users.</td>
</tr>
</tbody>
</table>
Creating protocol forms for operators

5 About forms for running protocols

The Specialized Buttons area contains button controls that are already programmed to perform specific commands, which are currently available elsewhere in the VWorks window.

The following table provides an overview of the specialized buttons. For more details about the buttons and how to configure them, see “Configuring a run button and other specialized buttons in a form” on page 145.

<table>
<thead>
<tr>
<th>Control</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Checkbox</td>
<td>Allows users to enable or disable the corresponding actions for a task parameter.</td>
</tr>
<tr>
<td>Date and Time</td>
<td>Displays the preset date and time or a date that the user can set for a task.</td>
</tr>
<tr>
<td>Image</td>
<td>Displays a static image.</td>
</tr>
<tr>
<td>File Browsing</td>
<td>Enables form users to select a file.</td>
</tr>
<tr>
<td>Radio Button</td>
<td>Allows you to present options for a task parameter.</td>
</tr>
<tr>
<td>Group Box</td>
<td>Displays a rectangle that can be resized and labeled to visually group other controls together.</td>
</tr>
<tr>
<td>Line</td>
<td>Provides a vertical or horizontal line that you can use to visually separate items on the form.</td>
</tr>
</tbody>
</table>

Specialized Buttons area

The Specialized Buttons area contains button controls that are already programmed to perform specific commands, which are currently available elsewhere in the VWorks window.

The following table provides an overview of the specialized buttons. For more details about the buttons and how to configure them, see “Configuring a run button and other specialized buttons in a form” on page 145.

<table>
<thead>
<tr>
<th>Button</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Toggle Full Screen</td>
<td>Changes the display of the VWorks window from a normal view to a full-screen view and back again. In the normal view, the form is a tab within the protocol area of the VWorks window. In the full-screen view, the VWorks window displays only the form, and optionally the logs.</td>
</tr>
<tr>
<td>Save Data Entry values</td>
<td>Saves all data entry values associated with the form’s controls in the form file (.VWForm).</td>
</tr>
<tr>
<td>Reset Data Entry values</td>
<td>Resets all data entry values, which are associated with the controls in the form, to the default values.</td>
</tr>
<tr>
<td>Print Data Entry values</td>
<td>Prints all data entry values associated with the controls in the form.</td>
</tr>
<tr>
<td>Initialize All Devices</td>
<td>Opens the device file (.dev) specified by the button, and establishes communication with the corresponding devices. The following run buttons also initialize the devices for the corresponding protocol if simulation mode is off.</td>
</tr>
</tbody>
</table>
Creating protocol forms for operators
About forms for running protocols

Specialized Display Controls area
The controls in the Specialized Display Controls area display data that is not drawn from a JavaScript variable.

The following table provides an overview of the specialized display controls. For more details about the specialized display controls and how to configure them, see “Adding indicators for elapsed time and progress to a form” on page 155.

<table>
<thead>
<tr>
<th>Control</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elapsed Time</td>
<td>Displays the duration (hours:minutes:seconds) of the corresponding protocol or runset that the form is running.</td>
</tr>
<tr>
<td>Overall Progress</td>
<td>Displays a visual progress indicator for the corresponding protocol or runset that the form is running.</td>
</tr>
</tbody>
</table>

Related information

<table>
<thead>
<tr>
<th>For information about...</th>
<th>See...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Creating or editing a form</td>
<td>"Workflow for creating or editing a form" on page 141</td>
</tr>
<tr>
<td>Controls under General Controls in the Form Designer window</td>
<td>"Adding form controls that allow editing or runtime data display" on page 158</td>
</tr>
<tr>
<td>Controls under Specialized Buttons in the Form Designer window</td>
<td>"Configuring a run button and other specialized buttons in a form" on page 145</td>
</tr>
</tbody>
</table>
Workflow for creating or editing a form

About this topic

To create a form, you must have VWorks Technician- or Administrator-level access and an understanding of how to create protocols in the VWorks software.

Before you start

- Create the protocol (.pro) or runset (.rst) that you want the form to run.
- Determine how you want the form to function. For example, will users simply press a run button to start the associated protocol, or will they be required to enter task parameter values before the run?
- If the form will include controls that display runtime data for a given task or require a user to enter values, you must have a JavaScript variable associated with the control and the corresponding task parameter. For details on JavaScript variables, see “Using simple variables” on page 73.
- Determine whether the form users will require documentation specific to your form.

<table>
<thead>
<tr>
<th>For information about...</th>
<th>See...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Controls under Specialized Display</td>
<td>“Adding indicators for elapsed time and progress to a form” on page 155</td>
</tr>
<tr>
<td>Controls in the Form Designer window</td>
<td></td>
</tr>
<tr>
<td>Form properties in the Form Designer window</td>
<td>“Setting the form properties” on page 180</td>
</tr>
<tr>
<td>Creating a basic protocol</td>
<td>“Workflow for creating or editing a form” on page 141</td>
</tr>
<tr>
<td>Working with JavaScript</td>
<td>“Creating a protocol: advanced topics” on page 69</td>
</tr>
</tbody>
</table>
Workflow

<table>
<thead>
<tr>
<th>Step</th>
<th>For this task...</th>
<th>See...</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Open the Form Designer.</td>
<td>“Opening the Form Designer” on page 143</td>
</tr>
<tr>
<td>2</td>
<td>Select an appropriate button to run the protocol or runset.</td>
<td>“Configuring a run button and other specialized buttons in a form” on page 145</td>
</tr>
<tr>
<td>3</td>
<td>Determine whether to include the Pause and Full Screen on/off buttons (default), and add any other specialized buttons that you want to use.</td>
<td>“Configuring a run button and other specialized buttons in a form” on page 145</td>
</tr>
<tr>
<td>4</td>
<td>Add indicators for the elapsed time and progress of the protocol or runset that the form is running.</td>
<td>“Adding indicators for elapsed time and progress to a form” on page 155</td>
</tr>
</tbody>
</table>
Opening the Form Designer

About this topic

To open the Form Designer, you must have VWorks Technician- or Administrator-level access.

This topic describes how to open the Form Designer and how to move and resize the window.

Procedures

To open the Form Designer and create a new form:

1. In the **VWorks** window, choose **File > New > Form**. The Form Designer window opens, and three buttons appear by default in the Form Canvas area.

2. In the **Form Designer** window, click **Save As**. In the **Save As** dialog box, specify the file name and storage location. The file is saved with the .VWForm file extension.
Opening the Form Designer

To open the Form Designer and edit a form:

1. In the **VWorks** window, choose **File > Open**. In the **Open** dialog box, select the .VWForm file that you want to edit, and then click **Open**. The form tab appears in the protocol area of the VWorks window.

2. Choose **Tools > Edit Form**. The selected form appears in the Editing .VWForm window.

Figure Form Designer window with the three default buttons

![Form Designer window with the three default buttons](image1)

Figure Editing .VWForm window with a form to be edited

![Editing .VWForm window with a form to be edited](image2)
Moving and resizing the window

You can move the Form Designer window to the side of the screen so that you can continue to access the protocol task parameters while designing your form.

To move the Form Designer window:
Drag the Form Designer window to the new location.

To resize the Form Designer window:
Move the pointer to an edge of the window. When the pointer turns into a double-sided arrow, drag the edge of the window to the new size.

To resize the areas inside Form Designer window:
Move the pointer over the vertical splitter bar that separates each area. When the pointer turns into a double-sided arrow, drag the splitter to the new position.

Related information

<table>
<thead>
<tr>
<th>For information about...</th>
<th>See...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Workflow for creating or editing a form</td>
<td>“Workflow for creating or editing a form” on page 141</td>
</tr>
<tr>
<td>Forms and Form Designer overview</td>
<td>“About forms for running protocols” on page 136</td>
</tr>
<tr>
<td>Creating a basic protocol</td>
<td>“Workflow for creating or editing a form” on page 141</td>
</tr>
<tr>
<td>Using JavaScript</td>
<td>“Creating a protocol: advanced topics” on page 69</td>
</tr>
</tbody>
</table>

Configuring a run button and other specialized buttons in a form

About this topic

To create or edit forms, you must have VWorks Technician- or Administrator-level access. You should also have an understanding of how to create protocols in the VWorks software.

This topic describes the following:
- “Determining which run button to include” on page 146
- “About including the Pause and Full Screen on/off buttons” on page 147
- “About including other specialized buttons” on page 150
- “Configuring the specialized buttons” on page 151

The Form Designer window contains buttons that perform specific commands, which are available elsewhere in the VWorks window. You can find these buttons under Specialized Buttons in the Form Designer window.
5 Creating protocol forms for operators
Configuring a run button and other specialized buttons in a form

For more details on creating forms, see “Workflow for creating or editing a form” on page 141.

Determining which run button to include

The following table describes four different options that you can use as the run button on your form. To configure these run buttons, except the Pushbutton control, see “Configuring the specialized buttons” on page 151 in this section.

<table>
<thead>
<tr>
<th>Run buttons</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pushbutton control</td>
<td>Provides the most flexible way to run a protocol using a form, because you can allow the form users to choose which protocol to run and the number of run times. The Pushbutton control is under the General Controls area. For details on how to configure the Pushbutton control, see “Adding form controls that allow editing or runtime data display” on page 158 and “Example: Creating a scripted Pushbutton control in a form” on page 175.</td>
</tr>
</tbody>
</table>
Creating protocol forms for operators

Configuring a run button and other specialized buttons in a form

VWorks Automation Control User Guide

Run buttons Description

<table>
<thead>
<tr>
<th>Run buttons</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Run Protocol (default)</td>
<td>Opens the Run Configuration Wizard for the protocol, so that the user can enter the number of times to run, when to start the run, and the starting barcode. When the user clicks Finish in the wizard, the protocol starts, or is scheduled to start in the future. The Run Protocol button is available to the form user only if the protocol is open and no run is currently in progress. The form can be used to start different protocols, but only one instance of the form can be open and running a given protocol at a time. Setup requirements. In the Protocol Options area of the VWorks window, you must specify the form to use (.VWForm). You can also choose to automatically load the form file, so that the form opens automatically when the protocol is opened. If you export a protocol that has a specified form to use, the form file can be included in the exported files.</td>
</tr>
<tr>
<td>Run Specified Protocol</td>
<td>Starts the run for the specified protocol immediately. The Run Configuration Wizard does not appear in this case. Setup requirements. The properties for the button must specify the protocol file (.pro) and the number of times to run it.</td>
</tr>
<tr>
<td>Run Runset</td>
<td>Starts the specified runset. The Run Configuration Wizard does not appear in this case. If any runs are scheduled to start as soon as possible, a warning message asks the operator to make sure that the system is ready for the runs to start. Setup requirements. The properties for button must specify the runset file (.rst), and you must select the Use global context for variables check box for the form.</td>
</tr>
</tbody>
</table>

About including the Pause and Full Screen on/off buttons

IMPORTANT Be sure to include the Toggle Full Screen button in your form if you want the user to view the form in the full screen view.

When you open the Form Designer to create a form, the Pause and Full Screen on/off buttons are included in the form by default. If you accidentally remove these buttons, you can reselect the Pause Run and Toggle Full Screen controls from the Specialized Buttons area of the Form Designer window.
Buttons Description

<table>
<thead>
<tr>
<th>Buttons</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pause Run (default)</td>
<td>Pause Provides the same function as the Pause all button on the toolbar: pauses the run and opens the Scheduler Paused dialog box. For details, see “Pausing the run” on page 229.
Include the Pause button in your form to give the form users a way to pause, continue, or abort the run when the form is in full-screen view and the toolbar is hidden.</td>
</tr>
<tr>
<td>Toggle Full Screen</td>
<td>Toggle Full Screen Changes the VWorks window between the normal view and full-screen view of the form:
• Full screen on. Displays only the form in the VWorks window. Optionally, the view can include the Main Log, Pipette Log, Time Constraints Log, and Progress tabs. All other controls and areas, such as menus, toolbars, and the work area are hidden.
• Full screen off. Displays the form as a tab in the protocol area of the VWorks window.
IMPORTANT The full-screen view is an option only if the form includes the Toggle Full Screen button.
IMPORTANT If you click the button in either view, you will exit the VWorks software.</td>
</tr>
</tbody>
</table>

The following figures show examples of the full screen on and off.
5 Creating protocol forms for operators
Configuring a run button and other specialized buttons in a form

Figure VWorks window with example form in full screen view

Figure VWorks window with example form in tab view (full screen off)
About including other specialized buttons

In addition to the run buttons and the Pause and Full Screen on/off buttons, the Form Designer provides the following specialized buttons that you can include in your form:

- Initialize All Devices button
- Buttons for data entry values (print, reset, and save)
- Menu Action button

Initialize All Devices button

If the simulation mode is turned off when you open a protocol, the software automatically loads the device file associated with the protocol and asks you whether you want to initialize the devices. If you want the form user to be able to initialize the devices manually while the form is displayed in full-screen view, you can include the Initialize All Devices button. This button is available under Specialized Buttons in the Form Designer window, and the button performs the same function as the Initialize all devices button in the Devices tab of the VWorks window.

Buttons for data entry values

The Data entry property, which enables form users to enter or edit values, is available for many of the Form Designer controls found under General Controls. The following buttons manage the data entry values that are entered by a form’s user.

<table>
<thead>
<tr>
<th>Button</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Print Data Entry values</td>
<td>Prints all data entry values associated with the controls in the form, including values entered by the form user and default values that were not modified.</td>
</tr>
<tr>
<td>Reset Data Entry values</td>
<td>Resets all data entry values associated with the controls in the form to the default values. Alternatively, values can be reset automatically when the form is reopened if the Restore default values when loading check box is selected in the Form Designer window when creating the form.</td>
</tr>
<tr>
<td>Save Data Entry values</td>
<td>Saves the data entry values associated with the controls in the form so that the values persist until they are explicitly reset.</td>
</tr>
</tbody>
</table>

Menu Action button

IMPORTANT The Menu Action button gives a user who has VWorks Operator-level access the ability to perform actions that normally require Technician-level access.

You can use the Menu Action button to perform the following commands.
5 Creating protocol forms for operators
Configuring a run button and other specialized buttons in a form

To configure the specialized buttons:

1. If the button you are configuring is already in the Form Canvas area of the Form Designer window, go to step 4.

 If the desired button is not yet in the form, click Specialized buttons, and drag the button to the Form Canvas area.

 An invisible autogrid assists you in aligning the control in the form. To turn off the autogrid, press ALT while dragging the control into position.

2. In the Form Canvas area, click the button that you are configuring. A resizing box appears around the button’s border. To resize the button, drag one of the sizing handles.

 Note that the corresponding properties appear for the selected button as the following figure shows.
Creating protocol forms for operators
Configuring a run button and other specialized buttons in a form

Figure Form Designer window displaying properties for the selected button

3 Edit the Properties of the button as required. The following table describes all the properties, but a given button may use only a subset of these properties.

<table>
<thead>
<tr>
<th>Properties</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Icon</td>
<td>Optional. To select an image to use as an icon in addition to the button caption, click the field, and then click the button that appears. In the Open dialog box, locate and select the image file (.jpg, .png, .bmp, or .ico), and then click Open. Note: Icons for the run and pause buttons are installed in the following folder: \Program Files\Agilent Technologies\VWorks\clipart</td>
</tr>
<tr>
<td>Caption</td>
<td>To change the label that appears on the button, type the new text in the field.</td>
</tr>
<tr>
<td>Font size</td>
<td>Optional. To change the font size for the selected control and subsequently created controls, type a new number in the field. Default: 10</td>
</tr>
</tbody>
</table>

Note: Click Preview to display the image that the form’s user will see.
Creating protocol forms for operators

Configuring a run button and other specialized buttons in a form

<table>
<thead>
<tr>
<th>Properties</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Font color, Background color (button)</td>
<td>Optional. To change the font color for the selected control and subsequently created controls, click the field, and then click the ▼ that appears. In the palette list, select the color, or click Custom Color to open the Select Color dialog box and create a custom color. Default font color: Web Black Default background color: 240, 240, 240</td>
</tr>
</tbody>
</table>

Run Specified Protocol button only

<table>
<thead>
<tr>
<th>Protocol file</th>
<th>To select the protocol that this form will run, click the field, and then click the ▼ button that appears. In the Open dialog box, locate and select the .pro file, and then click Open.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of times to run</td>
<td>Type the number of times the protocol will run after the form user clicks the run button.</td>
</tr>
</tbody>
</table>

Run Runset button only

| Runset file | To select the runset that this form will run, click the field, and then click the ▼ button that appears. In the Open dialog box, locate and select the .rst file, and then click Open. |

Menu Action button only

<table>
<thead>
<tr>
<th>Action</th>
<th>Click the field, and then click the ▼ that appears. Click the command that you want the button to perform.</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMPORTANT</td>
<td>The menu action button gives a user who has Operator-level access the ability to perform the specified action, which may normally require Technician-level access.</td>
</tr>
</tbody>
</table>

Initialize All Devices button only

| Device file | To select the device file that contains the devices for the corresponding protocol, click the field, and then click the ▼ button that appears. In the Open dialog box, locate and select the .dev file, and then click Open. |

4 If you are configuring the Run Protocol button:

a In the VWorks window protocol tab, under Protocol Options > Properties, click the Form to use field, and then click the ▼ button that appears.

b In the Open dialog box, locate and select the form file that you are creating (.VWForm), and then click Open.

c In the Automatically load form file field:

- Ensure the check box is selected (default) if the form should open automatically anytime the protocol is opened.
Creating protocol forms for operators
Configuring a run button and other specialized buttons in a form

- Clear the check box if the form should not open automatically when the protocol is opened.

5 If you are configuring the Run Runset button, make sure you select the Use global context for variables check box in the Form Designer window.

If you want the JavaScript variables used by the form's controls to interact with variables in the protocols, ensure that the Use global context for this protocol check box is selected in the Protocol Options for each protocol.

If one of the protocols uses its own private context (the Use global context for this protocol check box is not selected), you can include a getGlobalObject() JavaScript call in each case where a variable in the protocol must read from, or write to, one of the variables used by the form. For details, see “VWorks-defined functions” on page 83.

Note: If you want one control to overlap another control on the form, select the control that you want on top, and then click Bring selected control to front.

Related information

<table>
<thead>
<tr>
<th>For information about...</th>
<th>See...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Workflow for creating or editing a form</td>
<td>“Workflow for creating or editing a form” on page 141</td>
</tr>
<tr>
<td>Forms and Form Designer overview</td>
<td>“About forms for running protocols” on page 136</td>
</tr>
<tr>
<td>Controls under General Controls in the Form Designer window</td>
<td>“Adding form controls that allow editing or runtime data display” on page 158</td>
</tr>
</tbody>
</table>
Adding indicators for elapsed time and progress to a form

About this topic

To create or edit forms, you must have VWorks Technician- or Administrator-level access. You should also have an understanding of how to create protocols in the VWorks software.

This topic describes the controls in the Specialized Display Controls area of the Form Designer window and how to configure them.

Figure Form Designer window and the Specialized Display Controls

For more details on creating forms, see “Workflow for creating or editing a form” on page 141.
5 Creating protocol forms for operators
Adding indicators for elapsed time and progress to a form

About the specialized display controls

The Form Designer has two controls that display standard data for the protocol or runset. The data for these controls are not drawn from JavaScript variables.

<table>
<thead>
<tr>
<th>Specialized display controls</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elapsed Time</td>
<td>Displays the hours:minutes:seconds of duration for corresponding protocol or runset that the form is running.</td>
</tr>
<tr>
<td>Overall Progress</td>
<td>Provides a visual indication of the percent complete for the corresponding protocol or runset that the form is running.</td>
</tr>
<tr>
<td></td>
<td>The following figure shows a Progress bar with a Static text control for the Progress caption. In this example, a gray bar shows the real-time progress.</td>
</tr>
</tbody>
</table>

Procedure

To add indicators for elapsed time and progress:

1 In the Form Designer window under Available Controls, click Specialized display controls, and then drag the desired control to the Form Canvas area.

An invisible autogrid assists you in aligning the control to the Form Canvas area. To turn off the autogrid, press ALT while dragging the control into position.

2 In the Form Canvas area, click the control so that a resizing box appears around the border.

To resize the control, drag one of the sizing handles.

3 Edit the control Properties as required. The following table describes the properties.

<table>
<thead>
<tr>
<th>Properties</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Font size</td>
<td>Elapsed time only. To change the font size, type a new number in the field. Any controls that you create subsequently will use the new font size. Default: 10</td>
</tr>
</tbody>
</table>
Creating protocol forms for operators

Adding indicators for elapsed time and progress to a form

Properties

<table>
<thead>
<tr>
<th>Properties</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Font color or Bar color</td>
<td>Optional. To change the color for the selected control and subsequently created controls, click the field, and then click the ▼ that appears. Click the color in the palette list, or click Custom Color to open the Select Color dialog box and create a custom color.</td>
</tr>
</tbody>
</table>

Note: To create a caption for the Overall Progress control, you can combine the Overall Progress control with the Static text control. See “About the General Controls” on page 158.

Note: To have one control overlap another control on the form, select the control that you want on top, and then click **Bring selected control to front**.

Related information

<table>
<thead>
<tr>
<th>For information about...</th>
<th>See...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Workflow for creating or editing a form</td>
<td>“Workflow for creating or editing a form” on page 141</td>
</tr>
<tr>
<td>Controls under General Controls in the Form Designer window</td>
<td>“Adding form controls that allow editing or runtime data display” on page 158</td>
</tr>
<tr>
<td>Controls under Specialized Buttons in the Form Designer window</td>
<td>“Configuring a run button and other specialized buttons in a form” on page 145</td>
</tr>
<tr>
<td>Form properties in the Form Designer window</td>
<td>“Setting the form properties” on page 180</td>
</tr>
<tr>
<td>Creating a basic protocol</td>
<td>“Workflow for creating or editing a form” on page 141</td>
</tr>
</tbody>
</table>
Adding form controls that allow editing or runtime data display

About this topic

To create or edit forms, you must have VWorks Technician- or Administrator-level access. You should also have an understanding of how to create protocols and define JavaScript variables in the VWorks software.

This topic describes the General Controls in the Form Designer window and how to configure them:

- “About the General Controls” on page 158
- “Configuring the General Controls” on page 163

Figure Form Designer window General Controls and example form

For more details on creating forms, see “Workflow for creating or editing a form” on page 141.

About the General Controls

The controls available under General Controls can be assigned JavaScript variables to allow users to edit data or to display runtime data on the form. For example, you might want the form to display the volume dispensed or to allow the form’s user to enter the number of mix cycles. The JavaScript variable assigned to the control must also be assigned to the given task parameter value.

The general controls include the following:
Creating protocol forms for operators

Adding form controls that allow editing or runtime data display

<table>
<thead>
<tr>
<th>Control</th>
<th>Description</th>
</tr>
</thead>
</table>
| Static text| Displays read-only text. Use this control to create:
 - Captions for other controls on the form, such as drop-down lists, progress bars, sliders, and edit controls.
 - Read-only displays for runtime data. The JavaScript variable must be assigned in the Static control properties and in the corresponding task parameter in the protocol.

The following figure shows an example that consists of two Static text controls in combination with a Slider control. A Static text control (left) provides the caption, *Mix cycles*, and a Static text control (right) displays the value of the current slider setting.

| Edit control| Allows form users to enter or edit data. The JavaScript variable must be assigned in the Edit control properties and in the corresponding task parameter in the protocol.

The following figure shows an Edit control (right) that allows the form users to edit the volume. This control has an assigned JavaScript variable (`vol`), which is also assigned in the corresponding task parameter in the protocol.

| Droplist | Provides a drop-down list of choices.

In the following figure the Droplist control has an assigned JavaScript variable (`BCside`) that is also specified in the protocol task parameter for defining the barcode side of the labware.

| Note: | A Static text control (left) provides the caption, *Volume (uL)*.

Note: A Static text control provides the caption for the Droplist control.
Control Description

<table>
<thead>
<tr>
<th>Control</th>
<th>Description</th>
</tr>
</thead>
</table>
| Dropdown controls| Provides a drop-down list of choices and allows users to type arbitrary text into the edit field.
The Dropdown control in the figure has an assigned JavaScript variable (time) that is also specified in the protocol task parameter for defining the incubation time. |

Note: A Static text control provides the caption for the Dropdown control.

| Slider | Enables users to set a value on a continuous range of possible values.
The following figure shows a horizontal and vertical slider, where the position of the slider is coordinated with a Static text control (left) or Edit control (right). |

In the horizontal example (left), the user moves the slider to set the Mix task parameter value, while the value updates in the display. In the vertical example (right), the user can type a number in the box or move the slider to set the Mix task parameter value. |
Control Description

<table>
<thead>
<tr>
<th>Control</th>
<th>Description</th>
</tr>
</thead>
</table>
| Progress bar | Provides a visual indication of task progress. The JavaScript variable must be assigned in the control properties and in the corresponding task parameter in the protocol.
In the following figure, the gray bar shows how much of the task has been completed.

![Progress bar example](image)

Note: A Static text control provides the caption, *Progress*.
Note: To display the progress for the entire protocol or runset that the form is running, use the Overall Progress bar under Specialized Display Controls. |
| Pushbutton | Allows you to write your own script for the action that the button will perform.
The following figure shows a form with a custom pushbutton for running a protocol that the form's user selects in a File Browsing control. The script specified in the Pushbutton Properties calls the file path defined as the JavaScript variable for the File Browsing control.

![Custom pushbutton example](image)

Note: For more details on how to set up this example, see “Example: Creating a scripted Pushbutton control in a form” on page 175. |
5 Creating protocol forms for operators

Adding form controls that allow editing or runtime data display

<table>
<thead>
<tr>
<th>Control</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>File Browsing</td>
<td>Allows users to locate and select the specified file type. In the following figure, the File Browsing control has an assigned JavaScript variable for the file path (full file name and type), which is called by the script associated with the custom pushbutton that runs the selected protocol.</td>
</tr>
</tbody>
</table>

![File Browsing](image1.png)

Note: A Static text control provides the caption, Select the protocol file.

<table>
<thead>
<tr>
<th>Checkbox</th>
<th>Allows users to enable or disable the corresponding actions. The JavaScript variable must be assigned in the Checkbox control properties and in the corresponding task parameter in the protocol. The following figure shows two examples.</th>
</tr>
</thead>
</table>

![Checkbox](image2.png)

If the user selects the check box, the assigned JavaScript variable is set to 1. If the user clears the check box, the assigned JavaScript variable is set to 0.

<table>
<thead>
<tr>
<th>Radio button</th>
<th>Presents choices from among several items. Each Radio button control has a JavaScript variable that is also assigned in the corresponding protocol task parameter.</th>
</tr>
</thead>
</table>

![Radio button](image3.png)

If a user selects an option, the assigned JavaScript variable is set to 1. If the user clears the option, the assigned JavaScript variable is set to 0.
5 Creating protocol forms for operators
Adding form controls that allow editing or runtime data display

<table>
<thead>
<tr>
<th>Control</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date and Time</td>
<td>Displays a preset date and time or a date that the user can set. To correspond with a given task, the JavaScript variable must be assigned in the control properties and in the corresponding task parameter in the protocol.</td>
</tr>
<tr>
<td>Group box</td>
<td>Displays a rectangle that can be resized and labeled to visually group other controls together. To correspond with a given task, the JavaScript variable must be assigned in the control properties and in the corresponding task parameter in the protocol.</td>
</tr>
<tr>
<td>Image</td>
<td>Allows you to place a static image on the form. To correspond with a given task, the JavaScript variable must be assigned in the control properties and in the corresponding task parameter in the protocol.</td>
</tr>
<tr>
<td>Line</td>
<td>Provides a vertical or horizontal line that you can use to visually separate items on the form.</td>
</tr>
</tbody>
</table>

Configuring the General Controls

To add a control to the form:

1. Under Available Controls, click General Controls, and then drag the desired control to the Form Canvas area. An invisible autogrid assists you in aligning the control in the form. To turn off the autogrid, press ALT while dragging the control into position.

2. In the Form Canvas area, click the control that you want to set up, so that a resizing box appears around the border. To resize the control, drag one of the sizing handles. Note that the corresponding properties appear for the selected control as the following figure shows.
5 Creating protocol forms for operators
Adding form controls that allow editing or runtime data display

Figure Form Designer window displaying properties for the selected control

![Form Designer window](image)

Note: Click **Preview** to display the image that the form's user will see.

3 Edit the **Properties** for the control. The properties can include a combination of the following depending on the control:

- “Setting properties common to the general controls” on page 164
- “Setting Static text control properties” on page 167
- “Setting Droplist and Dropdown properties” on page 167
- “Setting Slider properties” on page 168
- “Setting Progress bar properties” on page 170
- “Setting Pushbutton control properties” on page 170
- “Setting File Browsing properties” on page 172
- “Setting Checkbox properties” on page 172
- “Setting Radio Button properties” on page 173
- “Setting Image (static) control properties” on page 174
- “Setting Date and Time properties” on page 174
- “Setting Group Box properties” on page 174

The Line control does have any properties that you can set.

Note: If you want one control to overlap another control on the form, select the control that you want on top, and then click **Bring selected control to front**.

Setting properties common to the general controls

The following table lists the properties for all controls. A given control might use only a subset of the properties listed.
Properties Description

<table>
<thead>
<tr>
<th>Properties</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>JavaScript variable</td>
<td>Type any string that qualifies as valid syntax for a JavaScript variable name. (This is the variable that will be associated with the focused control.)</td>
</tr>
<tr>
<td></td>
<td>In the protocol, type the variable name for the corresponding Task Parameters property.</td>
</tr>
<tr>
<td></td>
<td>For example, if you want the form’s user to enter the aspirate volume for a given task, you could use an Edit control that has a JavaScript variable of <code>vol</code>. In the protocol, you would specify the Aspirate Properties for Volume as <code>= vol</code>.</td>
</tr>
<tr>
<td></td>
<td>For more details on using JavaScript variables in the Task Parameters area, see “Using simple variables” on page 73.</td>
</tr>
<tr>
<td>Always use global context</td>
<td>If the form’s Use global context for variables check box is selected, you can ignore this setting. If the form’s Use global context for variables check box is not selected, specify which context to use for the control’s JavaScript variable:</td>
</tr>
<tr>
<td></td>
<td>• Global context. Select this check box.</td>
</tr>
<tr>
<td></td>
<td>For example, if the variable in question will be acted on before the protocol is running or is scheduled to run, use the global context.</td>
</tr>
<tr>
<td></td>
<td>IMPORTANT Any protocol that uses the global context and has JavaScript variables of the same name will be affected by changes you make to this variable, even if this form’s Use global context for variables check box is not selected.</td>
</tr>
<tr>
<td></td>
<td>• Context of the running protocol. Clear this check box.</td>
</tr>
<tr>
<td></td>
<td>For example, if the variable in question will communicate with the protocol once the protocol is running or is scheduled to run, you may not need to use the global context.</td>
</tr>
<tr>
<td></td>
<td>For more details on JavaScript context, see “Understanding JavaScript context in form design” on page 183.</td>
</tr>
<tr>
<td>Read only</td>
<td>To prevent the form’s user from editing the contents of the control, select this check box.</td>
</tr>
</tbody>
</table>
Adding form controls that allow editing or runtime data display

<table>
<thead>
<tr>
<th>Properties</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data entry</td>
<td>Specify one of the following:</td>
</tr>
<tr>
<td></td>
<td>• To allow form users to edit the value when a protocol is not running and when a running protocol is paused, select this check box.</td>
</tr>
<tr>
<td></td>
<td>• To allow users to edit the value only when a protocol is not running, clear the check box.</td>
</tr>
<tr>
<td>For the data entry controls, you can also provide the Print, Reset, and Save data entry buttons from the Specialized Buttons area. For details, see “Configuring a run button and other specialized buttons in a form” on page 145.</td>
<td></td>
</tr>
<tr>
<td>Note: The Data entry property is not available if the Read only check box is selected.</td>
<td></td>
</tr>
<tr>
<td>Mandatory</td>
<td>To prevent the form’s user from starting the associated protocol or runset without first entering the value for this field, select this check box.</td>
</tr>
<tr>
<td>Available if the Data entry check box is selected.</td>
<td></td>
</tr>
<tr>
<td>Default value</td>
<td>Type the value that you want the form to display when the values are reset.</td>
</tr>
<tr>
<td>Special conditions apply for some controls, such as checkboxes and radio buttons. For details, see the property description for the specific control.</td>
<td></td>
</tr>
<tr>
<td>Min value, Max value</td>
<td>To specify a range of permitted values, type a minimum and maximum numeric value. The value saved to the associated JavaScript variable will be a number.</td>
</tr>
<tr>
<td>If the form’s user types a value outside this range, an error message appears.</td>
<td></td>
</tr>
<tr>
<td>To allow the user to type any value in an Edit control, leave the Min and Max value properties blank. The value saved to the associated JavaScript variable will be a number, unless the value appears to be something other than a number. In which case, the value will be saved as a string.</td>
<td></td>
</tr>
<tr>
<td>Special conditions apply for some controls, such as sliders. For details, see the property description for the specific control.</td>
<td></td>
</tr>
<tr>
<td>Font size</td>
<td>To change the font size, type a new number in the field.</td>
</tr>
<tr>
<td>Any controls that you create subsequently will use the new font size.</td>
<td></td>
</tr>
<tr>
<td>Default: 10</td>
<td></td>
</tr>
<tr>
<td>Font color</td>
<td>To change the color for the selected control and subsequently created controls, click the field, and then click the that appears.</td>
</tr>
<tr>
<td>Click the color in the palette list, or click Custom Color to open the Select Color dialog box and create a custom color.</td>
<td></td>
</tr>
<tr>
<td>Default font color: Web Black</td>
<td></td>
</tr>
<tr>
<td>Default background color: 240, 240, 240</td>
<td></td>
</tr>
</tbody>
</table>
5 Creating protocol forms for operators
Adding form controls that allow editing or runtime data display

Setting Static text control properties

The Static text control has the following properties in addition to the properties common to the other general controls.

<table>
<thead>
<tr>
<th>Properties</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Display string</td>
<td>Type the text that you want to appear on the form, for example, a caption for another control on your form. The following figure shows an example of a Static text control with a display string that provides the label, Volume (µL) for an Edit control.</td>
</tr>
<tr>
<td>Note: Display string is enabled only if the JavaScript variable property is blank.</td>
<td></td>
</tr>
<tr>
<td>Note: To use the symbol µ, copy the characters to the Microsoft Clipboard from other software. Right-click the field and choose Paste to insert the character into the field.</td>
<td></td>
</tr>
<tr>
<td>Border</td>
<td>To add a border around the control, ensure the check box is selected (default). For example, a border is useful if you want to provide a display of runtime data. To remove the border, clear the check box. For example, if you are creating a caption for one of the other controls, a border is unnecessary. The following figure shows an example of two Static text controls combined with a Slider control. The caption on the left is a Static control with no border. The display on the right is a Static control with a border.</td>
</tr>
</tbody>
</table>

To coordinate the Static text control with a protocol task parameter, both the control and the task parameter must use the same JavaScript variable. To coordinate the Static text control with another control, for example, the slider, both controls must have the same assigned JavaScript variable and both controls must specify the global JavaScript context so that they can communicate with each other.

Setting Droplist and Dropdown properties

The Droplist and Dropdown controls have the following properties in addition to the properties common to the other general controls.

Note: You might want to use these controls in combination with a Static text control to display a caption for your drop-down list or drop-down combo box.
Creating protocol forms for operators
Adding form controls that allow editing or runtime data display

Setting Slider properties

The Slider control has the following properties in addition to the properties common to the other general controls.

<table>
<thead>
<tr>
<th>Properties</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Items</td>
<td>Type the list of items that will appear in the list of the Droplist or Dropdown control, where each item is separated by a semicolon with no spaces. For example, type 3;6;9;12 to provide the form’s user with the choices 3, 6, 9, 12.</td>
</tr>
<tr>
<td>Default value</td>
<td>Type the item from Items list that will display in the form by default. IMPORTANT Make sure that the default value is also in the Items list. Otherwise, the Droplist control will display the first list item by default. The Dropdown control will display the default value even if the value is not included in the Items list.</td>
</tr>
</tbody>
</table>
| Orientation | Click the field to display the ▼, and then click one of the following:
 • *Horizontal*. The scale reads from left to right, Min value to Max value.
 • *Vertical*. The scale reads from bottom to top, Min value to Max value.
The figure shows an example of a horizontal and vertical slider. The horizontal slider is combined with an Edit control that displays the changing numeric value as the slider is moved. |
Creating protocol forms for operators

Adding form controls that allow editing or runtime data display

You can use the Slider control in combination with the:

- Static text control to display a caption for the slider or display the current value of the slider’s setting.
- Edit control to display the current value of the slider’s setting or allow users to enter a value instead of using the slider.

To coordinate the slider setting with a Static text control or Edit control and the protocol task parameter setting:

- Both the Slider and Static or Edit controls must have the same JavaScript variable assigned (for example, `mix`).
- The variable assigned in the Slider and Static or Edit controls must be in the global context so that the two controls can communicate.
- The corresponding Mix task parameter in the protocol must also have the same JavaScript variable assigned (for example, `mix`).

Properties Description

<table>
<thead>
<tr>
<th>Properties</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Min value, Max value</td>
<td>To specify the range of values that the slider represents, type a minimum and maximum numeric value. The slider has a tick mark for each numeric value in the range. For example, a slider with a range of 1–10 has 10 tick marks, and a slider with a range of 1–20 has 20 tick marks. When the form’s user moves the slider, the resulting value is written to the control's JavaScript variable as soon as the slider is released.</td>
</tr>
</tbody>
</table>

Increment size

Type a positive number to use as the increment that the numeric value changes as the slider is moved. For example, if the slider’s range is 1–10 and the increment size is 1, the value will change by 1 each time you move the slider. If the increment is 2, the value will change by 2 each time you move the slider.

The increment size should be in relation to the slider’s range of values. For example, a slider that has a narrow range of values typically would not have a large increment size. Likewise, a small increment size may be insufficient for a slider that has a very wide range of values.
If the slider's Data Entry property is not selected, the slider will move according to the current value of the underlying JavaScript variable. The behavior of the slider is undefined if the JavaScript variable does not have a numeric value, or if the variable's value is outside the slider's range.

Setting Progress bar properties

The Progress bar control has the following properties in addition to the properties common to the other general controls.

Note: You might want to use this control in combination with a Static text control to create the progress bar caption.

<table>
<thead>
<tr>
<th>Properties</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>JavaScript variable</td>
<td>Must have a numeric value that is a positive number and the value must not be greater than the Max value setting.</td>
</tr>
<tr>
<td>Max value</td>
<td>Type a numeric value larger than 0. The value represented by the left end of the progress bar is always 0. The Max value determines the value represented by the right end of the progress bar.</td>
</tr>
<tr>
<td>Bar color</td>
<td>Optional. To change the color, click the field, and then click the ▼ that appears. Click the color in the palette list, or click Custom Color to open the Select Color dialog box and create a custom color.</td>
</tr>
</tbody>
</table>

The progress bar moves according to the current value of the underlying JavaScript variable. All progress bars are horizontal.

Setting Pushbutton control properties

The Pushbutton control can execute any JavaScript code that you specify. You provide the script in the Pushbutton Properties, as the following figure shows.
In addition to the properties common to the general controls, the Pushbutton control has the following properties. For an example of how to set up a pushbutton using a script, see “Example: Creating a scripted Pushbutton control in a form” on page 175.

<table>
<thead>
<tr>
<th>Properties</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Script</td>
<td>Click the field, and then click the button that appears. In the Input Text dialog box, type the JavaScript code to be executed when the pushbutton is pressed, or click Browse to select the file (.txt) that contains the script. Note: If the script specifies a file on your computer, and you later export the form with this pushbutton, you must specify the file in the Additional Files page of the Export Wizard.</td>
</tr>
</tbody>
</table>
Setting File Browsing properties

The File Browsing control has the properties that are common to the other general controls. No additional properties are provided.

For an example of how to set up a File Browsing control, see “Example: Creating a scripted Pushbutton control in a form” on page 175.

Setting Checkbox properties

The Checkbox control has the following properties in addition to the properties common to the general controls.

<table>
<thead>
<tr>
<th>Properties</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Caption</td>
<td>Type the string to be displayed to the right of the check box.</td>
</tr>
</tbody>
</table>

Setting File Browsing properties

The File Browsing control has the properties that are common to the other general controls. No additional properties are provided.

For an example of how to set up a File Browsing control, see “Example: Creating a scripted Pushbutton control in a form” on page 175.

Setting Checkbox properties

The Checkbox control has the following properties in addition to the properties common to the general controls.

<table>
<thead>
<tr>
<th>Properties</th>
<th>Description</th>
</tr>
</thead>
</table>
The Checkbox control is binary. When the check box on the form is selected, a 1 is written to the associated JavaScript variable. When the check box is cleared (unchecked), a 0 is written to the associated JavaScript variable.

Note: If the JavaScript variable's numeric value is anything other than 0, the check box will display as checked.

Setting Radio Button properties

The Radio Button control has the following properties in addition to the properties common to the other general controls.

<table>
<thead>
<tr>
<th>Properties</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default value</td>
<td>Type one of the following:</td>
</tr>
<tr>
<td></td>
<td>0 — indicates the option is cleared by default</td>
</tr>
<tr>
<td></td>
<td>1 — indicates the option is selected by default</td>
</tr>
<tr>
<td></td>
<td>Note: Any value other than zero indicates that the check box is selected.</td>
</tr>
<tr>
<td>Caption</td>
<td>Type the string to be displayed to the right of the radio button.</td>
</tr>
<tr>
<td>Group ID</td>
<td>Type a string to use as the ID of the radio button group. Only one button in the group can be selected at a time. When the form's user selects a button in the group, all other radio buttons with the same Group ID are cleared (not selected) automatically. For example, if you had a grouping of options for size, you could use the string, size, as the Group ID.</td>
</tr>
</tbody>
</table>

Note: You can use a Group box to visually group a collection of radio button options.

The Radio Button control is binary. When the button on the form is selected, a 1 is written to the associated JavaScript variable. When the button is cleared, a 0 is written to the associated JavaScript variable.
Note: If the JavaScript variable’s numeric value is anything other than 0, the option will display as selected.

Setting Image (static) control properties

The Image control has the following properties in addition to the properties common to the other general controls.

<table>
<thead>
<tr>
<th>Properties</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Image file</td>
<td>To select an image to display on the form, click the field, and then click the button that appears. In the Open dialog box, locate and select the image file (.jpg, .png, or .bmp), and then click Open.</td>
</tr>
</tbody>
</table>

Setting Date and Time properties

The Date and Time control has the properties common to the other general controls. However, if you provide a default value, it must be in the following format. If you do not provide a default value, the software uses the current date and time from the computer.

<table>
<thead>
<tr>
<th>Properties</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default value</td>
<td>nn:nn:nn nn-nn-nnnn where, nn:nn:nn is the hour:minutes:seconds in a 24-hour clock and nn-nn-nnnn is the month:day:year</td>
</tr>
</tbody>
</table>

If you select the Data entry property for this control, the user can enter:
- *Time*. The user can edit the default values.
- *Date*. The user can click the drop-down list to select the date from a calendar.

Setting Group Box properties

The Group Box control has the following properties in addition to the properties common to the other general controls.

<table>
<thead>
<tr>
<th>Properties</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group name</td>
<td>Type the string to display as the caption for the group box.</td>
</tr>
</tbody>
</table>

Controls that you drag inside the group box become part of the group box. The group box may need to be resized to ensure that all the controls within the group box borders are clearly visible.
Example: Creating a scripted Pushbutton control in a form

About this topic

To create or edit forms, you must have VWorks Technician- or Administrator-level access. You should also have an understanding of how to create protocols in the VWorks software.

This topic provides an example of the Pushbutton and File Browsing controls in the Form Designer. For more details, see “Adding form controls that allow editing or runtime data display” on page 158.

About the script for the example

The example presented in this topic uses the following script:
```
runset.appendProtocolFileToRunset (file01, numRunTimes, "", "myform1.VWForm");
```

This script appends the contents of a protocol file to the Runset Manager, specifies the number of times the protocol should run, and passes the file name of the form (.VWForm) to be associated with the protocol.
Creating protocol forms for operators

Example: Creating a scripted Pushbutton control in a form

The following table describes the arguments for the `appendProtocolFileToRunset` method used in the example script.

<table>
<thead>
<tr>
<th>Argument</th>
<th>Example</th>
<th>Descriptions</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>ProtocolPath</code></td>
<td><code>file01</code></td>
<td>The protocol file path. In this example, the variable <code>file01</code> is used for the file path.</td>
</tr>
<tr>
<td><code>RunTimes</code></td>
<td><code>numRunTimes</code></td>
<td>The number of times (integer) to run the protocol. In this example, we use the variable <code>numRunTimes</code> so that the form users can edit this value.</td>
</tr>
<tr>
<td><code>ProtocolNotes</code></td>
<td>""</td>
<td>An empty string. Although the third argument is not used in this case, the empty string is required as a placeholder.</td>
</tr>
<tr>
<td><code>formToUse</code></td>
<td>"myform1.VWForm"</td>
<td>The file name of the form to be associated with the protocol once the protocol starts running. The argument must specify the file name (not the path) of the form that contains the pushbutton.</td>
</tr>
</tbody>
</table>

For details on other runset object methods that can be used with forms, see “runset object” on page 108.

Creating the example pushbutton

The following example describes how to create a pushbutton that enables the form users to select which protocol to run.

To create the example pushbutton:

1. In the VWorks window, choose File > New > Form.

 In the Form Designer window, click Save As and save the form with the name `myform1.VWForm`.

2. To configure the File Browsing control, drag File Browsing from General Controls to the Form Canvas. Enter the following settings under File Browsing Properties:

 a. In the JavaScript variable field, type `file01`.

 b. Select Always use global context and Data entry.
3 *Optional.* To provide a caption for the File Browsing control, drag **Static** from **General Controls** to the **Form Canvas**.

Under **Static Properties**, in the **Display string** field, type the following caption:

```
Select the protocol file:
```

4 To configure an Edit control that allows users to enter the number of runs, drag **Edit control** from **General Controls** to the **Form Canvas**. Enter the following settings under **Edit control Properties**:

- **a** In the **JavaScript variable** field type `numRunTimes`.
- **b** Select **Always use global context** and **Data entry**.
- **c** Select **Mandatory**. If the users forget to enter the number of runs, the software will display an error message after the user selects the protocol and clicks the pushbutton.

You can also enter a **Default value** that the software will use unless the form user changes the value.

5 *Optional.* Repeat step 3 to create the following caption for the number-of-runs control: **Number of times to run:**

6 To configure the pushbutton, drag **Pushbutton** from **General Controls** to the **Form Canvas**. Enter the following settings under **Pushbutton Properties**:

- **a** Click the **Script** field, and then click the **...** button that appears. In the **Input Text** dialog box, type the following script:
Creating protocol forms for operators
Example: Creating a scripted Pushbutton control in a form

runset.appendProtocolFileToRunset (file01, numRunTimes, "", "myform1.VWForm");

Note: If you copy this example, make sure to use straight quotation marks instead of curly quotation marks or smart quotes.

b Select Always use global context and Disable when running.

IMPORTANT The global context is required for the variables in the Pushbutton script, the File Browsing control, and the Edit control because at the time the button is pressed the form is not yet associated with a protocol. Without a protocol association, there is no protocol from which to get an associated protocol's context.

c Type the Caption that will appear on the pushbutton, for example, Run Selected Protocol.

d Click the Image field, and then click the button that appears. In the Open dialog box, select the following:

...\Program Files\Agilent Technologies\VWorks\clipart\24b_start_icon_up.ico

7 Click OK to close the Form Designer and save the changes.
Testing the example pushbutton

To test the example pushbutton:

1. Ensure `myform1.VWForm` is open in the **VWorks** window.
2. In the form, click `...` and then select the protocol file (.pro).
3. In the **Number of times to run** box, type a value.
4. Click the custom pushbutton that you created, for example, **Run Selected Protocol**.

Related information

<table>
<thead>
<tr>
<th>For information about...</th>
<th>See...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Workflow for creating or editing a form</td>
<td>“Workflow for creating or editing a form” on page 141</td>
</tr>
<tr>
<td>Controls under General Controls in the Form Designer window</td>
<td>“Adding form controls that allow editing or runtime data display” on page 158</td>
</tr>
<tr>
<td>Controls under Specialized Buttons in the Form Designer window</td>
<td>“Configuring a run button and other specialized buttons in a form” on page 145</td>
</tr>
</tbody>
</table>
5 Creating protocol forms for operators

Setting the form properties

<table>
<thead>
<tr>
<th>For information about...</th>
<th>See...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Controls under Specialized Display Controls in the Form Designer window</td>
<td>“Adding indicators for elapsed time and progress to a form” on page 155</td>
</tr>
<tr>
<td>Form properties in the Form Designer window</td>
<td>“Setting the form properties” on page 180</td>
</tr>
<tr>
<td>Creating a basic protocol</td>
<td>“Workflow for creating or editing a form” on page 141</td>
</tr>
<tr>
<td>Using JavaScript</td>
<td>“Creating a protocol: advanced topics” on page 69</td>
</tr>
</tbody>
</table>

Setting the form properties

About this topic

This topic describes the properties that appear in the bottom corner of the Form Designer window and the Editing .VWForm windows.

To create or edit forms, you must have VWorks Technician- or Administrator-level access. You should also have an understanding of how to create protocols in the VWorks software.

This topic describes the form properties that appear at the bottom of the Form Designer windows.
5 Creating protocol forms for operators

Setting the form properties

Figure Form properties in the Form Designer and Editing .VWForm windows

Procedure

To set the form’s properties:

1. In the Form Designer window or Editing .VWForm window, specify the context for the JavaScript variables associated with all the controls in the form:

 • **Context of the running protocol.** Clear the Use global context for variables check box. JavaScript variables with the same name in different protocols will not be affected by the properties you set for the controls in this form.

 Individual controls in the form can still specify the global context.

 • **Global context for all variables in the form.** Select the Use global context for variables check box. For example, if the form is for a runset, you must use the global context.

 All controls in the form will use the global context for their JavaScript variables and scripts, regardless of the settings for the individual control properties.

 Any protocol that uses the global context and contains JavaScript variables of the same name will be affected by the changes you make to the properties for the controls in this form.

 CAUTION Ensure that the variable values you want to use globally are applicable to all other protocols, which also specify the global context. Otherwise, variables with the same name in different protocols will interfere with each other.
5 Creating protocol forms for operators

Setting the form properties

For more details on JavaScript context, see “Understanding JavaScript context in form design” on page 183.

2 To ensure that the default values associated with the controls in the form appear each time a user opens the form, select **Restore default values when loading**.

3 If the form includes the Toggle Full Screen button, specify whether to show or hide the Main Log, Pipette Log, Time Constraints Log, and Progress tabs in the full screen view:
 - Select the **Show log in Full Screen mode** check box to include the logs.
 - Clear the **Show log in Full Screen mode** check box to hide the logs.

4 To change the background color of the form, click **Set background color**, and then select the color from the **Color** dialog box.

5 Click **OK**. If this is the first time to save the form, the Save As dialog box opens. Select a storage location, type a name for the form, and click **Save**. The software saves the form as file type .VWForm.

If you are editing a previously saved form, click **File > Save** after the Form Designer closes.

Related information

<table>
<thead>
<tr>
<th>For information about...</th>
<th>See...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Workflow for creating or editing a form</td>
<td>“Workflow for creating or editing a form” on page 141</td>
</tr>
<tr>
<td>Controls under General Controls in the Form Designer window</td>
<td>“Adding form controls that allow editing or runtime data display” on page 158</td>
</tr>
<tr>
<td>Controls under Specialized Buttons in the Form Designer window</td>
<td>“Configuring a run button and other specialized buttons in a form” on page 145</td>
</tr>
<tr>
<td>Controls under Specialized Display Controls in the Form Designer window</td>
<td>“Adding indicators for elapsed time and progress to a form” on page 155</td>
</tr>
<tr>
<td>JavaScript context and form design</td>
<td>“Understanding JavaScript context in form design” on page 183</td>
</tr>
<tr>
<td>Creating a basic protocol</td>
<td>“Workflow for creating or editing a form” on page 141</td>
</tr>
<tr>
<td>Using JavaScript</td>
<td>“Creating a protocol: advanced topics” on page 69</td>
</tr>
</tbody>
</table>
Understanding JavaScript context in form design

About this topic

This topic assumes a basic understanding of how to use JavaScript variables and create protocols in the VWorks software.

About JavaScript context and form design

The JavaScript variables used in protocols and in the forms that run the protocols can be in either the global context or the context of the running protocol.

When designing a form, you specify the JavaScript context in three locations:

1. **Protocol.** In the Protocol Options area, you select or clear the **Use global context for this protocol** check box to specify the context for the variables in the protocol.

2. **Form.** In the Form Designer window, you select or clear the **Use global context for variables** check box to specify the context for the variables in the form.

3. **Individual controls in the form.** If the form’s **Use global context for variables** check box is selected, the context setting for all the controls that use JavaScript is already set. If the form’s **Use global context for variables** check box is not selected, you can select the **Always use global context** check box in the control properties for individual controls that use JavaScript.
 Protocol’s JavaScript context

For each protocol, you specify the context in the Protocol Options area:

- **Global context.** Variables of the same name in the given protocol will be available across all protocols that also specify the global context.
- **Context of the running protocol.** Prevents the variables in a given protocol from being impacted by changes to variables of the same name in other protocols.

Form’s JavaScript context

In the Form Designer window, you select or clear the **Use global context for variables** check box to specify the context for the form.

- **Global context.** All variables throughout the entire form will be in the global context.
- **Context of the running protocol.** The variables in each individual control in the form will be in the context of the associated (running) protocol, unless the control specifies the global context. When no protocol association exists (the protocol is not running or scheduled to run), the individual controls that do not specify global context will retain their most recent previous value.

The global context may not be necessary if the variable in question will communicate with the protocol after the protocol is running or is scheduled to run.

No JavaScript objects that exist in a context other than the global context and the protocol’s context will be accessible from either kind of form. For example, plate objects, plates[] array objects, and task objects will not be accessible. If you want the data from any of these objects to be shown on the form, the protocol must contain JavaScript statements at appropriate points to copy the relevant data into JavaScript variables that you devise.

Individual control’s JavaScript context

In the Form Designer window, when you set the properties for a control that has an assigned JavaScript variable, you select or clear the **Always use global context** check box to specify the context.

- **Global context.** The variable in question will be available to the protocol and to other controls that also use the global context before the protocol is running or is scheduled to run.

If two controls on the form must communicate with each other, the global context is required for each control. For example, the following figure shows a Slider control and a display (Static text control). As the slider moves, the value in the display updates to match the slider’s position.

- **Context of the running protocol.** The variable in question will be available to the protocol only after the protocol is running or is scheduled to run.

Runsets and the global context

If you have a set of protocols designed to be a runset that will be launched by a form, you use the global context for both the protocols and the form.

Note: Alternatively, you can use the JavaScript function, GetGlobalObject, to access the global context for any variable within the protocol that should interact with the form. See “VWorks-defined functions” on page 83.
IMPORTANT Multiple protocols designed to run together in the same runset should not reuse the same JavaScript variable names unless the variables are intended to share data.

Context scenarios

The following figure shows four protocols (A, B, C, and D). Form 1 runs protocol A, and protocols B, C, and D run without using a form.

- Protocol A uses its own context for variables.
- Protocols B, C, and D use the global context for variables.
- Form 1 uses the context of the running protocol, except for two of its controls, a pushbutton and a file browsing control, which use the global context.

Figure Example of relationships between the protocol, form, and control context settings

Suppose that protocol A does not use the global context because it uses a variable \(x \) to count the number of times a loop has executed. But, protocol D also uses a variable called \(x \) for something completely different. Even though both protocols may run at the same time, their JavaScript variables will not interfere with each other because protocol A uses its own private context.

Suppose that protocols B, C, and D must use the global context because each of these protocols keeps track of the total volume dispensed by all protocols in a variable called \(\text{totVol} \). Whenever any of these protocols executes a Dispense task, it also executes the JavaScript: "\(\text{totVol} += \text{task.volume}; \)". When all three protocols are done, the total volume dispensed in all three protocols can be accessed in a single variable.

In Form 1, the File Browsing control and Pushbutton control are in the global context so that the two controls can communicate with each other. The Pushbutton control executes a script that uses a JavaScript variable of `fileName`, which must also be specified by the File Browsing control. Now
imagine that the user has typed, C:\myfile.txt in this control. When the user presses the Pushbutton control, whatever string happens to be showing in its File Browsing control at that time is assigned to the variable fileName in the global context. Now, not only does the script in the Form 1 Pushbutton control recognize the variable fileName as having a value of C:\myfile.txt, so would all the scripts throughout protocols B, C, and D.

Related information

<table>
<thead>
<tr>
<th>For information about...</th>
<th>See...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Creating or editing a form</td>
<td>“Workflow for creating or editing a form” on page 141</td>
</tr>
<tr>
<td>Controls under General Controls in the Form</td>
<td>“Adding form controls that allow editing or runtime data display” on</td>
</tr>
<tr>
<td>Designer window</td>
<td>page 158</td>
</tr>
<tr>
<td>Form properties in the Form Designer window</td>
<td>“Setting the form properties” on page 180</td>
</tr>
<tr>
<td>Creating a basic protocol</td>
<td>“Workflow for creating or editing a form” on page 141</td>
</tr>
<tr>
<td>Working with JavaScript</td>
<td>“Creating a protocol: advanced topics” on page 69</td>
</tr>
</tbody>
</table>
6 Running a protocol

This chapter contains the following topics:

- “Workflow for running a protocol” on page 188
- “Opening a protocol” on page 189
- “Setting log file directories” on page 191
- “Setting general and view options” on page 193
- “Setting error-handling options” on page 197
- “Setting up email notification” on page 200
- “Setting up automatic online notification” on page 203
- “Starting the protocol run” on page 205
- “Managing runsets” on page 211
- “Monitoring the overall run progress” on page 222
- “Tracking the run progress of instances or devices” on page 223
- “Pausing the run” on page 229
- “Stopping the run” on page 231
Workflow for running a protocol

<table>
<thead>
<tr>
<th>Step</th>
<th>For this task...</th>
<th>See...</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Turn on the devices that will be used in the protocol and prepare them for operation.</td>
<td>Device user guide</td>
</tr>
<tr>
<td>2</td>
<td>Log in to the VWorks software.</td>
<td>“Logging in, logging out, and changing passwords” on page 22</td>
</tr>
<tr>
<td>3</td>
<td>Open a protocol.</td>
<td>“Opening a protocol” on page 189</td>
</tr>
<tr>
<td>4</td>
<td>Optional. Set log file directories.</td>
<td>“Setting log file directories” on page 191</td>
</tr>
<tr>
<td>5</td>
<td>Optional. Set general and view options.</td>
<td>“Setting general and view options” on page 193</td>
</tr>
<tr>
<td>6</td>
<td>Optional. Set error-handling options.</td>
<td>“Setting error-handling options” on page 197</td>
</tr>
<tr>
<td>7</td>
<td>Optional. Set up email notification.</td>
<td>“Setting up email notification” on page 200</td>
</tr>
<tr>
<td>8</td>
<td>Start the protocol run.</td>
<td>“Starting the protocol run” on page 205</td>
</tr>
<tr>
<td>9</td>
<td>Optional. Create and manage runsets.</td>
<td>“Managing runsets” on page 211</td>
</tr>
<tr>
<td>10</td>
<td>Monitoring the run.</td>
<td>“Monitoring the overall run progress” on page 222</td>
</tr>
<tr>
<td>11</td>
<td>Optional. Pause the run.</td>
<td>“Pausing the run” on page 229</td>
</tr>
<tr>
<td>12</td>
<td>Optional. Stop the run.</td>
<td>“Stopping the run” on page 231</td>
</tr>
</tbody>
</table>

Related information

<table>
<thead>
<tr>
<th>For information about...</th>
<th>See...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preparing devices for a run</td>
<td>Device user guide</td>
</tr>
<tr>
<td>Creating protocols</td>
<td></td>
</tr>
</tbody>
</table>
 * “Creating a protocol: basic procedure” on page 13
 * “Creating a protocol: advanced topics” on page 69 |
Opening a protocol

About this topic

The instructions in this topic assume that the protocol is associated with the correct device file, profiles, teachpoint files, labware definitions, liquid classes, and other relevant files and databases. For details about how these components relate and impact each other, see “Relationship of VWorks components” on page 4. For instructions on creating or selecting different device files, profiles, and other relevant files, see “Workflow for creating a basic protocol” on page 18.

Procedure

To open a protocol:

1. Log in to the VWorks software. For instructions, see “Logging in, logging out, and changing passwords” on page 22.
2. Select File > Open. The Open dialog box opens.
3. Locate and select the protocol (.pro) file, and then click Open.

The protocol information is displayed in the VWorks window. Notice that the name of the protocol appears in the title bar and on the tab in the protocol area.

You can open and display multiple protocols. Repeat the steps in this section to open other protocols. To view a particular protocol, in the Protocol area, click the tab that displays the protocol name.
Note: Every protocol requires a device file to run. When you open a protocol file, the device file associated with it is automatically loaded. However, the device file is not displayed. If you want to display the device file, click the **Workspace** tab in the **Available tasks** area, and then click the device file name.

Related information

<table>
<thead>
<tr>
<th>For information about...</th>
<th>See...</th>
</tr>
</thead>
<tbody>
<tr>
<td>VWorks software components</td>
<td>“Relationship of VWorks components” on page 4</td>
</tr>
<tr>
<td>Preparing devices for a run</td>
<td>Device user guide</td>
</tr>
<tr>
<td>Creating protocols</td>
<td>• “Creating a protocol: basic procedure” on page 13</td>
</tr>
<tr>
<td></td>
<td>• “Creating a protocol: advanced topics” on page 69</td>
</tr>
<tr>
<td>Setting the log file directories</td>
<td>“Setting log file directories” on page 191</td>
</tr>
<tr>
<td>Setting error-handling options</td>
<td>“Setting error-handling options” on page 197</td>
</tr>
<tr>
<td>Setting up email notification</td>
<td>“Setting up email notification” on page 200</td>
</tr>
<tr>
<td>Adding an alarm</td>
<td>“Adding an alarm” on page 35</td>
</tr>
<tr>
<td>Running a protocol</td>
<td>“Workflow for running a protocol” on page 188</td>
</tr>
</tbody>
</table>
Setting log file directories

About the log files

The VWorks software records events that occur and stores the information in the following logs:

- **Main Log.** Contains all of the actions that occur in the software.
- **Pipette Log.** Contains all pipetting transfer tasks.
- **Time Constraints Log.** Contains all information about time-limited tasks.

You cannot edit or delete log entries within the VWorks software, but you can specify where they are stored on the computer. This topic describes how to change the log file location.

Procedure

You can set the log file directory during setup or the first time a protocol is run in the software. You do not need to set the log file directory every time you run a protocol.

CAUTION The settings in the Options dialog box apply to all protocol runs. Always check the settings before you start a run.

To change the location of the log files:

1. Select **Tools > Options.** The Options dialog box opens. The Directory and Paths area lists the different log files and their directories.
To change the log file location, click the log path, and then click the button that appears. The Open dialog box opens.

Locate and select the desired location and click Open. The new path displays in the Options dialog box.

Click OK to save the changes and close the Options dialog box.

Related information

<table>
<thead>
<tr>
<th>For information about...</th>
<th>See...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Viewing the log files</td>
<td>“Viewing logs” on page 516</td>
</tr>
<tr>
<td>Setting error-handling options</td>
<td>“Setting error-handling options” on page 197</td>
</tr>
<tr>
<td>Setting up email notification</td>
<td>“Setting up email notification” on page 200</td>
</tr>
<tr>
<td>Adding an alarm</td>
<td>“Adding an alarm” on page 35</td>
</tr>
<tr>
<td>Running a protocol</td>
<td>“Workflow for running a protocol” on page 188</td>
</tr>
</tbody>
</table>
Setting general and view options

Setting the general options

General options allow you to specify the amount of debug information to display in the Main Log, set the robot speed, enable the error library, and other preferences.

You can set the general options during setup or the first time a protocol is run in the software. You do not need to set the general options every time you run a protocol.

CAUTION The settings in the Options dialog box apply to all protocol runs. Always check the settings before you start a run.

To set the general options:

1. Select Tool > Options. The Options dialog box opens.

2. In the Options area, set or select the following options:
Option Description

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
</table>
| **Debug log level** | The amount of debug information presented in the Main Log. This field should be used by Automation Solutions Technical Support or advanced users for troubleshooting purposes. Valid values are:
- **0.** No debug information. This default value is for typical use.
- **1-5.** Various levels of plugin information.
- **6-100.** Additional debug information. The larger the value, the more information is presented. |
| **Robot speed** | The maximum general speed at which the robot will move during the run. If you are testing a new protocol or learning to use the system, run the robot at a slow or medium speed to reduce the risk of crashes.
In addition to this general robot speed, you can set:
- **Robot-handling speed for labware.** Specifies the maximum speed at which the robot can move when handling a specific type of microplate. This parameter is set in the Labware Editor on the Plate Properties tab. If this speed differs from the general robot speed, the robot uses the slower of the two speeds.
For more details on the Labware Editor, see the *VWorks Automation Control Setup Guide*.
- **Always run at robot speed when gripper is empty.** This option allows the robot to move at a faster speed when no labware is in the gripper and yet retain the ability to move more slowly when carrying labware. |
| **Always run at “robot speed” when gripper is empty** | The option to move at the Robot speed setting, above, when no labware is in the robot gripper. For example, if the Robot speed is fast, but the speed for the labware is slow:
- **Select the check box (default).** Allows the robot to move fast when moving to the labware pickup location, while the gripper is still empty.
- **Clear the check box.** Results in the robot moving at slow speed both while moving to the pickup location and while picking up and placing the labware.
For the maximum throughput, ensure this option is selected. |
| **Use robot to check for plates** | The option that requires the robot to move to all positions defined in the device file to check that the positions are empty. In devices that have more than one location such as the Microplate Rotator, Linear Translator, and the Microplate Centrifuge, the robot will check to make sure all locations are empty.
Note: This option applies only to the BioCel System robots. |
Option Description

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Height to check above teachpoints</td>
<td>This parameter is available if you select Use robot to check for plates. The height you specify is the offset added to the z-axis coordinate of the teachpoint being checked. Default: 2.0 mm</td>
</tr>
<tr>
<td>Halt on barcode misreads</td>
<td>The option that requires the software to pause the protocol when a barcode scanned does not match the barcode in the input file. Causes of the misread include missing barcode labels, damaged labels, or wrong labels.</td>
</tr>
<tr>
<td>Enable Error Library</td>
<td>The option to turn on access to the Error Library.</td>
</tr>
<tr>
<td>Delete Orphaned Plates</td>
<td>The option to clear from memory any labware that were left in storage devices temporarily before the run was aborted. Doing so allows the use of the storage location in the next protocol run. For example, during a run, a labware is placed in a Plate Hotel slot while it waits for a device. You abort the run. Before you can restart the run, you must physically remove orphaned labware left in the system from the previous run, such as the labware placed temporarily in the Plate Hotel. However, the software still remembers that the labware is in the Plate Hotel slot. Selecting this option clears the software memory and permits that location to be used in the new run.</td>
</tr>
<tr>
<td>Enable migration notification</td>
<td>The option that requires the software to display a message whenever you try to open a protocol written in the previous versions of the VWorks software.</td>
</tr>
<tr>
<td>Simulation quality</td>
<td>The accuracy of the simulation. Select one of the accuracy levels:</td>
</tr>
<tr>
<td></td>
<td>• Standard. The lowest level of accuracy, because the software does not query the device plugins. Certain physical constraints are not simulated, so this option results in the fastest simulation.</td>
</tr>
<tr>
<td></td>
<td>• More accurate green dots. The next level of accuracy where the simulation might take longer than Standard quality. Similar to the Standard quality option, the software does not query the device plugins for physical constraints. However, the software ensures the green dots in the Protocol area are positioned accurately during the simulation.</td>
</tr>
<tr>
<td></td>
<td>• Dots + communicate with plug-ins. The highest level of accuracy. The software queries the device plugins to ensure every move is physically permissible, resulting in a slower but more accurate simulation.</td>
</tr>
</tbody>
</table>
Setting view options

View options allow you to hide parameters that are not in use and remember the simulation mode when you restart the software. You set the view options when you first set up the software. You do not need to set the view options every time you run a protocol.

To set the view options:

1. In the View Options area, set the following options:

```
<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hide disabled parameters</td>
<td>The option to hide parameters that are not in use:</td>
</tr>
<tr>
<td></td>
<td>• To hide the unavailable parameters, select the check box.</td>
</tr>
<tr>
<td></td>
<td>• To show the unavailable parameters as grayed out items, clear the check box.</td>
</tr>
<tr>
<td></td>
<td>For example, in the Aspirate task, if you select Perform tip touch, additional parameters appear, and you can specify the sides of wells to use for tip touch. If you do not select Perform tip touch, the additional parameters can be hidden or grayed out, depending on whether you selected Hide disabled parameters.</td>
</tr>
<tr>
<td>Remember simulator state</td>
<td>The option to remember the simulation mode (Simulation is on, or Simulation is off) when you restart the software.</td>
</tr>
<tr>
<td>between sessions</td>
<td></td>
</tr>
</tbody>
</table>
```

2. Click OK to save the changes and close the Options dialog box.
Related information

<table>
<thead>
<tr>
<th>For information about...</th>
<th>See...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Setting the log file directories</td>
<td>“Setting log file directories” on page 191</td>
</tr>
<tr>
<td>Resolving barcode reader error messages</td>
<td>“Resolving barcode reader error messages” on page 531</td>
</tr>
<tr>
<td>Setting error-handling options</td>
<td>“Setting error-handling options” on page 197</td>
</tr>
<tr>
<td>Setting up email notification</td>
<td>“Setting up email notification” on page 200</td>
</tr>
<tr>
<td>Adding an alarm</td>
<td>“Adding an alarm” on page 35</td>
</tr>
<tr>
<td>Running a protocol</td>
<td>“Workflow for running a protocol” on page 188</td>
</tr>
<tr>
<td>Setting up the error library</td>
<td>“Setting up automated error responses” on page 537</td>
</tr>
</tbody>
</table>

Setting error-handling options

Procedure

You can set the error-handling options during setup or the first time a protocol is run in the software. You do not need to set the error-handling options every time you run a protocol.

CAUTION The settings in the Options dialog box apply to all protocol runs. Always check the settings before you start a run.

To set the error-handling options:

1. Select Tools > Options. The Options dialog box opens.
In the **Error Handling** area, set or select the options:

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Halt on low disk space</td>
<td>The option that requires the software to stop scheduling tasks when the computer disk space is low. If you select this option, you must specify the Disk space threshold.</td>
</tr>
<tr>
<td>Disk space threshold</td>
<td>The percentage of disk space at which the software will halt scheduling tasks.</td>
</tr>
</tbody>
</table>
| Scheduler error behavior | The action the software should take if an error occurs during the run. Select one of the following actions:
 - Process as many plates as possible
 - Continue processing without starting any new plates
 - Stop scheduler |

![Error Handling Options](image)
Running a protocol

Setting error-handling options

When you are finished, click **OK** to save the changes and close the Options dialog box.

Related information

<table>
<thead>
<tr>
<th>For information about...</th>
<th>See...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Setting the log file directories</td>
<td>“Setting log file directories” on page 191</td>
</tr>
<tr>
<td>System State Editor</td>
<td>“Recovering from deadlocks” on page 532</td>
</tr>
<tr>
<td>Automated error responses</td>
<td>“Setting up automated error responses” on page 537</td>
</tr>
<tr>
<td>Posting messages about VWorks events, such as errors and deadlocks</td>
<td>“Setting up automatic online notification” on page 203</td>
</tr>
</tbody>
</table>
Setting up email notification

About email notification

You can specify that the VWorks software send you an email or text message when a run error occurs. Setting up email notification also enables bug reporting.

Alternatively, you can configure VWorks to post online messages on Twitter. For details, see “Setting up automatic online notification” on page 203.

Requirements

The following are required for the email notification to work:

• The VWorks computer must be connected to a network with internet access.
• The outgoing email server must be set up on the system's computer.

Work with your IT organization to meet these requirements.

Procedure

You can set up email notification during setup or the first time a protocol is run in the software. You do not need to set up email notification every time you run a protocol.

CAUTION The settings in the Options dialog box apply to all protocol runs. Always check the settings before you start a run.

To set up email notification:

1 In the VWorks window, select Tools > Options. The Options dialog box opens.
2. Scroll down to the **Email Setup** area, and then specify the following:

<table>
<thead>
<tr>
<th>Option or parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enable Email notification</td>
<td>The option that enables email communication from within the VWorks software. For example, you can report a bug from within the software by selecting Help > Report a Bug. The completed report is emailed to Agilent Technologies. Select the option to enable email communication. Clear the check box to disable email communication.</td>
</tr>
<tr>
<td>SMTP server name</td>
<td>The name of your outgoing email server. Contact your IT organization for details.</td>
</tr>
<tr>
<td>Authentication type</td>
<td>The information that might be required by the server. Contact your IT organization to obtain the information.</td>
</tr>
<tr>
<td>Authorized user</td>
<td>The user name used to access the email server. Contact your IT organization to obtain the information.</td>
</tr>
<tr>
<td>Password</td>
<td>The password that permits access to the email server. Contact your IT organization to obtain the information.</td>
</tr>
<tr>
<td>Send email from</td>
<td>The email address used in bug report emails to indicate the sender of the report. Agilent Technologies will reply to this email address when responding to the bug report.</td>
</tr>
<tr>
<td>Send email when an error occurs</td>
<td>The option to send an email or text message when an error occurs during the run.</td>
</tr>
</tbody>
</table>
3 Click **OK** to return to the VWorks window.

Related information

<table>
<thead>
<tr>
<th>For information about...</th>
<th>See...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Setting up online notification using Twitter</td>
<td>“Setting up automatic online notification” on page 203</td>
</tr>
<tr>
<td>Reporting problems</td>
<td>“Reporting problems” on page 545</td>
</tr>
<tr>
<td>Log file directory settings</td>
<td>“Setting log file directories” on page 191</td>
</tr>
<tr>
<td>General and view options</td>
<td>“Setting general and view options” on page 193</td>
</tr>
<tr>
<td>Error-handling options</td>
<td>“Setting error-handling options” on page 197</td>
</tr>
<tr>
<td>Starting a protocol run</td>
<td>“Starting the protocol run” on page 205</td>
</tr>
</tbody>
</table>
Setting up automatic online notification

About this topic

The VWorks software can automatically notify you about system status via email and online message postings. This topic describes how to configure online notification using Twitter. To configure VWorks email notification, see “Setting up email notification” on page 200.

About posting messages using an online service

The online posting feature can notify you about various system events, such as errors, deadlocks, and protocol and process starts and finishes. You can receive the online notification on any device where you can access a Twitter account. For example, suppose your lab has several workstations running protocols overnight. You could use a cell phone that has internet access to check on the run progress during a long commute home on the train.

The Twitter postings provide the flexibility to opt in or out at anytime. Whereas the email notification can be turned on or off only from within the VWorks software.

Before you start

The following are required for the online message posting to work:

- The VWorks computer must be connected to a network with internet access.
- The Twitter account must be set up ahead of time, and you must have the login information (user name and password) for the Twitter account.

Procedure

You can configure the online notification during setup or the first time a protocol is run in the software. You do not need to configure online notification every time you run a protocol.

CAUTION The settings for online posting apply to all protocol runs. Always check the settings before you start a run.

To configure automatic message posting:

1. In the VWorks window, choose Tools > Open Hooks Plugin for > Twitter.dll. The Twitter Setup dialog box opens.
2 Under **Login Info**, select **Enable Twitter communications**, and type the **Name** and **Password** for the Twitter account that you want to use.

3 Under **Options**, select either of the following options, or clear the check boxes if you choose not to use these options:
 - **Show postings in VWorks log**. If you want the postings to appear in the VWorks log, select this check box.
 - **Prepend identifier to all Twitter posts**. To add a prefix to the start of each posting, select this check box, and then type the prefix that you want to include.

 For example, if you have multiple systems posting messages to the same Twitter account, you can use the system name as a prefix.

4 Under **Messages To Post**, select the types of messages that the VWorks software should post to the Twitter account, for example, errors and deadlocks (defaults).

5 Click **OK** to return to the VWorks window.

You may want to perform a dry run of a short protocol to test the posting. For example, you can select Protocol starts as a message to post, run a protocol, and then go to the Twitter account to view the message.

IMPORTANT If the number of online postings exceeds the Twitter account's maximum for a given time period, no further VWorks messages can be posted until the limit is reset. In this case, the VWorks software adds an info message to the main log for each attempted posting.
Starting the protocol run

Before you start

CAUTION The instructions in this topic assume that the protocol is free of errors.

Before you start a run, make sure you review the protocol. To prepare for the run, you should:

- Find out what devices are used in the protocol and prepare them for operation. For example, you might need to load a roll of seal on the PlateLoc Sealer or install a pipette head on a Vertical Pipetting Station. See the device user guides for prerun-check and homing instructions.
- Find out what labware are used in the protocol and where they should be positioned before the run starts. For example, you might have to load labware into a stacking device.
- Make sure waste bins are empty and reservoirs are filled.
- Check the protocol for User Message tasks.
- If you are starting a runset, verify whether simultaneous runs should be allowed. You can view the setting for this rule in the Runset Manager tab. To change this protocol rule, see “Specifying protocol rules” on page 33.
About scheduling runs

When you start a run, you have the option of scheduling the protocol to run immediately or at a future date and time. In addition, you can specify that the protocol start while another is still running. Running multiple protocols simultaneously can maximize device use and throughput.

IMPORTANT You can schedule multiple protocols to run simultaneously if they all reference the same device file.

When you schedule multiple runs:
- You can start a run while existing protocols are already running or are scheduled to run.
- Protocols that are running simultaneously can share devices. The priority of device use is specified in the device selection area when you set the task parameters.
- You can manage a set of runs using the Runset Manager. For details, see “Managing runsets” on page 211.

Procedure

You can start a run if you have administrator, technician, or operator privileges.

To start a run:

1. In the VWorks window, turn off the simulation mode: On the toolbar, click **Simulation is on**. The button changes to **Simulation is off**.
Do one of the following:

- Click **Start** on the toolbar.
- If you have a runset open, view the scheduled start times in the **Runset Manager** tab. To change a protocol start time, double-click the protocol name. For details about runsets, see "Managing runsets" on page 211.

The Run Configuration Wizard dialog box opens.
The Run Configuration Wizard allows you to:

- Specify the number of times to run the protocol.
- Schedule the run to start. You can start the run:
 - As soon as possible
 - On a specific date and at a specific time
 - At a fixed time after a selected protocol starts so that the two protocols are running simultaneously
 - At a fixed time after a selected protocol run ends
- Set the priority of runs (if multiple protocols are scheduled).
- Specify the starting barcode (if any).
- Type notes about the protocol.

CAUTION If you select the *As soon as possible* option, the protocol can start to run immediately after you complete the configuration wizard. Before you click *Finish*, verify that the system is set up and the protocol is ready to run.

IMPORTANT You must have technician or administrator privileges to set priorities. If you have operator privileges, the runs you start will always have the lowest priorities and the Higher priority and Lower priority buttons will be disabled.

3 Follow the instructions in the wizard and click **Next** or **Finish**.

When you click **Finish**, the run starts if it is scheduled to run as soon as possible.

If this is the first run with the device file, and it is the only protocol running, the software confirms communication with all devices, and then the devices home. (If other protocols are already in progress, the software does not need to establish communication with the devices.)

When the run starts

After you start the run, the following occur:

- The **Pause all** button becomes available.
- If you selected the **Use robot to check for plates** option (Tools > Options dialog box), the robot moves to all teachpoints defined in the device file (except those associated with storage devices such as the Plate Hub Carousel, StoreX incubator, and Cytomat incubator) to make sure they are unoccupied. If the device contains more than one location, such as a Shuttle or a Microplate Centrifuge, the robot will check all possible locations in these devices. An error message displays if a position is occupied. Remove any labware from the positions. After you fix the error, click **Retry**.

- The software checks that the protocol you are starting is using the same device file as the other protocols that are already running. If it uses a different device file, an error message appears.

- The protocol instructions are performed.

- If User Message tasks are included in the protocol, the software prompts you to respond to them as they appear.

 If there are no User Message tasks to remind you to empty liquid waste containers and refill liquid source containers, set your own reminders using lab timers.

- If it is not already listed, the protocol appears in the Runset Manager tab.

- Log messages appear in the Main Log, Pipette Log, and Time Constraints Log tabs. The log messages are recorded in the log file that is stored in the location you specified in the Tools > Options dialog box.
Related information

For information about...

<table>
<thead>
<tr>
<th>Setting global options</th>
<th>See...</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• “Setting log file directories” on page 191</td>
</tr>
<tr>
<td></td>
<td>• “Setting general and view options” on page 193</td>
</tr>
<tr>
<td></td>
<td>• “Setting error-handling options” on page 197</td>
</tr>
<tr>
<td></td>
<td>• “Setting up email notification” on page 200</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Allowing or disallowing simultaneous runs</th>
<th>“Specifying protocol rules” on page 33</th>
</tr>
</thead>
<tbody>
<tr>
<td>Managing runsets</td>
<td>“Managing runsets” on page 211</td>
</tr>
<tr>
<td>Use robot to check for plates option</td>
<td>“Setting general and view options” on page 193</td>
</tr>
<tr>
<td>Setting teachpoints on a device</td>
<td>Device user guide</td>
</tr>
<tr>
<td>User Message tasks</td>
<td>• “User Message” on page 491</td>
</tr>
<tr>
<td></td>
<td>• “Using simple variables” on page 73</td>
</tr>
<tr>
<td>Monitoring the protocol run</td>
<td>“Monitoring the overall run progress” on page 222</td>
</tr>
<tr>
<td>Pausing a protocol run</td>
<td>“Pausing the run” on page 229</td>
</tr>
</tbody>
</table>
Managing runsets

About runsets and the Runset Manager

A runset is a collection of protocol runs that can be scheduled in advance to be performed without operator intervention. The following table provides an overview of how the Runset Manager works.

<table>
<thead>
<tr>
<th>Step</th>
<th>Task</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>You add the protocols to a runset and specify the schedule for each protocol, or you can open an existing runset.</td>
</tr>
</tbody>
</table>
| 2 | The Runset Manager determines the most efficient way to run the protocols based on the following:
 • The specified run start times.
 • Any specified run priorities.
 • Whether the protocols share the same device file.
 • Whether the protocol rules permit simultaneous runs. |
| 3 | The Runset Manager opens and compiles each protocol before running it the specified number of times. |
| 4 | The Runset Manager repeats step 3 for each protocol in the runset. |

The following figure shows the Runset Manager tab, which lists each protocol in the runset on a separate row.

Note: To show or hide the Runset Manager tab, choose View > Runset Manager.

Figure A runset displayed in the Runset Manager tab
The Runset Manager tab contains the following columns, which list the runset parameters for each protocol.

<table>
<thead>
<tr>
<th>Column name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protocol</td>
<td>The location and name of the protocol file.</td>
</tr>
<tr>
<td>Start</td>
<td>The scheduled start time of the protocol.</td>
</tr>
<tr>
<td>Simultaneous Runs Allowed</td>
<td>The protocol rule, set in the Protocol Options area, that specifies either:</td>
</tr>
<tr>
<td></td>
<td>• Yes (default). The Runset Manager can run the protocol while another protocol is running.</td>
</tr>
<tr>
<td></td>
<td>• No. The protocol cannot run simultaneously with another running protocol.</td>
</tr>
<tr>
<td>Runs</td>
<td>The number of times the protocol is scheduled to run.</td>
</tr>
<tr>
<td>Status</td>
<td>The status of the protocol:</td>
</tr>
<tr>
<td></td>
<td>• Scheduled. The protocol has a scheduled start time.</td>
</tr>
<tr>
<td></td>
<td>• Pending. The protocol is being prepared to run.</td>
</tr>
<tr>
<td></td>
<td>• Running. The protocol is currently running.</td>
</tr>
<tr>
<td></td>
<td>• Completed. The protocol run has finished.</td>
</tr>
<tr>
<td></td>
<td>• Expired. The protocol was scheduled to start at a time that has already past.</td>
</tr>
<tr>
<td></td>
<td>• Paused. The protocol run is paused.</td>
</tr>
<tr>
<td></td>
<td>• Aborting. The protocol is in the process of being aborted.</td>
</tr>
<tr>
<td></td>
<td>• Aborted. The protocol was aborted.</td>
</tr>
<tr>
<td></td>
<td>• No new plates. The protocol run is not delivering new microplates in the system.</td>
</tr>
<tr>
<td>Priority</td>
<td>The schedule priority of the protocol relative to the others in the list, where 1 is the first priority.</td>
</tr>
<tr>
<td>Protocol Notes</td>
<td>Any notes about the protocol that were entered in the Run Configuration Wizard.</td>
</tr>
</tbody>
</table>

Understanding how the run sequence is determined

The Runset Manager determines the run sequence of the protocols based on:

- *Scheduled start times*
 - As soon as possible *(default)*
 - On a specific date and at a specific time
 - Dependencies on other protocols:
 - At a fixed time after a selected protocol starts
 - At a fixed time after a selected protocol run ends
 The Runset Manager handles any protocols with such dependencies as a unit.
• **Whether the protocols have run priorities.** If the protocols in a runset have conflicting run times, the Runset Manager uses the priority settings to resolve which protocol to schedule before the others.

• **Whether simultaneous runs are allowed.** The Runset Manager may reschedule protocol start times if the protocol rules allow simultaneous runs. By default, protocols allow simultaneous runs. You can change this rule for each protocol in the Protocol Options area. See “Specifying protocol rules” on page 33.

The following scenarios provide a few examples.

Runset scenario 1. Start times with dependencies on other protocols

The Runset Manager processes the protocols in the set that have start time dependencies on one another as a unit. For example, assume that a runset includes the following four protocols, each of which can be completed in 10 minutes. The Runset Manager would change the run sequence as follows:

Run sequence: A, C, D, B

<table>
<thead>
<tr>
<th>Protocol</th>
<th>Device file</th>
<th>Start time</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1</td>
<td>1:00 pm</td>
</tr>
<tr>
<td>B</td>
<td>2</td>
<td>1:15 pm</td>
</tr>
<tr>
<td>C</td>
<td>1</td>
<td>30 minutes after protocol A ends</td>
</tr>
<tr>
<td>D</td>
<td>1</td>
<td>60 min. after protocol A ends</td>
</tr>
</tbody>
</table>

Even though no other protocols are running at 1:15 pm, the Runset Manager will reschedule the protocol B start time because of the start time dependencies of protocols C and D on protocol A.

Runset scenario 2. Start times with specific dates and times

If you change the start time of the protocols from scenario 1 to the specific start times in the following table, the run sequence would be as follows:

Run sequence: A, B, C, D

<table>
<thead>
<tr>
<th>Protocol</th>
<th>Device file</th>
<th>Start time</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1</td>
<td>1:00 pm</td>
</tr>
<tr>
<td>B</td>
<td>2</td>
<td>1:15 pm</td>
</tr>
<tr>
<td>C</td>
<td>1</td>
<td>1:30 pm</td>
</tr>
<tr>
<td>D</td>
<td>1</td>
<td>1:45 pm</td>
</tr>
</tbody>
</table>

Each protocol’s start time is independent of the others in the set, so the Runset Manager processes each protocol individually. Although protocol B uses a different device file than the others, no other protocol is running at 1:15 pm, so the sequence is unchanged.

Scenario 3. As-soon-as-possible start times

If you change the start times of the protocols from scenario 1 to the as-soon-as-possible (ASAP) option, the run sequence would be as follows:

Run sequence: A, C, D, B
Because protocol B does not use the same device file, the Runset Manager postpones the start until after completing the runs that share a common device file.

Additionally, if a protocol cannot be started for some reason, the Runset Manager can dynamically adjust the timing of the protocols that have as-soon-as-possible start times. For example, if protocol A cannot be started, the Runset Manager could change the protocol A start to depend on the protocol B end. If protocol A still fails to start after protocol B ends, the Runset Manager could change the protocol A start to depend on the protocol C end. If additional protocols were in the set, the start time could continue to be adjusted in this way until protocol A could be started successfully.

Simultaneous runs

If simultaneous runs were allowed in the previous runset scenarios:
- *Scenarios 1 and 2.* The run sequences would not change because of the specified start times and dependencies.
- *Scenario 3.* The run sequence could change to ACD,B. The protocols that share device file 1 would run simultaneously. After the ACD runs ended, the Runset Manager would initialize the device file 2 devices and start protocol B.

Creating a runset

To create a runset, you must have administrator or technician privileges.

To create a runset:

1. Choose **File > New > Runset.**

 Note: If the Runset Manager tab is not visible, choose **View > Runset Manager.**

2. Add protocols to the runset using one of the methods in “Adding protocols to a runset” on page 216.

 IMPORTANT Simultaneously running protocols must specify the same static or configured labware.

3. Select **File > Save Runset.**

4. In the **Save As** dialog box, specify the file location and file name for the .rst file, and then click **Save.**

 If any of the protocols in the runset have the **As soon as possible** designation, proceed to step 5. Otherwise, the software saves the runset.
5 In the **Save “As soon as possible” Runs** dialog box, verify that all the protocols with the **As soon as possible** setting can be run as soon as possible upon reopening the runset.

To change the **Next Start** setting, click the field in the column, and select **Fixed date and time**. Upon reopening the runset, the operator will be prompted to provide a new start time.

Click **OK** to save the runset.

Alternatively, you can simply add protocols to the runset using one of the methods in “Adding protocols to a runset” on page 216, and then choose **File > Save Runset As**.

If you want to export a runset for use on another computer, see “Exporting and importing protocols and associated components” on page 512.
Adding protocols to a runset

CAUTION To avoid potential hardware crashes, verify whether each protocol that you add can run simultaneously with the other protocols in the runset. To change the protocol rules, see “Specifying protocol rules” on page 33.

IMPORTANT Simultaneously running protocols must specify the same static or configured labware.

CAUTION If you select the As soon as possible option, the protocol can start to run immediately after you complete the configuration wizard. Before you click Finish, verify that the system is set up and the protocol is ready to run.

You can add a protocol to a runset in the following ways.
- Use the Add run button in the Runset Manager tab.
- Drag the protocol file name from the Workspace tab to the Runset Manager tab.
- Start a protocol run. See “Starting the protocol run” on page 205.

To add protocols using the Add run button:

1. In the Runset Manager tab, click Add run.

2. When the Open a protocol file dialog box appears, select the protocol (.pro), and then click Open. The Run Configuration Wizard appears.

3. In the Run Configuration Wizard:
 - Specify the number of times to run the protocol.
 - Schedule the run start times.
 - Set the priority of runs (if multiple protocols are scheduled).
• Specify the starting barcode (if any).
• Optional. Type notes about the protocol.

4 Repeat steps 1 to 3 for each protocol you want to add.

To add protocols using the drag-and-drop feature:

1 Drag the file name of the protocol from the Workspace tab to the Runset Manager tab.

![Image of VWorks interface showing drag-and-drop feature]

Note: To add more protocols to the Workspace tab, see “Opening a protocol” on page 189.

2 In the Run Configuration Wizard:
 • Specify the number of times to run the protocol.
 • Schedule the run start time.
 • Set the priority of runs (if multiple protocols are scheduled).
 • Specify the starting barcode (if any).
 • Optional. Type notes about the protocol.

3 Repeat steps 1 and 2 for each protocol you want to add.

Opening runsets

IMPORTANT Verify whether the protocols in the runset can run simultaneously with other protocols (default). To change the protocol rules, “Allow this protocol to execute while other protocols are running” on page 33.

If you want to import a runset, see “Exporting and importing protocols and associated components” on page 512.
To open a runset:

1. Optional. To simulate the protocols in the runset before starting the actual runs, turn on the simulation mode. To turn on simulation, click **Simulation is off** on the toolbar. The button changes to **Simulation is on**.

2. Select **File > Open**. The Open dialog box appears.

3. Select the .rst file, and then click **Open**.

IMPORTANT If a protocol in the runset is scheduled to run as soon as possible, a message warns you that the run will start immediately when you open the runset. Make sure that the system is ready for the run to start before you continue.

Filtering the list of protocols displayed

You can apply a filter to display a subset of the protocols in the runset.

To filter the list of runs displayed in the Runset Manager tab:

1. Right-click anywhere in the **Runset Manager** tab.

2. In the shortcut menu that appears, select the desired filter:

<table>
<thead>
<tr>
<th>Filter command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Show all</td>
<td>Displays all protocols in the runset.</td>
</tr>
<tr>
<td>Filter by row</td>
<td>Displays the protocols that meet the criteria you select. For example, you can display all protocols that are run 10 times.</td>
</tr>
<tr>
<td>Filter by column</td>
<td>Displays the protocols that meet the criteria you select.</td>
</tr>
<tr>
<td>Use last filter</td>
<td>Displays the protocols that meet the last filter criteria you selected.</td>
</tr>
</tbody>
</table>

Changing run priorities

To change the priority of the protocol runs:

1. In the **Runset Manager** tab, right-click anywhere in the protocol table.

2. In the shortcut menu that appears, select **Adjust run priority**. The Run Configuration Wizard dialog box appears.
3 Select the protocol whose priority you want to change, and then click **Higher Priority** to move it up the list, or click **Lower Priority** to move it down the list.

4 Click **Finish**. The Priority column shows the change in priority.

Aborting a protocol in a runset

If you abort a protocol in a runset, the software also aborts any other protocols that have time dependencies associated with the aborted protocol.

To abort a protocol in a runset:

1 In the **Runset Manager** tab, right-click the protocol name, and then choose **Abort this run** from the shortcut menu.

 - **If the protocol is scheduled but has not yet started.** The software aborts the protocol and any other protocols that have dependencies on the aborted protocol. The Status column in the Runset Manager tab shows the time at which the protocols were aborted.

 - **If the protocol has already started.** The software aborts the protocol. The Status column in the Runset Manager tab shows the time at which the protocol was aborted.

 - **If you abort a running protocol and subsequent runs are scheduled.** The Affected Plates dialog box appears and displays the status of all the labware in the selected protocol.

 CAUTION Before you click OK, proceed to step 2. Manually remove all the labware associated with the aborted protocol to ensure that you avoid a potential hardware crash.
2 Manually remove the physical labware, which is associated with the aborted protocol, from the system.

3 In the **Affected Plates** dialog box, click **OK**. The Scheduler Paused dialog box appears, and the Status column in the Runset Manager tab indicates that the protocol is aborting.

4 In the **Scheduler Paused** dialog box, click **Abort process**. The Abort Process dialog box appears.

5 In the **Abort process** dialog box, choose one of the following options, and then click **OK**:
 - Abort the remaining protocols in the runset
• Only abort the runset protocols that are dependent on the selected protocol
• Keep the subsequent protocols as scheduled
The Runset Manager updates the Status column.

Note: For details on the other options in the Scheduler Paused dialog box, see “Pausing the run” on page 229.

6 Verify that the remaining protocols in the runset have appropriate start times.

Rescheduling a protocol in a runset

To reschedule a protocol in a runset:
1 In the Runset Manager tab, right-click the protocol name, and choose Adjust run start time and dependencies from the shortcut menu.
2 In the Run Configuration Wizard, reset the protocol start time. The software automatically resets any other protocols that have time dependencies associated with the rescheduled protocol.

Deleting protocols in a runset

You can use the following procedure to delete a protocol that is not currently running. To abort a protocol that is in progress, see “Aborting a protocol in a runset” on page 219.

To delete a protocol from a runset:
1 In the Runset Manager tab, select the protocol.
2 Click Delete run. If no other protocols have dependencies on the selected protocol, the software removes the protocol from the list.

 If other protocols in the runset have start time dependencies on the selected protocol, a message appears and warns you that continuing will abort the dependent protocols. After the protocol is deleted, adjust the start times of the remaining protocols.

Related information

<table>
<thead>
<tr>
<th>For information about...</th>
<th>See...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allowing or disallowing simultaneous runs</td>
<td>“Specifying protocol rules” on page 33</td>
</tr>
<tr>
<td>Starting a protocol</td>
<td>“Starting the protocol run” on page 205</td>
</tr>
<tr>
<td>Monitoring runs</td>
<td>“Monitoring the overall run progress” on page 222</td>
</tr>
<tr>
<td>Pausing runs</td>
<td>“Pausing the run” on page 229</td>
</tr>
</tbody>
</table>
Monitoring the overall run progress

Procedure

To check the overall run progress:
In the VWorks window, select View > Progress. The Progress tab appears at the bottom of the window and displays the following:

<table>
<thead>
<tr>
<th>Area or table</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall progress</td>
<td>Displays a progress bar to indicate how far along the system is in all running protocols.</td>
</tr>
<tr>
<td>Running protocols</td>
<td>Contains the list of protocols that are currently running.</td>
</tr>
<tr>
<td></td>
<td>You can select a protocol name to display the progress of all processes in the protocol, or you can select a specific process and display its progress.</td>
</tr>
<tr>
<td>Display</td>
<td>Based on your selection in the Overall progress area, shows an aspect of the overall run progress.</td>
</tr>
</tbody>
</table>
Tracking the run progress of instances or devices

About this topic

This topic explains the following:

- “Displaying the run progress in the Gantt Chart format” on page 223
- “Displaying the progress by plate instance” on page 224
- “Displaying the progress by device” on page 226
- “Zooming the display” on page 226
- “Filtering the displayed information” on page 227
- “Opening the System State Editor” on page 228

Displaying the run progress in the Gantt Chart format

While the protocol is running, you can visually monitor the progress in real-time in the Gantt Chart dialog box. In addition, you have the option of displaying the progress by instance or device.

Run information displayed in the Gantt Chart format enables you to monitor resource usage during the run. Too much spacing (time) between tasks might indicate poor device usage or potential bottlenecks. After you examine the run information, you can:

- Determine the causes of bottlenecks and remove them.
- Add devices or try to run multiple protocols simultaneously to improve performance and throughput.
To visually track the progress of labware instances or devices:

In the VWorks window, select **Tools > Gantt Charts** while a run is in progress, after a run is finished, or when a run has a deadlock error. The Gantt Chart dialog box opens.

Displaying the progress by plate instance

To display the progress by individual plate instances:

In the **Gantt Chart** dialog box, click **Instance view**.
The Instance View presents a graph of the process plate instances (vertical axis) as a function of time (horizontal axis). Each row represents the timeline of a process plate instance. During a run, a row displays the tasks that are performed on a plate instance. The length of the task block represents the duration of the task. The actual duration of each task is displayed on the task block.

Note: A task that does not involve a process plate is not displayed.

If an error occurred during the run, you can use the Instance view to determine the plate instance at which the error occurred. If a deadlock occurred or if the run was aborted, a red X symbol appears on the task at which it occurred.

From within the Instance view, you can double-click a task to edit its parameters.

To edit a selected task parameter within the Instance view:

Right-click a task in the graph, and then select **Edit Parameter**. The software minimizes the Gantt Chart dialog box and displays the task within the protocol so that you can edit the parameters.
Displaying the progress by device

To display the progress by device:

In the Gantt Chart dialog box, click Device view.

The Device View presents a graph of devices (vertical axis) as a function of time (horizontal axis). A row represents the timeline of a device. During a run, each row expands and lists the tasks that the device is performing. The process plate on which the task is performed is shown on the task timeline. The length of the process-plate block represents the duration of the task on the plate.

To optimize the run, look for wide spacing between tasks and determine whether adding devices to the run can improve the throughput. Ideally, the spacing between the tasks should be kept to a minimum.

Zooming the display

You can zoom in or zoom out to change the horizontal (time) scale of the graphs. Each time you zoom in, you are reducing the time increments displayed. Each time you zoom out, you are increasing the time increments displayed.

For example, if the current scale is in increments of 4 seconds, zooming in reduces the increments to 2 seconds. Zooming out increases the increments to 8 seconds.

Note: Zooming has no affect on the scale of the vertical-axis.

To zoom in or zoom out of the current view:

Click Zoom in or Zoom out.
Filtering the displayed information

While in the instance or device view, you can filter the information displayed to focus on areas of interest. For example, you can choose to display the information from a single device instead of all devices in the run. The filter selections are at the bottom of the Gantt Chart dialog box.

To filter the information displayed in the Gantt Chart dialog box:

1. Select one of the following from the Device list:

<table>
<thead>
<tr>
<th>Selection</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>All devices</td>
<td>Displays all devices used in the protocol.</td>
</tr>
<tr>
<td>Selected devices</td>
<td>Allows you to specify which devices to display in the dialog box.</td>
</tr>
</tbody>
</table>

2. Select one of the following from the Plate Instances list:

<table>
<thead>
<tr>
<th>Selection</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>All plate instances</td>
<td>Displays all plate instances.</td>
</tr>
<tr>
<td>Completed plate instances</td>
<td>Displays only plate instances that have finished processing.</td>
</tr>
<tr>
<td>Plate instances in progress</td>
<td>Displays only plate instances that are currently in progress.</td>
</tr>
</tbody>
</table>

3. Select one of the following from the Process Plate list:

<table>
<thead>
<tr>
<th>Selection</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>All processes</td>
<td>Displays all plate processes.</td>
</tr>
<tr>
<td>Completed processes</td>
<td>Displays only plate processes that are finished.</td>
</tr>
</tbody>
</table>
6 Running a protocol
Tracking the run progress of instances or devices

Opening the System State Editor

You can open the System State Editor to recover from a deadlock error.

To open the System State Editor:
In the Gantt Chart dialog box, click System State Editor. The System State Editor dialog box opens.

For information about deadlock recovery and the System State Editor, see “Recovering from deadlocks” on page 532.

Note: If you want the System State Editor dialog box to open automatically whenever a deadlock occurs, choose Tools > Options. Under Error Handling in the Options dialog box, choose Deadlock behavior > Show the System State Editor. For more information, see “Recovering from deadlocks” on page 532.

Exporting and importing Gantt charts

To export the run information in the Gantt format:
1 In the Gantt Chart dialog box, click Export to file. The Save As dialog box opens.
2 Select the folder in which you want to save the file, and type a name for the file, and then click Save. A .gnt file is created in the folder you specified.

To import the run information in the Gantt format:
1 In the Gantt Chart dialog box, click Import from file. The Open dialog box opens.
2 Select the .gnt file, and then click Open. The run information appears in the Gantt Chart dialog box.

Related information

<table>
<thead>
<tr>
<th>Selection</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Processes in progress</td>
<td>Displays only plate processes that are currently in progress.</td>
</tr>
<tr>
<td>Selected processes</td>
<td>Displays only the plate processes that you have selected.</td>
</tr>
</tbody>
</table>

For information about... See...
The System State Editor “About the System State Editor” on page 532
Monitoring the overall run progress “Monitoring the overall run progress” on page 222
Viewing logs “Viewing logs” on page 516
Pausing the run

Pausing all runs in progress

You can pause protocol runs that are progress, and then continue the runs when you are ready. Pause runs when you want to:

- Add or remove labware
- Clean up a spill
- Add buffer to a reservoir
- Diagnose a problem
- Perform an operation that is not part of the protocol

If you need to stop a run in an emergency, use the hardware Emergency Stop button. See the device user guide for the procedure.

To pause all protocol runs currently in progress:

1. In the VWorks window, click Pause all on the toolbar.

 ![Scheduler Paused dialog box]

 The Scheduler Paused dialog box opens.

2. If you moved or removed labware from the system, or if you fixed a device problem so that locations on the device are now available, select Tools > System State Editor. Change the process plate status and the device location status. For instructions, see “About the System State Editor” on page 532.

3. In the SchedulerPaused dialog box, select one of the following commands:

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Continue</td>
<td>Resumes the protocol run.</td>
</tr>
</tbody>
</table>

 IMPORTANT When you pause one or more runs, the Orbital Shaking Station stops. Before you continue the run, open Teleshake Diagnostics to restart the shaking.
Pausing one protocol run

To pause one protocol run in the Runset Manager:

1. In the **Runset Manager** tab, right-click the protocol you want to pause.
2. In the shortcut menu that appears, select **Pause this run**. The selected protocol is paused, and its status is shown in the Runset Manager.

Alternatively, you can select **Temporarily prevent new plates from entering system** in the shortcut menu to allow other runs to resume. Processes that are currently in progress will finish. No new labware will be delivered into the system.

Related information

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
</table>
| Diagnostics | Allows you to select the device diagnostic software to open and troubleshoot a problem or perform a manual operation.
Note: When you close the diagnostics software dialog box, the protocol run will resume. |
| Abort process | Aborts the current command or task in the run. Select Abort if you have determined that the protocol run is not recoverable. |
| Finish, no new plates | Resumes the protocol run. Processes that are currently in progress will finish. However, no new labware will be delivered into the system. |

For information about...
See...

- The System State Editor
 “About the System State Editor” on page 532
- Viewing logs
 “Viewing logs” on page 516
- Monitoring the protocol run
 “Monitoring the overall run progress” on page 222
Stopping the run

If you want to stop a run and later continue the run, use one of the pause methods described in “Pausing the run” on page 229.

If you need to stop a run in an emergency, use the hardware Emergency Stop button. See the device user guide for the procedure.

CAUTION You cannot resume a protocol run after you press the hardware Emergency Stop button. To recover the system after an emergency stop, see the device user guide.

Related information

<table>
<thead>
<tr>
<th>For information about...</th>
<th>See...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pausing runs</td>
<td>“Pausing the run” on page 229</td>
</tr>
<tr>
<td>Starting runs</td>
<td>“Starting the protocol run” on page 205</td>
</tr>
<tr>
<td>Managing runsets</td>
<td>“Managing runsets” on page 211</td>
</tr>
<tr>
<td>Monitoring runs</td>
<td>“Monitoring the overall run progress” on page 222</td>
</tr>
</tbody>
</table>
6 Running a protocol

Stopping the run
7 Setting parameters for I/O-handling tasks

This chapter contains the following topics:
- “Digital Output” on page 234
- “Wait for Input” on page 237
Digital Output

Description

The Digital Output task () changes the state of a digital signal. For example, you can use the task to turn on, turn off, open, or close the following:

- Alarm
- UV lamp
- Vacuum pump
- Ventilation fan
- Waste bin door

You can also specify the length of time to leave the digital signal in the new state.

The digital signals you can turn on or off are configured in BioCel I/O Interface Diagnostics or equivalent I/O device Diagnostics. For details, see “Managing digital signals” on page 555 or see the BioCel System User Guide.

<table>
<thead>
<tr>
<th>Task is available for...</th>
<th>Task is available in...</th>
</tr>
</thead>
<tbody>
<tr>
<td>BioCel I/O Interface (or equivalent device)</td>
<td>Startup Protocol</td>
</tr>
<tr>
<td></td>
<td>Main Protocol</td>
</tr>
<tr>
<td></td>
<td>Cleanup Protocol</td>
</tr>
</tbody>
</table>

Task parameters

After adding the Digital Output task at the desired point in the protocol, set the following parameters in the Task Parameters area:
Setting parameters for I/O-handling tasks

Digital Output

Example 1: Turn on a ventilation fan while reagent is dispensed

Goal
The ventilation fan must be on while a particular reagent is being dispensed on the Bravo Platform.

Implementation
Add a Digital Output task before and after the Bravo Subprocess task that contains the dispensing subroutine. The first Digital Output task (Set digital output) turns on the fan. The second Digital Output task (Clear digital output) turns off the fan.

Parameter Description

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Digital output name</td>
<td>The name of the item whose state you want to change. Select from the list of names. The names are set up in the BioCel I/O Interface Diagnostics.</td>
</tr>
<tr>
<td>On/off</td>
<td>The new state of the item. Select On or Off. When you select On, the task icon changes to Set Digital Output. When you select Off, the task icon changes to Clear Digital Output.</td>
</tr>
<tr>
<td>Wait for time</td>
<td>The option to turn on or turn off the selected item and wait the specified duration before advancing to the next task. If you select the option, make sure you add another Digital Output task to reverse the state of the item at the desired point in the protocol. You must also select this option in the second task. If you do not select the option, the task will turn on or off the selected item, and then advance to the next task while the item is in the new state. If you specified duration, the item will reverse to its previous state after the duration ends.</td>
</tr>
<tr>
<td>Duration of on/off (s)</td>
<td>The length of time, in seconds, the item should remain in the new state. For example, if you want to leave the UV lamp on for 15 seconds, type 15. At the end of the specified duration, the item reverses to its previous state. If you specify a duration, you do not need to add a second Digital Output task to reverse the state. If Wait for time is selected, this is the length of time, in seconds, the task waits before advancing to the next task.</td>
</tr>
</tbody>
</table>
The task parameters for the digital output tasks are:

Example 2: Turn on a ventilation fan for 15 seconds

Goal
The ventilation fan must be on for 15 seconds while a particular reagent is being dispensed on the Bravo Platform.

Implementation
Add a Digital Output task before the Bravo Subprocess task that contains the dispensing subroutine. The Digital Output task (Set digital output) turns on the fan for 15 seconds. A second Digital Output task (Clear digital output) is not necessary.

The task parameters for the Digital Output task are:

Related information

<table>
<thead>
<tr>
<th>For information about...</th>
<th>See...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adding devices</td>
<td>• “Adding devices” on page 25</td>
</tr>
<tr>
<td></td>
<td>• BioCel System User Guide</td>
</tr>
<tr>
<td>Adding tasks in a protocol</td>
<td>“Adding and deleting tasks” on page 51</td>
</tr>
<tr>
<td>Wait for Input task</td>
<td>“Wait for Input” on page 237</td>
</tr>
</tbody>
</table>
Setting parameters for I/O-handling tasks

Wait for Input

Description

The Wait for Input task requires that one or more conditions are met before starting the next task in the protocol. For example, you can require that the system environment reach a certain temperature and humidity before the Main Protocol starts.

Sensors that detect the fluid level, pressure, or other conditions are configured in the BioCel I/O Interface Diagnostics. For information about configuring the BioCel I/O Interface device, see the BioCel System User Guide.

Task Parameters

After adding the Wait for Input task at the desired point in the protocol, set the following parameters in the Task Parameters area:

- Digital
- Analog

For information about... See...
BioCel I/O Interface Diagnostics BioCel System User Guide
7 Setting parameters for I/O-handling tasks

Wait for Input

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input name</td>
<td>The name of the condition you want to check. Select from the list of condition names. You can select either a digital input or an analog input condition. The names are set up in the BioCel I/O Interface Diagnostics.</td>
</tr>
<tr>
<td>On/Off</td>
<td>The new state of the item. This parameter appears only if you select a digital input condition.</td>
</tr>
<tr>
<td>Wait for</td>
<td>The condition to be met:</td>
</tr>
<tr>
<td></td>
<td>• Exactly</td>
</tr>
<tr>
<td></td>
<td>• A range</td>
</tr>
<tr>
<td></td>
<td>• At least</td>
</tr>
<tr>
<td></td>
<td>• At most</td>
</tr>
<tr>
<td></td>
<td>This parameter appears only if you select an analog input condition.</td>
</tr>
<tr>
<td>Min or exact value</td>
<td>The minimum value or the exact value of the condition. Examples:</td>
</tr>
<tr>
<td></td>
<td>• If you want to specify an exact value of 50, you can type 50 in this field.</td>
</tr>
<tr>
<td></td>
<td>• If you want to specify a minimum (at least) value of 100, type 100 in this field.</td>
</tr>
<tr>
<td></td>
<td>• If you want to specify a range such as 90 to 100, type 90 in this field, and then type 100 in the Max value field.</td>
</tr>
<tr>
<td></td>
<td>This parameter appears only if you select an analog input condition.</td>
</tr>
<tr>
<td>Max value</td>
<td>The maximum value of the condition. Examples:</td>
</tr>
<tr>
<td></td>
<td>• If you want to specify a maximum (at most) value of 110, type 110 in this field.</td>
</tr>
<tr>
<td></td>
<td>• If you want to specify a range such as 90 to 100, type 90 in the Min or exact value field, and then type 100 in this field.</td>
</tr>
<tr>
<td></td>
<td>This parameter appears only if you select an analog input condition.</td>
</tr>
<tr>
<td>Timeout (s)</td>
<td>The length of time, in seconds, the software should wait for the condition to be met before taking the action you specify in the On timeout field.</td>
</tr>
<tr>
<td></td>
<td>Note: 0 means wait indefinitely.</td>
</tr>
</tbody>
</table>
Example

Goal
The humidity within the system chamber must be at least 65% RH before the protocol run can start. The humidity should not exceed 75% RH. The software will wait indefinitely for the condition to be satisfied.

Implementation
Configure the BioCel I/O Interface device to include a humidity signal channel (in this example, an analog input channel). Add a Wait for Input task in the Startup Protocol or at the beginning of the Main Protocol.

The task parameters for the Wait for Input task are:

Related information

For information about...

adding devices
adding tasks in a protocol
digital output task
BioCel I/O Interface Diagnostics

See...

“Adding devices” on page 25
“Adding and deleting tasks” on page 51
“Digital Output” on page 234

BioCel System User Guide
7 Setting parameters for I/O-handling tasks
Wait for Input
8
Setting parameters for microplate-handling tasks

This chapter contains the following topics:
- “Centrifuge Process” on page 242
- “Configure Static Labware” on page 250
- “Delid” on page 252
- “Dismount” on page 256
- “Incubate” on page 258
- “Mount” on page 262
- “Move to Location (Bravo)” on page 264
- “Place Plate” on page 266
- “Pierce Plate (Seal Piercer)” on page 269
- “Print and Apply” on page 273
- “Relid” on page 288
- “Reserve Location” on page 292
- “Rotate Stage (Rotator)” on page 294
- “Rotate Stage (Microplate Labeler)” on page 296
- “Seal (PlateLoc)” on page 298
- “Waste” on page 301
Centrifuge Process

Description

The Centrifuge Process task for the Centrifuge and the Centrifuge with Loader indicates the start of a protocol subroutine that employs the Microplate Centrifuge (or Centrifuge). Within the subprocess, the software automatically adds the task to spin microplates according to the task parameter settings.

One microplate with a counterweight or two microplates can be spun at one time. Counterweights can be placed manually or robotically.

<table>
<thead>
<tr>
<th>Task is available for...</th>
<th>Task is available in...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Centrifuge, or Centrifuge with Loader</td>
<td>Main Protocol</td>
</tr>
</tbody>
</table>

Task parameters

You set parameters for:

- **Centrifuge Process.** Contains the counterweight position information.
- **Centrifuge task.** Contains the spin parameters and counterweight selections.

Centrifuge Process

IMPORTANT For BioCel System protocols, you can optimize the placement of microplates in the Microplate Centrifuge by adding a Place Plate (to platepad) task between two consecutive Centrifuge Process tasks or between an Unload and Centrifuge Process task.

After you add the Centrifuge Process task (subprocess) at the desired point in the protocol, select the subprocess icon and set the following parameters in the **Task Parameters** area:
Setting parameters for microplate-handling tasks

Centrifuge Process

When you add the Centrifuge Process task (subprocess) at the desired point in the protocol, the Centrifuge task is automatically added. Select the Centrifuge task and set the following parameters in the **Task Parameters** area:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sub-process name</td>
<td>The name of the subprocess. Select from the list of available subprocesses currently in the protocol.</td>
</tr>
<tr>
<td>Display confirmation</td>
<td>The option to display a message at the beginning of the protocol run to remind you to verify the physical locations of the labware match what you specified in the software.</td>
</tr>
</tbody>
</table>
| Bucket 1/Bucket 2 | The counterweight you want to use in the bucket location. You can select from the list of labware for either Bucket 1 or Bucket 2. The counterweight selection depends on the counterweight mode you select in the Centrifuge task:
 - If you are using the **Interchangeable counterweight** or **Use 2 protocol plates** counterweight mode, select `<use default>`.
 - If you are using the **Fixed Counterweight** mode, select a labware for either Bucket 1 or Bucket 2.
 For a description of the counterweight modes, see “Centrifuge” on page 243. |
| Stage | The stage at the Centrifuge Loader. |

Centrifuge

When you add the Centrifuge Process task (subprocess) at the desired point in the protocol, the Centrifuge task is automatically added. Select the Centrifuge task and set the following parameters in the **Task Parameters** area:
Parameter Description

Plate to spin, plate
The microplate that will be spun.
Note: Select the counterweight microplate only if you plan to use the **Fixed counterweight** mode.

Plate to spin, location
The device location to use. For example, you can select a centrifuge bucket.
<auto-select> automatically places the labware at the first-available or appropriate location for the task.
Make sure the **Plate to spin, location** selection does not conflict with the **Counterweight, location** selection.

Relative centrifugal force (0.1–1006.2 × g)
The rotor velocity, as a multiple of gravity.

Acceleration (1–100%)
The rate of centrifugation, as a percent of maximum acceleration.

Braking (1–100%)
The deceleration of the centrifuge, as a percent of maximum deceleration.

Timer mode
How the specified spin time is implemented:
- **Total time.** The specified spin time includes acceleration and braking.
- **Time at speed.** The specified spin time does not include acceleration and braking.

Time to spin
The length of time to spin the microplates in the desired mode.
Setting parameters for microplate-handling tasks

Counterweight Process

Counterweight mode

The counterweight method used. Select one of the following:

- **Fixed counterweight.** The counterweight is manually placed in the centrifuge before starting the run. The counterweight remains in the centrifuge during the entire run. You must remember to place the counterweight in the device before the run and remove it after the run is finished.

IMPORTANT Be sure to select the counterweight in the Centrifuge Process Task Parameters area. See “Task parameters” on page 242.

- **Interchangeable counterweight.** The counterweight is on a platepad or Plate Hub Carousel. The robot will move it into the centrifuge during the run and return it to the platepad when the run is finished. If you select this mode, use the Counterweight, plate parameter to select the counterweight you want to use.

- **Use 2 protocol plates.** Instead of a counterweight, a second process plate is used during the run.

 You must process two or more microplates in this mode. During the run, the robot places the first two microplates into the centrifuge. After spinning, the robot replaces the two microplates with the next pair, and so on. If you are processing an odd number of microplates, and three microplates are remaining, the robot will not remove the second from the last microplate so that the last microplate is paired.

 If you are processing an odd number of microplates, and:
 - A process contains only one Centrifuge Process task and it uses this counterweight mode, set the Simultaneous plate parameter to 2.
 - A process contains two or more Centrifuge Process tasks, and they all use this counterweight mode, set the Simultaneous plates parameter to 3 or greater.
Setting parameters for microplate-handling tasks

Centrifuge Process

Device selection

You must select a device for Centrifuge Process tasks. If you have multiple devices of the same type, you can:

- Prioritize the list of devices for the task. If the first device in the list is busy, the software will automatically use the next device in the list. If all of the devices in the list are busy, the task that needs the device will wait until one becomes available.

- Set up a backup pool. If the primary device encounters an error, the software will automatically use the next device in the list. However, if all of the devices in the list are in an error state, the software will automatically use the device in the backup pool.

IMPORTANT The multiple devices must have the same setup and configuration.

After adding the Centrifuge Process task at the desired point in the protocol, select the task, and then click **Device Selection** in the **Task Parameters** area.

To select a device for the task:

1. Double-click the desired device in the **Devices available to perform task** area to move it to the **Devices involved in task** area. If you have multiple devices of the same type, you can move them to the **Devices involved in task** area.

2. If you have multiple devices in the **Devices involved in task** area, select a device, and then click **Use earlier** or **Use later** to prioritize it.

3. **Optional.** Select backup devices to use in case the primary device in the **Devices involved in task** area encounters an error.

 a. Select **Devices in backup pool**.

Parameter Description

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
</table>
| Counterweight, plate | The microplate or labware you want to use as the counterweight. This parameter is only available if you selected the **Interchangeable counterweight** method. If the list of counterweights do not appear, make sure:
 - You have added a device such as the Platepad for the counterweight. See “Adding devices” on page 25 for instructions.
 - You have configured the labware correctly. See “Configuring labware” on page 38 for instructions. |
| Counterweight, location | The device location to use. For example, you can select a centrifuge bucket.
 <auto-select> automatically places the labware at the first-available or appropriate location for the task.
 Make sure the **Counterweight, location** selection does not conflict with the **Plate to spin, location** selection. |
b Drag one or more devices from the **Devices available to perform task** area to the **Devices in backup pool** area.

c If you have multiple devices in the backup pool, select a device in the **Devices in backup pool** area, and then click **Use earlier** or **Use later** to prioritize it.

Subprocess order

If more than one subprocess uses the same configured labware, and the subprocesses are in different protocol processes, you can specify the sequence in which the subprocesses will be performed.

To specify the sequence in which the subprocesses will be performed on the same configured labware:

1 In the protocol process, select the sub-process that contains the task that uses the configured labware.

In the following example, the Spin Plate 1 process is selected.
2 In the **Task Parameters** area, click **Sub Process Order**.

3 In the **Sub Process Order** area, double-click the subprocess names to rearrange the order.

In the example shown in step 1, the order is Spin Plate 1 and Spin Plate 2.

Example: Interchangeable counterweight mode

Goal

Downstack microplates from a Labware Stacker, spin the microplates in the Microplate Centrifuge, and then upstack the microplates to an available Labware Stacker. Use the counterweight that is stored on a designated platepad.

Implementation

1. Add a process for microplates that will be downstacked, spun, and upstacked. Add a Downstack, Centrifuge Process, and Upstack task in the order shown.
2. Configure the counterweight on a platepad and call it Counterweight.

![Diagram of process flow](image)

The task parameters for the Centrifuge Process and the Centrifuge task are shown. Notice that the Bucket n parameters are set to `<use default>`, because the Interchangeable counterweight mode is selected.
Because the robot will move the counterweight from the designated platepad to the centrifuge during the run, select the Interchangeable counterweight mode. For the **Counterweight plate** parameter, select Counterweight.

Note: The robot will move the counterweight back to the platepad when the run is finished.

Related information

<table>
<thead>
<tr>
<th>For information about...</th>
<th>See...</th>
</tr>
</thead>
</table>
| Adding devices | • “Adding devices” on page 25
 | • Device user guide |
| Adding tasks in a protocol | “Adding and deleting tasks” on page 51 |
| Configuring labware | “Configuring labware” on page 38 |
| Microplate-storage tasks | “Setting parameters for microplate storage tasks” on page 305 |
| Liquid-handling tasks | “Setting parameters for liquid-handling tasks” on page 333 |
| Scheduling tasks | “Setting parameters for scheduling tasks” on page 459 |
Configure Static Labware

Description

IMPORTANT The VWorks Automation Control software is backward-compatible with protocols created in VWorks4 version 6.2.3 or earlier and will continue to support static labware configuration procedures. However, Agilent Technologies recommends that you use the concept and procedure in “Configuring labware” on page 38 when writing new protocols.

Available only in the Startup protocol, the Configure Labware task () allows you to assign static labware to locations on a device. The labware will remain at these locations during the protocol.

Note: You can also configure static labware in the device subprocess task in the main protocol. Configure labware in the device subprocess if you want to override the labware configuration in the startup protocol. Configure labware in a Startup Protocol if the labware configuration will be used in all the Main Protocol subprocesses.

In general, you configure static labware before the first task in a protocol. If you have multiple processes in the protocol, configure the labware once before the first task of the first process.

<table>
<thead>
<tr>
<th>Task is available for...</th>
<th>Task is available in...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Any device</td>
<td>Startup Protocol</td>
</tr>
</tbody>
</table>

Task parameters

After adding the Configure Labware task in the startup protocol, set the following parameters in the **Task Parameters** area:
Configure Static Labware

Parameter Description

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device to use</td>
<td>The device on which the labware is placed. Select from the list of available devices.</td>
</tr>
<tr>
<td>Display confirmation</td>
<td>The option to display a message to check the physical placement of the labware against the assignment in the software.</td>
</tr>
<tr>
<td>Device location</td>
<td>The list of locations on the device. For example, if you select Bravo Pipettor as the device to use, deck locations 1 through 9 appear in the list. Click the device location, and then select the labware type.</td>
</tr>
</tbody>
</table>

Related information

<table>
<thead>
<tr>
<th>For information about...</th>
<th>See...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adding devices</td>
<td>• “Adding devices” on page 25</td>
</tr>
<tr>
<td></td>
<td>• Device user guide</td>
</tr>
<tr>
<td>Adding tasks in a protocol</td>
<td>“Adding and deleting tasks” on page 51</td>
</tr>
<tr>
<td>Subprocess task</td>
<td>“SubProcess (Bravo, Vertical Pipetting Station)” on page 334</td>
</tr>
<tr>
<td>Microplate-handling tasks</td>
<td>“Setting parameters for microplate-handling tasks” on page 241</td>
</tr>
<tr>
<td>Microplate-storage tasks</td>
<td>“Setting parameters for microplate storage tasks” on page 305</td>
</tr>
<tr>
<td>Liquid-handling tasks</td>
<td>“Setting parameters for liquid-handling tasks” on page 333</td>
</tr>
<tr>
<td>Scheduling tasks</td>
<td>“Setting parameters for scheduling tasks” on page 459</td>
</tr>
<tr>
<td>BioCel I/O Interface Diagnostics</td>
<td>BioCel System User Guide</td>
</tr>
</tbody>
</table>
8 Setting parameters for microplate-handling tasks

Delid

Description

The Delid task (ิด) removes lids from microplates using a device such as a Bravo Pipettor, Lid Hotel Station, or Vacuum Delid Station (a vacuum-based delidding device). You can use the Delid task to remove and discard a lid, or you can pair it with the task to retain the removed lid and later place the lid back on the microplate.

Note: You can only delid process plates and configured labware. You cannot delid static labware.

<table>
<thead>
<tr>
<th>Task is available for...</th>
<th>Task is available in...</th>
</tr>
</thead>
<tbody>
<tr>
<td>BenchCel Workstation</td>
<td>Startup Protocol</td>
</tr>
<tr>
<td></td>
<td>Main Protocol</td>
</tr>
<tr>
<td></td>
<td>Cleanup Protocol</td>
</tr>
<tr>
<td>Bravo Platform</td>
<td>Startup Protocol</td>
</tr>
<tr>
<td></td>
<td>Main Protocol</td>
</tr>
<tr>
<td></td>
<td>Bravo Subprocess</td>
</tr>
<tr>
<td></td>
<td>Cleanup Protocol</td>
</tr>
<tr>
<td>Lid Hotel Station</td>
<td>Startup Protocol</td>
</tr>
<tr>
<td></td>
<td>Main Protocol</td>
</tr>
<tr>
<td></td>
<td>Cleanup Protocol</td>
</tr>
<tr>
<td>Vacuum Delid Station</td>
<td>Startup Protocol</td>
</tr>
<tr>
<td></td>
<td>Main Protocol</td>
</tr>
<tr>
<td></td>
<td>Cleanup Protocol</td>
</tr>
</tbody>
</table>

Requirements

Labware entry

In the Labware Editor, make sure the labware you want to delid has lid specifications in the Plate Properties tab. For detailed instructions, see the VWorks Automation Control Setup Guide.

Plate parameters

When you set parameters for the process plate, make sure you select the Plates have lids option. For detailed instructions, see “Setting plate parameters” on page 44.
253

Setting parameters for microplate-handling tasks

254

Delid

To use the Delid task, you must first configure the Lid Hotel in Bravo Diagnostics. For detailed instructions, see the Bravo Automated Liquid Handling Platform User Guide.

Task Parameters

To delid microplates on the Bravo Platform, you add the Delid task within the Bravo Subprocess. After adding the Delid task at the desired point in the subprocess, select the microplate you want to delid in the Task Parameters area, as the following example shows.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plate</td>
<td>The microplate that will be delidded.</td>
</tr>
</tbody>
</table>
Lid Hotel Station or Vacuum Delid Station

The Delid task does not have task parameters when using the Lid Hotel Station or the Vacuum Delid Station device. However, you must select the device you want to use.

Device selection

You must select a device for Delid tasks that use the Lid Hotel Station or the Vacuum Delid Station Station. You do not need to select a device when the Delid task is within a Bravo Subprocess, because the software assumes you want to use the Bravo Platform.

If you have multiple devices of the same type, you can prioritize the list of devices for the task. If the first device in the list is busy, the software will automatically use the next device in the list. If all of the devices in the list are busy, the task that needs the device will wait until one becomes available.

IMPORTANT The multiple devices must have identical setup and configuration.

After adding the Delid task at the desired point in the protocol, select the task, and then click Device Selection in the Task Parameters area.

To select a device for the task:

1. Double-click the desired device in the Devices available to perform task area to move it to the Devices involved in task area. If you have multiple devices of the same type, you can move them to the Devices involved in task area.

2. If you have multiple devices in the Devices involved in task area, select a device, and then click Use earlier or Use later to prioritize it.
Example: Delid microplates

Goal
After a microplate is downstacked from the Labware Stacker device, remove the lid for liquid-handling tasks on the Vertical Pipetting Station. A Vacuum Delid Station is available to remove the lid and drop it into the waste bin.

Implementation
Add a Delid task after the Downstack task. The Delid task removes the lid from the microplate and drops it into the waste bin.

The device selection for the Delid task is:

Related information

<table>
<thead>
<tr>
<th>For information about...</th>
<th>See...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adding devices</td>
<td>“Adding devices” on page 25</td>
</tr>
<tr>
<td>Adding tasks in a protocol</td>
<td>“Adding and deleting tasks” on page 51</td>
</tr>
<tr>
<td>Relid task</td>
<td>“Relid” on page 288</td>
</tr>
</tbody>
</table>
Dismount

IMPORTANT The Dismount task is always paired with the Mount task. Before adding the Dismount task, review the description for the Mount task. See “Mount” on page 262.

The Dismount task (D) removes labware, such as a filter microplate, from the top of an elution microplate or reservoir that is resting on a platepad. Always paired with a Mount task, the Dismount task uses information that is specified in the Mount task.

For example, you can use the Mount task to place a filter microplate on a reservoir that catches the elution. After the centrifuge process, you can use the Dismount task to remove the filter microplate from the reservoir and discard it.

<table>
<thead>
<tr>
<th>Task is available for...</th>
<th>Task is available in...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Platepad</td>
<td>Main Protocol</td>
</tr>
</tbody>
</table>

Task parameters

The Dismount task does not have task parameters.

Example: Dismount a filter microplate from a collection microplate

Goal

Downstack a collection microplate from a Labware Stacker device and place it on a platepad. Downstack a filter microplate from another Labware Stacker device and place it on top of the collection microplate. Centrifuge the assembly (filter microplate with collection microplate). Remove the filter microplate from the collection microplate and discard it. Upstack the collection microplate containing the elution for future processing.
Implementation

Add one process for the collection microplate and another process for the filter microplate. See “Example: Mount a filter microplate on a reservoir that collects elution” on page 263 for details about the Mount and Wait For tasks.

In the filter microplate process, add a Waste task after the Wait For task. The Waste task discards the filter microplate after the centrifuge is finished.

In the collection microplate process, add the following tasks after the Mount task: Centrifuge, Dismount (to remove the filter microplate from the collection microplate), and Upstack (to store the collection microplate containing the elution).

Related information

<table>
<thead>
<tr>
<th>For information about...</th>
<th>See...</th>
</tr>
</thead>
</table>
| Adding devices | • “Adding devices” on page 25
 | • Device user guide |
| Adding tasks in a protocol | “Adding and deleting tasks” on page 51 |
| Mount task | “Mount” on page 262 |
| Downstack task | “Downstack” on page 307 |
| Upstack task | “Upstack” on page 328 |
| Waste task | “Waste” on page 301 |
| Microplate-handling tasks | “Setting parameters for microplate-handling tasks” on page 241 |
| Microplate-storage tasks | “Setting parameters for microplate storage tasks” on page 305 |
| Liquid-handling tasks | “Setting parameters for liquid-handling tasks” on page 333 |
| Scheduling tasks | “Setting parameters for scheduling tasks” on page 459 |
| I/O-handling tasks | “Setting parameters for I/O-handling tasks” on page 233 |
Incubate

Description

The Incubate task () moves labware to a location, leaves it there for a specified time period, and then moves it from the location. The number of labware that can be incubated simultaneously is limited by the number of locations that are available for holding labware. Typically, you incubate labware on platepads or in Plate Hotels.

Note:
- To incubate a labware in a storage device such as a Plate Hub Carousel or the LiConic StoreX incubator, use the Storage Incubate task.
- To incubate labware on the Bravo Platform, use the Reserve Location task.

<table>
<thead>
<tr>
<th>Task is available for...</th>
<th>Task is available in...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Platepad</td>
<td>Main Protocol</td>
</tr>
<tr>
<td>Plate Hotel</td>
<td>Main Protocol</td>
</tr>
<tr>
<td>Vertical Pipetting Station</td>
<td>Main Protocol</td>
</tr>
</tbody>
</table>

Task parameters

After adding the Incubate task at the desired point in the protocol, set the following parameters in the **Task Parameters** area:

- **Incubation time**: The length of time to incubate the labware.
 Note: The actual incubation period might be longer than the incubation time you specify. The actual incubation period is affected by the scheduling and operating speed of the robot.
Device selection

You must select a device for Incubate tasks. If you have multiple devices of the same type, you can:

- Prioritize the list of devices for the task. If the first device in the list is busy, the software will automatically use the next device in the list. If all of the devices in the list are busy, the task that needs the device will wait until one becomes available.
- Set up a backup pool. If the primary device encounters an error, the software will automatically use the next device in the list. However, if all of the devices in the list are in an error state, the software will automatically use the device in the backup pool.

IMPORTANT The multiple devices must have the same setup and configuration.

After adding the Incubate task at the desired point in the protocol, select the task, and then click **Device Selection** in the **Task Parameters** area.

To select a device for the task:

1. Double-click the desired device in the **Devices available to perform task** area to move it to the **Devices involved in task** area. If you have multiple devices of the same type, you can move them to the **Devices involved in task** area.
2. If you have multiple devices in the **Devices involved in task** area, select a device, and then click **Use earlier** or **Use later** to prioritize it.
3. **Optional.** Select backup devices to use in case all of the devices in the **Devices involved in task** area encounter an error.
 a. Select **Devices in backup pool**.
 b. Drag one or more devices from the **Devices available to perform task** area to the **Devices in backup pool** area.
 c. If you have multiple devices in the backup pool, select a device in the **Devices in backup pool** area, and then click **Use earlier** or **Use later** to prioritize it.
Example: Incubate a microplate after mixing two reagents

Goal
Aspirate contents from two source microplates, dispense into a destination microplate. Incubate the mixture for at least 6 minutes, and then read the microplate.

Implementation
In the protocol, add an Incubate task after the liquid-handling tasks as shown in the following example.

For the Incubate task, select platepad-1 for the incubation location. Set Incubation time to 6 minutes in the Task Parameters area as shown.
Related information

<table>
<thead>
<tr>
<th>For information about...</th>
<th>See...</th>
</tr>
</thead>
</table>
| Adding devices | • “Adding devices” on page 25
 | • Device user guide |
| Adding tasks in a protocol | “Adding and deleting tasks” on page 51 |
| Process plate properties | “Setting plate parameters” on page 44 |
| Storage Incubate task | “Storage Incubate” on page 321 |
| Reserve Location task | “Reserve Location” on page 292 |
| Microplate-handling tasks | “Setting parameters for microplate-handling tasks” on page 241 |
| Microplate-storage tasks | “Setting parameters for microplate-handling tasks” on page 241 |
| Liquid-handling tasks | “Setting parameters for liquid-handling tasks” on page 333 |
| Scheduling tasks | “Setting parameters for scheduling tasks” on page 459 |
| I/O-handling tasks | “Setting parameters for I/O-handling tasks” on page 233 |
Mount

Description
The Mount task (Mount) places a labware, such as a filter microplate, on top of a collection microplate or reservoir that is resting on a platepad. The Mount task works with the Wait For task and is paired with the Dismount task. For example, you can use the Mount task to place a filter microplate on a reservoir that catches the elution. After the centrifuge process, you can use the Dismount task to remove the filter microplate from the reservoir and discard it.

The Mount task becomes available when you add a Platepad device in the device file. The task can be used only in the Main Protocol.

<table>
<thead>
<tr>
<th>Task is available for...</th>
<th>Task is available in...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Platepad</td>
<td>Main Protocol</td>
</tr>
</tbody>
</table>

Requirements

Labware definition
The labware involved in the Mount task must have the following Plate Handling properties in the Labware Editor:

- **Can be mounted.** Select the **Can be mounted** property to define microplates or reservoirs that will be mounted (will be on the bottom).
- **Can mount.** Select the **Can mount** property to define microplates that will mount on top of the elution microplate or reservoir.

Process setup
Each labware involved in the Mount task should be set up as independent processes in the protocol. For example, if you want to place a filter microplate on top of a reservoir or collection microplate that catches the elution, you should create two processes as shown in the following example:
Notice that a Wait For task is added to the Filter Plate process at the point where the mount task would occur. A Mount task is added to the Collection Plate process at the desired point. See “Example: Mount a filter microplate on a reservoir that collects elution” on page 263 for a detailed description.

Task parameters

After adding the Mount task at the desired point in the protocol, set the following parameters in the Task Parameters area:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wait for</td>
<td>The name of the Wait For task that you want to pair with this Mount task. Select from the list of Wait For tasks. The list is based on the Wait For tasks that have been added in the protocol.</td>
</tr>
</tbody>
</table>

Example: Mount a filter microplate on a reservoir that collects elution

Goal

Downstack a reservoir (Collection Plate) from a Labware Stacker device and place it on a platepad. Downstack a filter microplate (Filter Plate) from another Labware Stacker device and place it on top of Collection Plate.

Implementation

Create one process for the Collection Plate and another process for Filter Plate. In the Filter Plate process, add a Wait For task after the Downstack task. In the Collection Plate process, add a Mount task after the Downstack task.
The task parameters for the Wait For task and the Mount task are:

Related information

<table>
<thead>
<tr>
<th>For information about...</th>
<th>See...</th>
</tr>
</thead>
</table>
| Adding devices | • “Adding devices” on page 25
 | • Device user guide |
| Adding tasks in a protocol | “Adding and deleting tasks” on page 51 |
| Dismount task | “Dismount” on page 256 |
| Wait For task | “Wait For” on page 494 |
| Microplate-handling tasks| “Setting parameters for microplate-handling tasks” on page 241 |
| Microplate-storage tasks | “Setting parameters for microplate storage tasks” on page 305 |
| Liquid-handling tasks | “Setting parameters for liquid-handling tasks” on page 333 |
| Scheduling tasks | “Setting parameters for scheduling tasks” on page 459 |
| I/O-handling tasks | “Setting parameters for I/O-handling tasks” on page 233 |

Move to Location (Bravo)

Description

The Move to Location task () moves the pipette head to a safe distance above a specified deck location. The safe distance is set in the Bravo Pipettor profile.

Typically, this task is used in Startup and Cleanup Protocols to move the pipette head out of the way. For example, you can move the pipette head to location 5 before placing a microplate at location 1.
Task parameters

After adding the Move To Location task at the desired point in the protocol, set the following parameters in the **Task Parameters** area:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Location</td>
<td>The deck location the pipette head will move to. The height above the deck location is determined by the z-axis safe position setting in the profile.</td>
</tr>
</tbody>
</table>

Example: Move a Bravo pipette head before the main protocol starts

Goal

Before the main protocol starts, move the Bravo pipette head to location 5.

Implementation

In the startup protocol, add a Move to Location task. Specify that the pipette head should move to location 5.

The task parameter for the Move to Location task is:
8 Setting parameters for microplate-handling tasks
Place Plate

Related information

For information about...	See...
Adding devices	- “Adding devices” on page 25
- Device user guide	
Adding tasks in a protocol | “Adding and deleting tasks” on page 51
Microplate-handling tasks | “Setting parameters for microplate-handling tasks” on page 241
Microplate-storage tasks | “Setting parameters for microplate storage tasks” on page 305
Liquid-handling tasks | “Setting parameters for liquid-handling tasks” on page 333
Scheduling tasks | “Setting parameters for scheduling tasks” on page 459
I/O-handling tasks | “Setting parameters for I/O-handling tasks” on page 233

Place Plate

Description

The Place Plate task (Place Plate) moves labware to a specified location. If the location has a barcode reader installed, the Place Plate task moves the labware to the location and reads the barcode.

<table>
<thead>
<tr>
<th>Task is available for...</th>
<th>Task is available in...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Any device</td>
<td>Main Protocol</td>
</tr>
</tbody>
</table>
8 Setting parameters for microplate-handling tasks

Place Plate

Requirements

To read barcodes at the specified location such as a platepad, you must:

• Set up the barcode reader in the device file.
• Add the device that has the barcode reader, and then specify the location of the barcode reader. For example, if the barcode reader is installed on a platepad, specify the side on which the barcode reader is installed.

If you are placing a labware on a device or accessory, make sure:

• The device or accessory is configured.
• The Device Properties approach height clears the top of tall accessories.

Task parameters

After adding the Place Plate task at the desired point in the protocol, set the following parameters in the **Task Parameters** area:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device to use</td>
<td>The device where you want to place the labware.</td>
</tr>
<tr>
<td>Location to use</td>
<td>The location on the device to place the labware.</td>
</tr>
</tbody>
</table>
Example: Place a microplate at a platepad and read its barcode label

Goal
Place the Source Plate at the specified platepad and read the barcode label. The barcode reader is installed on the east side of the platepad.

Implementation
When adding the platepad in the device file, specify the barcode reader on the east side of the platepad.

Add a Place Plate task at the desired point in the protocol.

The task parameters for the Place Plate task are:
Related information

<table>
<thead>
<tr>
<th>For information about...</th>
<th>See...</th>
</tr>
</thead>
</table>
| Adding devices | • “Adding devices” on page 25
 | • Device user guide |
| Adding tasks in a protocol | “Adding and deleting tasks” on page 51 |
| Microplate-handling tasks | “Setting parameters for microplate-handling tasks” on page 241 |
| Microplate-storage tasks | “Setting parameters for microplate storage tasks” on page 305 |
| Liquid-handling tasks | “Setting parameters for liquid-handling tasks” on page 333 |
| Scheduling tasks | “Setting parameters for scheduling tasks” on page 459 |
| I/O-handling tasks | “Setting parameters for I/O-handling tasks” on page 233 |

Pierce Plate (Seal Piercer)

Description

The Pierce Plate (Seal Piercer) task (![Pierce Plate (Seal Piercer)]) pierces a microplate seal using a Seal Piercer.

<table>
<thead>
<tr>
<th>Task is available for...</th>
<th>Task is available in...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seal Piercer</td>
<td>Main Protocol</td>
</tr>
</tbody>
</table>

Task parameters

After adding the Pierce Plate (Seal Piercer) task at the desired point in the protocol, set the following parameters in the Task Parameters area:
Device selection

You must select a device for Pierce Plate (Seal Piercer) tasks. If you have multiple devices of the same type, you can:

- Prioritize the list of devices for the task. If the first device in the list is busy, the software will automatically use the next device in the list. If all of the devices in the list are busy, the task that needs the device will wait until one becomes available.
- Set up a backup pool. If the primary device encounters an error, the software will automatically use the next device in the list. However, if all the devices in the list are in an error state, the software will automatically use the device in the backup pool.

IMPORTANT The multiple devices must have the same setup and configuration.

After adding the Pierce Plate (Seal Piercer) task at the desired point in the protocol, select the task, and then click **Device Selection** in the **Task Parameters** area.

To select a device for the task:

1. Double-click a device in the **Devices available to perform task** area to add it to the **Devices involved in task** area.
2. To prioritize its use, select the device in the **Devices involved in task** area, and then click **Use earlier** or **Use later**. The devices that are higher in the list are favored by the software scheduler during the protocol run.
3. **Optional.** Select backup devices to use in case all of the devices in the **Devices involved in task** area encounter an error.
 a. Select **Devices in backup pool**.
 b. Drag one or more devices from the **Devices available to perform task** area to the **Devices in backup pool** area.
 c. If you have multiple devices in the backup pool, select a device in the **Devices in backup pool** area, and then click **Use earlier** or **Use later** to prioritize it.

Parameter Description

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Piercing pressure</td>
<td>The air pressure, in psi, used during the piercing process.</td>
</tr>
</tbody>
</table>

VWorks Automation Control User Guide
Example: Pierce a microplate seal

Goal
Pierce the Source Plate after it is downstacked from the Labware Stacker.

Implementation
Add a Pierce Plate (Seal Piercer) task after the Downstack task. Set the piercing pressure at 75 psi.

The task parameter and device selection for the Pierce Plate (Seal Piercer) task are:
Related information

<table>
<thead>
<tr>
<th>For information about...</th>
<th>See...</th>
</tr>
</thead>
</table>
| Adding devices | • “Adding devices” on page 25
 | • Device user guide |
| Adding tasks in a protocol | “Adding and deleting tasks” on page 51 |
| Microplate-handling tasks | “Setting parameters for microplate-handling tasks” on page 241 |
| Microplate-storage tasks | “Setting parameters for microplate storage tasks” on page 305 |
| Liquid-handling tasks | “Setting parameters for liquid-handling tasks” on page 333 |
| Scheduling tasks | “Setting parameters for scheduling tasks” on page 459 |
| I/O-handling tasks | “Setting parameters for I/O-handling tasks” on page 233 |
Print and Apply

Description

The Print and Apply task (Print and Apply) allows you to:
• Specify the contents to be printed on a microplate label.
• Print the specified contents on a label.
• Apply the label to a labware.

<table>
<thead>
<tr>
<th>Task is available for...</th>
<th>Task is available in...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microplate Labeler</td>
<td>Main Protocol</td>
</tr>
</tbody>
</table>

Requirements

Before adding the Print and Apply task, make sure you complete the following:

<table>
<thead>
<tr>
<th>Step</th>
<th>For this task...</th>
<th>See...</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Set up the Microplate Labeler.</td>
<td>“Setting up the Microplate Labeler” on page 273</td>
</tr>
<tr>
<td>2</td>
<td>Specify the label format.</td>
<td>“Specifying the label format” on page 274</td>
</tr>
<tr>
<td>3</td>
<td>Optional. Create barcode data files.</td>
<td>“Creating barcode data files” on page 274</td>
</tr>
<tr>
<td>4</td>
<td>Select the option to lower the plate stage when labeling.</td>
<td>“Lowering the plate stage” on page 275</td>
</tr>
<tr>
<td>5</td>
<td>Optional. Specify the label location on labware for barcode reading.</td>
<td>“Specifying label location for barcode reading” on page 276</td>
</tr>
</tbody>
</table>

Setting up the Microplate Labeler

For instructions on how to set up the Microplate Labeler (installing the device, adding the device in the VWorks software, creating a profile for the device in diagnostics, and so on), see the Microplate Labeler User Guide.
Specifying the label format
In Microplate Labeler Diagnostics, you specify the label format (label design). The format you specify includes the following:

- Number of fields to be printed (up to six are permitted)
- Type of content to be populated in a field (human-readable text or barcode)
- Font type of the human-readable text, or symbology of the barcode
- Position (coordinates) of the information on the label
- Field attributes, such as field size
- Position (coordinates) of the information on the label

For instructions, see the Microplate Labeler User Guide.

After you specify the label format, you can use the Print and Apply task to specify the content that will populate each field. When you run the protocol that contains the Print and Apply task, the software substitutes the data (label content) for the text and barcode fields in the label format, and then prints the label.

Creating barcode data files
The Print and Apply task provides many methods to create barcode label contents. Two of the methods require the use of barcode data files:

- The software reads data from the data file and prints that data on the label.

 Note: You specify the row and column number of the starting value when you set the Print and Apply task parameter. For instructions, see “Setting the task parameters” on page 278.

- The software reads the barcode on one side of a labware, looks up the barcode (key) in the data file, locates the data found in another column (value), and prints and applies the new label to the same side. The primary use of this function is for label replacement.

 Note: You specify the key and value columns when you set the Print and Apply task parameter. For instructions, see “Setting the task parameters” on page 278.

Barcode data files must meet the following requirements:

- Be a comma-delimited text file with the .csv file name extension
- Optional. Contain a header, which can be in any format.
- Contain at least one column. For example, the file can contain four columns, each representing a side of the microplate.
The following example shows a data file displayed in Excel. The file contains four columns, each representing a side of the microplate. In addition, the file contains a header in row 1.

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>North</td>
<td>South</td>
<td>East</td>
<td>West</td>
</tr>
<tr>
<td>2</td>
<td>A00001</td>
<td>B00001</td>
<td>C00001</td>
<td>D00001</td>
</tr>
<tr>
<td>3</td>
<td>A00002</td>
<td>B00002</td>
<td>C00002</td>
<td>D00002</td>
</tr>
<tr>
<td>4</td>
<td>A00003</td>
<td>B00003</td>
<td>C00003</td>
<td>D00003</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The data file can be stored anywhere on the computer that runs the VWorks software. If you plan to use data files, make sure the files meet the requirements described in this section. In addition, make sure you select the correct data file when setting the Print and Apply task parameters. See “Setting the task parameters” on page 278.

Lowering the plate stage

The Microplate Labeler plate stage has two vertical positions, top and bottom, which are used to accommodate two different sized microplates. By default, the system uses the top position during a protocol run. If the labware has a tall skirt (1) or has a raised surface on the sides (2), you can specify that the Microplate Labeler use the bottom position (or lower the stage) during the run so that the label can be applied above the skirt or raised surface.

![image of plate stage positions](image)

IMPORTANT Always perform a dry run to verify that the positions are correct for the labware you are processing.

Note: The two vertical plate stage positions are set mechanically. To adjust the positions, see the *Microplate Labeler User Guide* for instructions.

To lower the Microplate Labeler plate stage during a run:

1. Open the Labware Editor, and then click the Plate Properties tab.
2. Select the labware from the list on the left of the dialog box.
3. In the Plate Handling area, select Lower plate at Microplate Labeler.
Specifying label location for barcode reading

If you plan to use a barcode reader at the Microplate Labeler, you must specify the location of the barcode label on the labware so that the system will know which side to scan during the run.

You specify the barcode label location when you set the plate parameters. For more information, see “Setting plate parameters” on page 44.

If you plan to scan a new label after it is applied, you must also select the Verify barcodes after Print and Apply option in the Microplate Labeler Diagnostics Profiles tab. For more information, see the Microplate Labeler User Guide.
Selecting devices for the task

After adding the Print and Apply task, you must select a device for the task before you can set the task parameters. If you have multiple devices of the same type, you can:

- Prioritize the list of devices for the task. If the first device in the list is busy, the software will automatically use the next device in the list. If all of the devices in the list are busy, the task that needs the device will wait until one becomes available.
- Set up a backup pool. If the primary device encounters an error, the software will automatically use the next device in the primary list. However, if all of the devices in the primary list are in an error state, the software will automatically use the device in the backup pool.

IMPORTANT The multiple devices must be configured and set up identically. All formats must be identical across the multiple devices. This includes the format names, field names, and definitions.

After adding the Print and Apply task at the desired point in the protocol, select the task, and then click **Device Selection** in the **Task Parameters** area.

To select a device for the task:

1. Double-click the desired device in the **Devices available to perform task** area to move it to the **Devices involved in task** area. If you have multiple devices of the same type, you can move them to the **Devices involved in task** area.
2. If you have multiple devices in the **Devices involved in task** area, select a device, and then click **Use earlier** or **Use later** to prioritize it.
3. Optional. Select backup devices to use in case all of the devices in the **Devices involved in task** area encounter an error.
 a. Select **Devices in backup pool**.
 b. Drag one or more devices from the **Devices available to perform task** area to the **Devices in backup pool** area.
 c. If you have multiple devices in the backup pool, select a device in the **Devices in backup pool** area, and then click **Use earlier** or **Use later** to prioritize it.
Setting the task parameters

IMPORTANT Make sure the label formats are uploaded to the printer. Be sure to initialize the Microplate Labeler device before you set the task parameters.

After selecting the device to use for the Print and Apply task, you can set the parameters in the Task Parameters area. The area lists the four sides of a microplate (south, west, north, and east). For each side, you can select a label format and specify the data that will substitute for the text and barcode fields in the label format.

CAUTION Format selection and field information are saved with the protocol. If the formats on the printer are changed, initializing the device will overwrite the information in the protocol. For example, suppose you created a protocol and selected a format called MyFormat. Later, MyFormat was deleted from the printer. The next time you initialize the device and open the protocol, MyFormat will not appear in the protocol.

To set the task parameters:

1. For the side on which the barcode label will be applied, select the barcode format in the Format list:

<table>
<thead>
<tr>
<th>Format selection</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>Indicates no label will be applied.</td>
</tr>
</tbody>
</table>
Setting parameters for microplate-handling tasks

Print and Apply

As soon as you select a format, fields appear in the Task Parameters area. You can specify the information you want to print in these fields.

Note: The number of fields that appear depends on the format you select.

<table>
<thead>
<tr>
<th>Format selection</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use from <side></td>
<td>Uses the format from another side of the microplate to print a new label and apply it to the selected side.</td>
</tr>
<tr>
<td></td>
<td>For example, suppose you have already selected a format and specified the label contents for the South side. You want to use the same format and contents on the West side without having to reselect and respecify the same information. Then in the West Format list, select Use from South.</td>
</tr>
</tbody>
</table>

| Format name or number | Uses a format that was set up in Microplate Labeler Diagnostics. |
| | Note: If you do not see a list of formats, make sure the label formats are not empty (formats must contain at least one field), the formats are uploaded to the printer, and the Microplate Labeler device is initialized. |

As soon as you select a format, fields appear in the Task Parameters area. You can specify the information you want to print in these fields.

Note: The number of fields that appear depends on the format you select.
2 Click a field, and then click the \(\ldots \) button that appears. The Field Composer dialog box opens.

The Field Composer allows you to specify the information to print on the barcode label. For example, you can print the current date and time.

3 In the **Tools** area, double-click one or more of the following icons to specify the information to be printed on the barcode label. The selected icon appears in the **Field Value** area.

IMPORTANT For field limitations, such as the maximum number of characters permitted or symbology-dependent limitations, check the format you set up in Microplate Labeler Diagnostics. See also the *Microplate Labeler User Guide*.
<table>
<thead>
<tr>
<th>Icon</th>
<th>Description</th>
</tr>
</thead>
</table>
| ![Date Stamp Icon](image) | Prints the current date.
Click the icon in the Field Value area. In the Properties area, select the desired date format. YYYY is the year, MM is the month, and DD is the day.
Note: The Use System Format option uses the local computer’s date format. |
| ![Time Format Icon](image) | Prints the current time.
Click the icon in the Field Value area. In the Properties area, select the desired data format: 12 hours (AM/PM) or 24 hours. |
| ![Counter Icon](image) | Prints a numeric or alphanumeric value that can be incremented.
Click the icon in the Field Value area. Set the following in the Properties area:
- *Character Set.* The option to use either numeric or alphanumeric characters.
- *Start at.* The starting value.
- *Increment by.* The amount by which the value increments.
- *Total number of digits.* The total number of digits or characters, including leading 0s.
- *Increment every N plates.* The increment value. For example, 1 increments the value every microplate. |
8 Setting parameters for microplate-handling tasks

Print and Apply

<table>
<thead>
<tr>
<th>Icon</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Looks up a value (key) in the specified barcode data file and prints the corresponding value found in the file.</td>
</tr>
<tr>
<td></td>
<td>Click the icon in the Field Value area. In the Properties area, click the button to select the barcode data file. Specify the column number that contains the lookup value (key) and the column number that contains the values you want to print.</td>
</tr>
<tr>
<td></td>
<td>For example, Key col is set at 1, and Value col is set at 3. During the run, an A00001 barcode is scanned. The software looks up A00001 in the specified file, and prints the barcode, C00001, found in the third column.</td>
</tr>
</tbody>
</table>

![Image](image)

![Icon](image)	Prints the values in the specified barcode input file.
	Click the icon in the **Field Value** area. In the **Properties** area, click the ![button](image) button to select the input file. Specify the row and column number of the starting value. During the run, the software automatically increments to the next row to print the next value.
	For example, Start at row is set at 2, Start at col is set at 3. During the run, the software starts with the value in row 2 column 3 (C00002). Then, the software moves to row 3 column 3 (C00003), row 4 column 3 (C00004), row 5 column 3 (C00005), and so on.

![Image](image)
8 Setting parameters for microplate-handling tasks
Print and Apply

<table>
<thead>
<tr>
<th>Icon</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Prints the text you specify. Click the icon in the Field Value area. In the Properties area, type the text you want to print on every microplate.</td>
</tr>
<tr>
<td></td>
<td>Copies the barcode data from an existing label on the selected side to print a new label. Note: You can only copy barcode data from another label. You cannot copy human-readable text. Click the icon in the Field Value area. In the Properties area, select the side (barcode) to be copied. For example, an incoming microplate already has a label on the west side. You want to copy the barcode data from the west-side label to print a new label, and apply the new label to the south side. In the Task Parameters area, you specify that the south side of the labware will be labeled. In the Field Composer dialog box, you specify Use barcode from processing plate, and select West.</td>
</tr>
</tbody>
</table>

4 When you are finished, click OK. The information you specified appears in the Task Parameters area.

5 Repeat the procedure if you want to print labels on other sides of the microplate.
Example 1: Copy label contents from one side of the microplate and print and apply to a new side

Goal
For each incoming microplate, scan the label on the east side of the microplate, print the same contents on a new label, and apply the new label to the north side of the microplate.

Implementation
Note: This example assumes that the Microplate Labeler is set up correctly and the format, MyFormat, is already defined and loaded to the printer. MyFormat contains two fields. Field 1 is a human-readable text field. Field 2 is a barcode field. The device file and protocol are correctly created.

When setting the plate parameters, select **Barcode or header East** in the **Barcode information** area so the system knows to scan the east side of the incoming microplates. No barcode verification file will be used, so select **Barcode not in file**.
When setting the Print and Apply task parameter, select MyFormat for the side you want to label: **North**.

For each of the two format fields (1 and 2), open the Field Composer dialog box and double-click the barcode icon in the **Tools** area to add it to the Field Value area. Because you want to copy the barcode information from the east side of the microplate, select **East** from the **Side** list.
Example 2: Use a barcode data file to print and apply labels

Goal
For each incoming microplate, scan the label on the east side of the microplate, locate the information (key) in the first column in the data file, print the corresponding information (value) from the third column in the file on a new label, and apply the new label to the same (east) side of the microplate.

Implementation
Note: This example assumes that the Microplate Labeler is set up correctly and the format, MyFormat, is already defined and loaded to the printer. MyFormat contains two fields. Field 1 is a human-readable text field. Field 2 is a barcode field. The barcode data file is stored in C:\VWorks Workspace\Barcode data files. The device file and protocol are correctly created.

When setting the plate parameters, select **Barcode or header East** in the **Barcode information** area so the system knows to scan the east side of the incoming microplates. No barcode verification file will be used, so select **Barcode not in file**.
When setting the Print and Apply task parameter, select MyFormat for the same side: **East**.

For each of the two format fields, open the Field Composer dialog box and double-click the key-file icon in the **Tools** area to add it to the Field Value area. In the **From File** area, locate and select the data file to use. In the **Key col** box, type 1. In the **Value col** box, type 3.
Related information

<table>
<thead>
<tr>
<th>For information about...</th>
<th>See...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adding devices</td>
<td>• “Adding devices” on page 25
• Microplate Labeler User Guide</td>
</tr>
<tr>
<td>Adding tasks in a protocol</td>
<td>“Adding and deleting tasks” on page 51</td>
</tr>
<tr>
<td>Barcode data file and barcode input file</td>
<td>“Tracking barcodes” on page 70</td>
</tr>
<tr>
<td>Rotate Stage (Microplate Labeler) task</td>
<td>“Rotate Stage (Microplate Labeler)” on page 296</td>
</tr>
<tr>
<td>Writing JavaScript for the Print and Apply task</td>
<td>“About scripting the Print and Apply task” on page 101</td>
</tr>
<tr>
<td>Microplate-handling tasks</td>
<td>“Setting parameters for microplate-handling tasks” on page 241</td>
</tr>
<tr>
<td>Microplate-storage tasks</td>
<td>“Setting parameters for microplate storage tasks” on page 305</td>
</tr>
<tr>
<td>Liquid-handling tasks</td>
<td>“Setting parameters for liquid-handling tasks” on page 333</td>
</tr>
<tr>
<td>Scheduling tasks</td>
<td>“Setting parameters for scheduling tasks” on page 459</td>
</tr>
<tr>
<td>I/O-handling tasks</td>
<td>“Setting parameters for I/O-handling tasks” on page 233</td>
</tr>
</tbody>
</table>

Relid

Description

The Relid task (,ID) places lids on the microplates using a device such as the Bravo Pipettor or a Lid Hotel Station.
Setting parameters for microplate-handling tasks

Relid

Bravo Platform
When relidding microplates on the Bravo Platform, you add the Relid task within the Bravo Subprocess. After adding the Relid task at the desired point in the Bravo Subprocess, select the microplate you want to relid in the **Task Parameters** area, as the following example shows.

<table>
<thead>
<tr>
<th>Task is available for...</th>
<th>Task is available in...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lid Hotel Station</td>
<td>Startup Protocol</td>
</tr>
<tr>
<td></td>
<td>Main Protocol</td>
</tr>
<tr>
<td></td>
<td>Cleanup Protocol</td>
</tr>
</tbody>
</table>

Task Parameters

Bravo Platform
When relidding microplates on the Bravo Platform, you add the Relid task within the Bravo Subprocess. After adding the Relid task at the desired point in the Bravo Subprocess, select the microplate you want to relid in the **Task Parameters** area, as the following example shows.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plate</td>
<td>The microplate that will be relidded.</td>
</tr>
</tbody>
</table>

Lid Hotel Station
The Relid task does not have task parameters when using the Lid Hotel Station.

Device selection
You do not need to select a device for the Relid task. The system automatically uses the correct device to relid the microplates.
Example: Delid and relid microplates

Goal
On the Bravo Platform, remove a lid from the Source Plate for an Aspirate task. After the task is finished, relid the microplate.

Implementation
Within the Bravo Subprocess, add a Delid task before the Aspirate task to remove the lid. Add a Relid task after the Aspirate task to place the lid back on the microplate.

The task parameters for the Delid and Relid tasks are:

The device selection for the Delid task is as follows. Note that you do not need to select a device for the Relid task.
Related information

<table>
<thead>
<tr>
<th>For information about...</th>
<th>See...</th>
</tr>
</thead>
</table>
| Adding devices | • “Adding devices” on page 25
| | • Device user guide |
| Adding tasks in a protocol | “Adding and deleting tasks” on page 51 |
| Delid task | “Delid” on page 252 |
| Microplate-handling tasks | “Setting parameters for microplate-handling tasks” on page 241 |
| Microplate-storage tasks | “Setting parameters for microplate storage tasks” on page 305 |
| Liquid-handling tasks | “Setting parameters for liquid-handling tasks” on page 333 |
| Scheduling tasks | “Setting parameters for scheduling tasks” on page 459 |
| I/O-handling tasks | “Setting parameters for I/O-handling tasks” on page 233 |
Reserve Location

Description

The Reserve Location task () reserves a location on the Bravo Platform for a specified length of time. The task is typically used to incubate a microplate at that location.

Note:
- To incubate labware on a platepad or in a Plate Hotel in a system, use the Incubate task.
- To incubate a labware in a storage device such as a Plate Hub Carousel or the LiConic StoreX incubator, use the Storage Incubate task.

<table>
<thead>
<tr>
<th>Task is available for...</th>
<th>Task is available in...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bravo Platform</td>
<td>Main Protocol, Bravo Subprocess</td>
</tr>
</tbody>
</table>

Task parameters

After adding the Reserve Location task at the desired point in the protocol, set the following parameters in the Task Parameters area:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Location to use, plate</td>
<td>The labware that will be placed at the specified location during the reservation period.</td>
</tr>
<tr>
<td>Location to use, location</td>
<td>The location that you want to reserve. <auto-select> automatically places the labware at the first-available or appropriate location for the task. If accessories are installed on the deck or shelf, the software uses the accessory configuration information in Bravo Diagnostics to determine the correct location for the task.</td>
</tr>
<tr>
<td>Reservation time</td>
<td>The length of time that the location is reserved. The time starts when the desired labware arrives at the location.</td>
</tr>
</tbody>
</table>
Example: Reserving a deck location for incubation

Goal
Aspirate contents from two source microplates and dispense into a destination microplate. Incubate the destination microplate at Bravo deck location 5 for 2 minutes before reading the microplate.

Implementation
In the protocol, add a Reserve Location task after the liquid-handling tasks.

The task parameters for the Reserve Location task are shown in the following example.

Related information

<table>
<thead>
<tr>
<th>For information about...</th>
<th>See...</th>
</tr>
</thead>
</table>
| Adding devices | • “Adding devices” on page 25
 | • Device user guide |
| Adding tasks in a protocol | “Adding and deleting tasks” on page 51 |
Rotate Stage (Rotator)

Description

The Rotate Stage task (Rotate Stage (Rotator)) rotates the stage on the Rotator device by 180°. You can use the task to change the orientation of microplates before they are placed in devices that require the rotated orientation.

<table>
<thead>
<tr>
<th>For information about...</th>
<th>See...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Incubate task</td>
<td>“Incubate” on page 258</td>
</tr>
<tr>
<td>Storage Incubate task</td>
<td>“Storage Incubate” on page 321</td>
</tr>
<tr>
<td>Microplate-handling tasks</td>
<td>“Setting parameters for microplate-handling tasks” on page 241</td>
</tr>
<tr>
<td>Microplate-storage tasks</td>
<td>“Setting parameters for microplate storage tasks” on page 305</td>
</tr>
<tr>
<td>Liquid-handling tasks</td>
<td>“Setting parameters for liquid-handling tasks” on page 333</td>
</tr>
<tr>
<td>Scheduling tasks</td>
<td>“Setting parameters for scheduling tasks” on page 459</td>
</tr>
<tr>
<td>I/O-handling tasks</td>
<td>“Setting parameters for I/O-handling tasks” on page 233</td>
</tr>
</tbody>
</table>

Task is available for... Rotator

Task is available in... Main Protocol

Task parameters

The Rotate Stage (Rotator) task does not have task parameters.

Device selection

You must select a device for Rotate Stage (Rotator) tasks. If you have multiple devices of the same type, you can:

- Prioritize the list of devices for the task. If the first device in the list is busy, the software will automatically use the next device in the list. If all of the devices in the list are busy, the task that needs the device will wait until one becomes available.
- Set up a backup pool. If the primary device encounters an error, the software will automatically use the next device in the list. However, if all of the devices in the list are in an error state, the software will automatically use the device in the backup pool.
IMPORTANT The multiple devices must have the same setup and configuration.

After adding the Rotate Stage (Rotator) task at the desired point in the protocol, select the task, and then click **Device Selection** in the **Task Parameters**

area.

To select a device for the task:

1. Double-click a device in the **Devices available to perform task** area to add it to the **Devices involved in task** area.

2. To prioritize its use, select the device in the **Devices involved in task** area, and then click **User earlier** or **Use later**. The devices (deck locations) that are higher in the list are favored by the software scheduler during the protocol run.

3. **Optional.** Select backup devices to use in case all of the devices in the **Devices involved in task** area encounter an error.
 a. Select **Devices in backup pool**.
 b. Drag one or more devices from the **Devices available to perform task** area to the **Devices in backup pool** area.
 c. If you have multiple devices in the backup pool, select a device in the **Devices in backup pool** area, and then click **Use earlier** or **Use later** to prioritize it.

Related information

<table>
<thead>
<tr>
<th>For information about...</th>
<th>See...</th>
</tr>
</thead>
</table>
| Adding devices | • “Adding devices” on page 25
 | • Device user guide |
| Adding tasks in a protocol| “Adding and deleting tasks” on page 51 |
Rotate Stage (Microplate Labeler)

Description

The Rotate Stage (Microplate Labeler) task (Rotate Stage (Microplate Labeler)) rotates the Microplate Labeler stage 180°. You use this task to change the orientation of microplates in preparation for label applications.

Task is available for... Microplate Labeler

Task is available in... Main Protocol

Task parameters

The Rotate Stage (Microplate Labeler) task does not have task parameters.

Device selection

You must select a device for Rotate Stage (Microplate Labeler) tasks. If you have multiple devices of the same type, you can:

- Prioritize the list of devices for the task. If the first device in the list is busy, the software will automatically use the next device in the list. If all of the devices in the list are busy, the task that needs the device will wait until one becomes available.
- Set up a backup pool. If the primary device encounters an error, the software will automatically use the next device in the list. However, if all of the devices in the list are in an error state, the software will automatically use the device in the backup pool.

IMPORTANT The multiple devices must have the same setup and configuration.
After adding the Rotate Stage (Microplate Labeler) task at the desired point in the protocol, select the task, and then click **Device Selection** in the **Task Parameters** area.

To select a device for the task:

1. Double-click a device in the **Devices available to perform task** area to add it to the **Devices involved in task** area.

2. To prioritize its use, select the device in the **Devices involved in task** area, and then click **User earlier** or **Use later**. The devices (deck locations) that are higher in the list are favored by the software scheduler during the protocol run.

3. Optional. Select backup devices to use in case all of the devices in the **Devices involved in task** area encounter an error.
 a. Select **Devices in backup pool**.
 b. Drag one or more devices from the **Devices available to perform task** area to the **Devices in backup pool** area.
 c. If you have multiple devices in the backup pool, select a device in the **Devices in backup pool** area, and then click **Use earlier** or **Use later** to prioritize it.

Related information

<table>
<thead>
<tr>
<th>For information about...</th>
<th>See...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adding devices</td>
<td>“Adding devices” on page 25</td>
</tr>
<tr>
<td></td>
<td>Device user guide</td>
</tr>
<tr>
<td>Adding tasks in a protocol</td>
<td>“Adding and deleting tasks” on page 51</td>
</tr>
<tr>
<td>Print and Apply task</td>
<td>“Print and Apply” on page 273</td>
</tr>
</tbody>
</table>
Seal (PlateLoc)

Description

The Seal (PlateLoc) task () seals microplates using the PlateLoc Sealer.

Note:

- If you require different sealing temperatures to accommodate different microplate types, Agilent Technologies recommends that you use a different PlateLoc Sealer for each sealing temperature. Using different PlateLoc Sealers that have dedicated temperature settings prevents time lost as the device heats or cools between microplate types.
- The PlateLoc Sealer immediately starts adjusting to the *Startup seal temp* defined in its profile when the profile is initialized. Initialization occurs when the protocol is first run or when you click *Initialize this profile* in the diagnostics dialog box.

<table>
<thead>
<tr>
<th>Task is available for...</th>
<th>Task is available in...</th>
</tr>
</thead>
<tbody>
<tr>
<td>PlateLoc Sealer</td>
<td>Main Protocol</td>
</tr>
</tbody>
</table>

Task parameters

After adding the Seal (PlateLoc) task at the desired point in the protocol, set the following parameters in the *Task Parameters* area:
Device selection

You must select a device for Seal (PlateLoc) tasks. If you have multiple devices of the same type, you can:

- Prioritize the list of devices for the task. If the first device in the list is busy, the software will automatically use the next device in the list. If all of the devices in the list are busy, the task that needs the device will wait until one becomes available.
- Set up a backup pool. If the primary device encounters an error, the software will automatically use the next device in the list. However, if all of the devices in the list are in an error state, the software will automatically use the device in the backup pool.

IMPORTANT The multiple devices must have the same setup and configuration.

After adding the Seal (PlateLoc) task at the desired point in the protocol, select the task, and then click **Device Selection** in the **Task Parameters** area.

To select a device for the task:

1. Double-click a device in the **Devices available to perform task** area to add it to the **Devices involved in task** area.

2. To prioritize its use, select the device in the **Devices involved in task** area, and then click **User earlier** or **Use later**. The devices that are higher in the list are favored by the software scheduler during the protocol run.

3. **Optional.** Select backup devices to use in case all of the devices in the **Devices involved in task** area encounter an error.
 - Select **Devices in backup pool**.

 b Drag one or more devices from the **Devices available to perform task** area to the **Devices in backup pool** area.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seal time</td>
<td>The length of time the hot plate is in contact with the seal material and the microplate.</td>
</tr>
<tr>
<td>Seal temperature</td>
<td>The temperature of the hot plate when the seal cycle starts.</td>
</tr>
</tbody>
</table>
If you have multiple devices in the backup pool, select a device in the Devices in backup pool area, and then click Use earlier or Use later to prioritize it.

Example

Goal
Downstack microplates from a stacking device for liquid-handling tasks on the Vertical Pipetting Station, seal them, and then upstack them to any available stacker.

Implementation
Add a Seal (PlateLoc) task after the Vertical Pipetting Station Subprocess.

Related information

<table>
<thead>
<tr>
<th>For information about...</th>
<th>See...</th>
</tr>
</thead>
</table>
| Adding devices | • "Adding devices" on page 25
 | • Device user guide |
| Adding tasks in a protocol | "Adding and deleting tasks" on page 51 |
| Downstack task | "Mount" on page 262 |
| Upstack task | "Upstack" on page 328 |
Waste

Description

The Waste task (Waste) moves a lid or labware into the waste bin. For example, you can use the Waste task to discard a filter microplate after the Centrifuge task is finished.

<table>
<thead>
<tr>
<th>Task is available for...</th>
<th>Task is available in...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Waste Bin</td>
<td>Main Protocol</td>
</tr>
</tbody>
</table>

Task parameters

After adding the Waste task at the desired point in the protocol, set the following parameters in the Task Parameters area:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device to use</td>
<td>The waste bin device you want to use for the task.</td>
</tr>
<tr>
<td>Location to use</td>
<td>The waste bin location.</td>
</tr>
</tbody>
</table>
Example: Discard filter microplates after filtering process

Goal
Downstack a reservoir (collection microplate) from a Labware Stacker device and place it on a platepad. Downstack a filter microplate from another Labware Stacker device and place it on top of the collection microplate. The assembly (filter microplate with collection microplate) is centrifuged. Remove the filter microplate from the collection microplate and discard it in the waste bin. Upstack the collection microplate containing the elution for future processing.

Implementation
Create one process for the collection microplate (Collection Plate) and another process for the filter microplate (Filter Plate). See “Example: Dismount a filter microplate from a collection microplate” on page 256 for details about the Mount, Dismount, and Wait For tasks.

In the Filter Plate process, add a Waste task after the Wait For task. The Waste task discards the filter microplate after the Centrifuge task is finished.

Related information

<table>
<thead>
<tr>
<th>For information about…</th>
<th>See…</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adding devices</td>
<td>• “Adding devices” on page 25</td>
</tr>
<tr>
<td></td>
<td>• Device user guide</td>
</tr>
<tr>
<td>Adding tasks in a protocol</td>
<td>“Adding and deleting tasks” on page 51</td>
</tr>
<tr>
<td>Downstack task</td>
<td>“Mount” on page 262</td>
</tr>
<tr>
<td>Upstack task</td>
<td>“Upstack” on page 328</td>
</tr>
<tr>
<td>Mount task</td>
<td>“Mount” on page 262</td>
</tr>
<tr>
<td>Dismount task</td>
<td>“Dismount” on page 256</td>
</tr>
<tr>
<td>Microplate-handling tasks</td>
<td>“Setting parameters for microplate-handling tasks” on page 241</td>
</tr>
<tr>
<td>Microplate-storage tasks</td>
<td>“Setting parameters for microplate storage tasks” on page 305</td>
</tr>
<tr>
<td>Liquid-handling tasks</td>
<td>“Setting parameters for liquid-handling tasks” on page 333</td>
</tr>
<tr>
<td>For information about...</td>
<td>See...</td>
</tr>
<tr>
<td>-------------------------</td>
<td>--------</td>
</tr>
<tr>
<td>Scheduling tasks</td>
<td>“Setting parameters for scheduling tasks” on page 459</td>
</tr>
<tr>
<td>I/O-handling tasks</td>
<td>“Setting parameters for I/O-handling tasks” on page 233</td>
</tr>
</tbody>
</table>
8 Setting parameters for microplate-handling tasks

Waste
9 Setting parameters for microplate storage tasks

This chapter contains the following topics:

- “Check First Plate Orientation (Stacker)” on page 306
- “Downstack” on page 307
- “Load” on page 311
- “Reorder” on page 315
- “Scan Stack” on page 319
- “Storage Incubate” on page 321
- “Unload” on page 324
- “Upstack” on page 328
Check First Plate Orientation (Stacker)

Description

The Check First Plate Orientation (Stacker) task performs an orientation check on the first microplate in the specified stack. The task is primarily used in the Startup Protocol to ensure the correct loading of labware before a run starts. The task is especially useful if the labware is in a controlled-environment system and should not be taken out of the environment without operator assistance.

Note: If you want to check orientation of every microplate in the stack during the run, use the Check orientation option in the Labware Editor.

<table>
<thead>
<tr>
<th>Task is available for...</th>
<th>Task is available in...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Labware Stacker (Stacker)</td>
<td>Startup Protocol</td>
</tr>
<tr>
<td></td>
<td>Cleanup Protocol</td>
</tr>
</tbody>
</table>

Task parameters

The Check First Plate Orientation task does not have any task parameters.

Device selection

You must select the device for the Check First Plate Orientation task. After adding the Check First Plate Orientation task at the desired point in the Startup Protocol, select the task, and then click Device Selection in the Task Parameters area.

To select a device for the task:

Double-click the desired device in the Devices available to perform task area to move it to the Devices involved in task area.
Related information

<table>
<thead>
<tr>
<th>For information about...</th>
<th>See...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adding devices</td>
<td>• “Adding devices” on page 25</td>
</tr>
<tr>
<td></td>
<td>• Device user guide</td>
</tr>
<tr>
<td>Adding tasks in a protocol</td>
<td>“Adding and deleting tasks” on</td>
</tr>
<tr>
<td></td>
<td>page 51</td>
</tr>
<tr>
<td>Process plate properties</td>
<td>“Setting plate parameters” on</td>
</tr>
<tr>
<td></td>
<td>page 44</td>
</tr>
<tr>
<td>Microplate-handling tasks</td>
<td>“Setting parameters for microplate</td>
</tr>
<tr>
<td></td>
<td>storage tasks” on page 305</td>
</tr>
<tr>
<td>Liquid-handling tasks</td>
<td>“Setting parameters for liquid-handling</td>
</tr>
<tr>
<td></td>
<td>tasks” on page 333</td>
</tr>
<tr>
<td>Scheduling tasks</td>
<td>“Setting parameters for scheduling</td>
</tr>
<tr>
<td></td>
<td>tasks” on page 459</td>
</tr>
<tr>
<td>I/O-handling tasks</td>
<td>“Setting parameters for I/O-handling</td>
</tr>
<tr>
<td></td>
<td>tasks” on page 233</td>
</tr>
</tbody>
</table>

Downstack

Description

The Downstack task (Downstack) moves labware as follows:

- Out of the bottom of stacking devices such as the Labware Stacker or BenchCel Workstation
- Out of the top of a stack of labware at a Bravo deck location or the Perkin Elmer PlateStaks

For example, you can use the Downstack task to move microplates out of the Stacker and onto a platepad.

You can use a single Downstack task to move labware out of multiple stacking devices. For example, after all the microplates are moved out of one stacker, the Downstack task can continue at a second stacking device.
9 Setting parameters for microplate storage tasks

Downstack

<table>
<thead>
<tr>
<th>Task is available for...</th>
<th>Task is available in...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bravo Platform</td>
<td>Main Protocol, Bravo Subprocess</td>
</tr>
<tr>
<td>BenchCel Workstation</td>
<td>Main Protocol</td>
</tr>
<tr>
<td>Stacker</td>
<td>Main Protocol</td>
</tr>
<tr>
<td>Perkin Elmer PlateStaks</td>
<td>Main Protocol</td>
</tr>
</tbody>
</table>

Requirements

Bravo Platform
To use the Downstack task in a Bravo Subprocess, you must:

- Specify the maximum stack height in the Bravo deck location properties area.
- Add a Scan Stack task for each Downstack task.

BenchCel Workstation
The software always determines a location for a labware before it is downstacked from the BenchCel stacker. If you add a subprocess immediately after a Downstack task, the system will downstack the labware and place it at the location where the first subprocess task will be performed.

If you want to quarantine microplates with the wrong orientation immediately after they are downstacked from a BenchCel stacker, add a Place Plate task immediately after the Downstack task. Doing so ensures that the labware will be quarantined before proceeding to downstream tasks.

For information on how to set up quarantine criteria, see “Setting up automated error responses” on page 537.

Task parameters

After adding the Downstack task at the desired point in the protocol, set the following parameters in the **Task Parameters** area:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Free empty stackers</td>
<td>The option to allow this stacker, when emptied, to become available for Upstack or Reorder tasks.</td>
</tr>
</tbody>
</table>
Device selection

You must select a device for Downstack tasks. If you have multiple devices of the same type, you can prioritize the list of devices for the task. If the first device in the list is busy, the software will automatically use the next device in the list. If all of the devices in the list are busy, the task that needs the device will wait until one becomes available.

IMPORTANT The multiple devices must have the same setup and configuration.

After adding the Downstack task at the desired point in the protocol, select the task, and then click **Device Selection** in the **Task Parameters** area.

To select a device for the task:

1. Double-click a device or deck location in the **Devices available to perform task** area to add it to the **Devices involved in task** area.

2. To prioritize its use, select the device in the **Devices involved in task** area, and then click **User earlier** or **Use later**. The devices that are higher in the list are favored by the software scheduler during the protocol run.

Example: Downstack microplates from Labware Stacker

Goal

Downstack the Destination Plate from Stacker 1 for liquid-handling tasks at the Vertical Pipetting Station. After the stack is emptied, the stack can be used for Upstack and Reorder tasks.

Implementation

Add a Downstack task before the Vertical Pipetting Station Subprocess task that contains the liquid-handling subroutine.
The task parameters and device selections are:

Related information

<table>
<thead>
<tr>
<th>For information about...</th>
<th>See...</th>
</tr>
</thead>
</table>
| Adding devices | • “Adding devices” on page 25
 | • Device user guide |
| Adding tasks in a protocol | “Adding and deleting tasks” on page 51 |
| Scan Stack task | “Scan Stack” on page 319 |
| Upstack task | “Upstack” on page 328 |
| Reorder task | “Reorder” on page 315 |
| Quarantining labware | • “Setting plate parameters” on page 44 |
| | • “Setting up automated error responses” on page 537 |
| Microplate-handling tasks | “Setting parameters for microplate storage tasks” on page 305 |
| Liquid-handling tasks | “Setting parameters for liquid-handling tasks” on page 333 |
Description

The Load task (\(\rightarrow\)) instructs a robot to move a defined set of labware into a storage device.

Note: If you want to move a defined set of labware from one storage device to another, use the Unload task and Load task in sequence. For information about the Unload task, see “Unload” on page 324.

Storage location selections

When you add the Load task, you can select the storage locations in one of the following ways:

- **Native locations.** Native locations are known locations in a device file. For example, if the Plate Hub Carousel is in the device file, you can select a cassette in that carousel for the Load task. When you select a cassette, all 16 slots in the cassette are available for the task. If you have only 10 microplates to load into that cassette, six of the slots will remain empty.

- **Location groups.** Location groups are device locations that are grouped together. For example, a location group can consist of 21 Plate Hub Carousel slots as follows: cassette 3 (all 16 slots) and cassette 7 slots 1 through 5 only. If you want to load exactly 21 microplates, you can select that particular location group.

Labware loading order

Under some circumstances, the original order of the labware in plate groups might not be maintained during the Load tasks:

- If the **Dynamically assign empty slot to load to storage device** option is selected in the Protocol Options, the software will find an empty slot to load labware if the original slot is occupied.
- The software always unloads the first labware in the plate group. For example, if a plate group contains microplates 1 through 5, microplate 1 is unloaded, then microplate 2, and so on. If microplate 1 is loaded back into the plate group before microplate 2 is unloaded, the software will attempt to unload the first in the sequence, microplate 1.

If keeping the original order of labware is important, do one of the following:
- Select the Use original locations option in the Load task parameters. The original storage locations will be reserved and the same labware order is preserved.
- When adding the Unload task preceding a Load task, select the Remove plates from group when processed option so that each labware is removed from the plate group (no longer a member of the plate group) as it is unloaded. This ensures that the labware is unloaded in the expected order. For example, a plate group consists of microplates 1 through 5. When microplate 1 is unloaded, it is removed from the plate group, so that microplate 2 becomes the first microplate in the group. If microplate 1 is loaded back into the plate group location before microplate 2 is unloaded, the software will attempt to unload microplate 2 instead of looking for microplate 1.

When adding the Load task, add the labware to the original plate group. If you select the same plate group for the Load task, the labware will be loaded back into the plate group in the correct sequence.

Task parameters

After adding the Load task at the desired point in the protocol, set the following parameters in the Task Parameters area:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use original locations</td>
<td>The option to move a set of labware back to its original storage location and maintain the original order in storage. For example, if a set of microplates were unloaded from Plate Hub A cassette 3, selecting this option in the Load task would move the microplates back to Plate Hub A cassette 3.</td>
</tr>
</tbody>
</table>
Setting parameters for microplate storage tasks

Load

Example: Load microplates into the Plate Hub Carousel after processing

Goal
Load the destination microplates into Plate Hub Carousel cassette 1 after the specified liquid-handling tasks.

Implementation
Add the Load task after the liquid-handling tasks as shown.

In the Load Task Parameters area, click the Native tab. Select cassette 1 in the Plate Hub Carousel to use the cassette.
Related information

For information about... See...

Adding devices • “Adding devices” on page 25
• Device user guide

Adding tasks in a protocol “Adding and deleting tasks” on page 51

Setting up plate locations and
plate groups in inventory manager

Unload task “Unload” on page 324

Microplate-handling tasks “Setting parameters for microplate
storage tasks” on page 305

Liquid-handling tasks “Setting parameters for liquid-handling
tasks” on page 333

Scheduling tasks “Setting parameters for scheduling
tasks” on page 459

I/O-handling tasks “Setting parameters for I/O-handling
tasks” on page 233
Reorder

Description

The Reorder task (Reorder) collects and incubates labware in a stack and then reverses the order of the labware in a second stack as shown in the following diagram.

You use the Reorder task to:

- Ensure liquid transfers from different source microplates occur in the same order.
- Ensure equal incubation time across all the labware in a stack.
- Minimize evaporation in the labware.

In the example shown, labware is downstacked to a device or deck location where reagents are added. The labware is then upstacked to and incubated in the first of the two reorder stacks. The labware is then moved to a second stack so that the original stack order is maintained. If the labware moves on to a downstream task, the incubation time of the first labware is the same as the last labware to leave the stack. Without the Reorder task, the first labware to move to the next task has the shortest incubation time and the last labware has the longest incubation time.

<table>
<thead>
<tr>
<th>Task is available for...</th>
<th>Task is available in...</th>
</tr>
</thead>
<tbody>
<tr>
<td>BenchCel Workstation</td>
<td>Main Protocol</td>
</tr>
<tr>
<td>Bravo Platform</td>
<td>Main Protocol, Bravo Subprocess</td>
</tr>
<tr>
<td>Stacker</td>
<td>Main Protocol</td>
</tr>
<tr>
<td>Perkin Elmer PlateStaks</td>
<td>Main Protocol</td>
</tr>
</tbody>
</table>
9 Setting parameters for microplate storage tasks

Reorder

Requirements

General
At least two stacking locations are required for the Reorder task. For example, you need at least two Labware Stackers, two BenchCel stacker heads, or two Bravo deck locations.

Bravo Platform
To use the Reorder task in a Bravo Subprocess, you must:
• Select the desired stacking options in the Bravo profile.
• Specify the maximum stack height in the Bravo deck location properties area.
• Add two Scan Stack tasks for each pair of stacking locations used in the task.

PlateStaks
Be sure to add two Scan Stack tasks for each pair of PlateStaks locations.

Task parameters
After adding the Reorder task at the desired point in the protocol, set the following parameters in the Task Parameters area:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plate storage time</td>
<td>The length of time to incubate the labware in the collection stack.</td>
</tr>
<tr>
<td>Number of plates to store</td>
<td>The maximum number of labware allowed in the collection stack for incubation. Note: This value can affect the timing of the incubation. For example, if the time taken to move all labware to the first reorder stack is greater than the time specified for the incubation, the first labware cannot be moved to the next task in time. To resolve this problem, reduce the number of labware to store and add more stackers.</td>
</tr>
</tbody>
</table>
Device selection

You must select a device for Reorder tasks. If you have multiple devices of the same type, you can prioritize the list of devices for the task. If the first device in the list is busy, the software will automatically use the next device in the list. If all of the devices in the list are busy, the task that needs the device will wait until one becomes available.

IMPORTANT The multiple devices must have the same setup and configuration.

After adding the Reorder task at the desired point in the protocol, select the task, and then click **Device Selection** in the **Task Parameters** area.

To select a device for the task:

1. Double-click a device or deck location in the **Devices available to perform task** area to add it to the **Devices involved in task** area.

 Note: If you want the software to dynamically move labware to available stackers, double-click **Dynamically assigned** in the **Devices available to perform task** area. You can check the run log to determine the location of the labware in the various stackers.

2. To prioritize its use, select the device in the **Devices involved in task** area, and then click **User earlier** or **Use later**. The devices that are higher in the list are favored by the software scheduler during the protocol run.

![Device Selection Interface]

Example: Reorder microplates before reading them

Goal

Aspirate contents from two source microplates, dispense into a destination microplate. Incubate the destination microplate for at least 20 minutes. Rearrange the microplate order to the original sequence, and then read the microplates.
9 Setting parameters for microplate storage tasks

Reorder

Implementation

In the protocol, add a liquid-handling subprocess to specify the tasks for adding the contents from the two source microplates into the destination microplate. Add a Reorder task after the liquid-handling tasks and before the microplate-reading task as shown in the following example.

For the Reorder task, select two stacking devices to use, and then set the Plate storage time to 20 minutes in the Task Parameters area as shown in the following examples.

Related information

For information about... See...

Adding devices
- “Adding devices” on page 25
- Stacking device guide

Adding tasks in a protocol
- “Adding and deleting tasks” on page 51

Scan Stack task
- “Scan Stack” on page 319

Downstack task
- “Downstack” on page 307

Upstack task
- “Upstack” on page 328
For information about... See...
Microplate-handling tasks “Setting parameters for microplate storage tasks” on page 305
Liquid-handling tasks “Setting parameters for liquid-handling tasks” on page 333
Scheduling tasks “Setting parameters for scheduling tasks” on page 459
I/O-handling tasks “Setting parameters for I/O-handling tasks” on page 233

Scan Stack

Description
The Scan Stack task (ScanStack) scans a specified Bravo deck location to confirm the presence or absence of labware and determine the height of the stack. You must add one Scan Stack task for each Downstack or Upstack task, and at least two Scan Stack tasks for each Reorder task in the Bravo Subprocess.

<table>
<thead>
<tr>
<th>Task is available for...</th>
<th>Task is available in...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bravo Platform</td>
<td>Startup Protocol</td>
</tr>
<tr>
<td></td>
<td>Cleanup Protocol</td>
</tr>
<tr>
<td>Perkin Elmer PlateStaks</td>
<td>Main Protocol</td>
</tr>
</tbody>
</table>

Task parameters
After adding the Scan Stack task at the desired point in the protocol, set the following parameters in the Task Parameters area:

Parameter	Description
Device to use | The Bravo Platform on which the stacking will occur.
Example

Goal
Add the correct number of Scan Stack tasks to permit downstacking of microplates from deck location 4 for liquid-handling tasks. Add the correct number of Scan Stack tasks to permit uploading of those microplates to deck location 7 after processing.

Implementation
In the Startup Protocol, add two Scan Stack tasks: one to scan deck location 4 (where the microplates will be downstacked), and one to scan deck location 9 where the microplates will be upstacked.

Related information

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Location to use</td>
<td>The the deck location to be scanned.</td>
</tr>
<tr>
<td></td>
<td>If the deck location will be used for a Downstack task, the robot will scan the stack to confirm the presence of the stack and determine its height.</td>
</tr>
<tr>
<td></td>
<td>If the deck location will be used for an Upstack task, the robot will scan the location to confirm that it is empty and ready to receive labware.</td>
</tr>
</tbody>
</table>

For information about... See...

- Adding devices
 - “Adding devices” on page 25
 - Device user guide
- Adding tasks in a protocol
 - “Adding and deleting tasks” on page 51
- Downstack task
 - “Downstack” on page 307
- Upstack task
 - “Upstack” on page 328
- Microplate-handling tasks
 - “Setting parameters for microplate storage tasks” on page 305
- Liquid-handling tasks
 - “Setting parameters for liquid-handling tasks” on page 333
- Scheduling tasks
 - “Setting parameters for scheduling tasks” on page 459
Storage Incubate

Description

The Storage Incubate task moves a defined set of labware into a storage device, leaves it there for a specified time period, and then moves it out of the storage device.

Note:
- To incubate labware on a platepad, in a Plate Hotel, or in a Vertical Pipetting Station, use the Incubate task.
- To incubate labware on the Bravo Platform, use the Reserve Location task.

<table>
<thead>
<tr>
<th>Task is available for...</th>
<th>Task is available in...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plate Hub Carousel</td>
<td>Main Protocol</td>
</tr>
<tr>
<td>Heraeus Cytomat incubator</td>
<td>Main Protocol</td>
</tr>
<tr>
<td>LiConic StoreX incubator</td>
<td>Main Protocol</td>
</tr>
</tbody>
</table>

Task parameters

After adding the Storage Incubate task at the desired point in the protocol, set the following parameters in the Task Parameters area:
9 Setting parameters for microplate storage tasks

Storage Incubate

Example: Incubate destination microplates in the Plate Hub Carousel

Goal
Aspirate contents from two source microplates and dispense into a destination microplate. Incubate the destination microplate in the Plate Hub Carousel for 5 minutes before reading the microplates.
Implementation
In the protocol, add a liquid-handling subprocess to specify the tasks for moving contents from the two microplates into the destination microplates. Add a Storage Incubate task after the liquid-handling subprocess and before the microplate-reading task as shown in the following example.

In the Storage Incubate Task Parameters area, set the Length of incubation at 5 minutes as shown in the following example. The example assumes that cassettes 1 and 2 are available for use.

Related information

For information about... See...
Adding devices
• “Adding devices” on page 25
• Device user guide
Adding tasks in a protocol
“Adding and deleting tasks” on page 51
Incubate task
“Incubate” on page 258
Reserve Location task
“Reserve Location” on page 292
Unload

Description

The Unload task (⊆ unload) instructs a robot to move a defined set of labware out of a storage device.

Note: If you want to move a defined set of labware from one storage device to another, use the Unload task and Load task in sequence. For information about the Load task, see “Load” on page 311.

<table>
<thead>
<tr>
<th>Task is available for...</th>
<th>Task is available in...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plate Hub Carousel</td>
<td>Main Protocol</td>
</tr>
<tr>
<td>Heraeus Cytomat incubator</td>
<td>Main Protocol</td>
</tr>
<tr>
<td>LiConic StoreX incubator</td>
<td>Main Protocol</td>
</tr>
</tbody>
</table>

Storage location selections

When you add the Unload task, you can select the storage locations in one of the following ways:

- **Native locations.** Native locations are known locations in a device file. For example, if the Plate Hub Carousel is in the device file, you can select a cassette in that carousel for the Load task. When you select a cassette, all 16 slots in the cassette are available for the task. If you only have 10 microplates to load into that cassette, six of the slots will remain empty.

- **Location groups.** Location groups are device locations that are grouped together. For example, a location group can consist of 21 Plate Hub Carousel slots as follows: cassette 3 (all 16 slots) and cassette 7 slots 1 through 5 only. If you want to load exactly 21 microplates, you can select that particular location group.
• Plate groups. Plate groups are labware that are grouped together. Each group member has location information. So when you add the Unload task and select a plate group, the software knows where to go to unload the labware.

Unload parameters that affect labware order

The software always unloads the first labware in the plate group. For example, if a plate group contains microplates 1 through 5, microplate 1 is unloaded, then microplate 2, and so on. If microplate 1 is loaded back into the plate group location before the labware 2 is unloaded, the software will attempt to unload the first in the sequence, labware 1.

If you plan to load any unloaded plate groups back in storage devices in the same order, do one of the following:

• Select the Use original locations option in the Load task parameters. The original storage locations will be reserved and the same labware order is preserved.
• When adding the Unload task, select the Remove plates from group when processed option. When adding the Load task, either add the labware to the original plate group, or create a new plate group and add the labware to the new group. During the unload, the labware is removed from the plate group so that the software will seek the next labware in the group. If you select the same plate group for the Load task, the labware will be loaded back into the plate group at the bottom of the sequence.

Task parameters

After adding the Unload task at the desired point in the protocol, set the following parameters in the Task Parameters area:
9 Setting parameters for microplate storage tasks

Unload

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Native tab</td>
<td>The tab that allows you to select the storage locations from a list of known locations in the device file. Double-click a location in the Available locations area. The selected location appears in the Assigned locations area.</td>
</tr>
<tr>
<td>Locations tab</td>
<td>The tab that allows you to select locations from a list of location groups. The location groups are created in the Inventory Editor. Double-click a location group in the Available locations area. The selected location group appears in the Assigned locations area. To view or revise existing location groups, click Edit location groups.</td>
</tr>
<tr>
<td>Groups tab</td>
<td>The tab that allows you to select a plate group that you want to move out of storage. Double-click a plate group in the Available groups area. The selected plate group appears in the Assigned locations area. To view or revise existing plate groups, click Edit plate groups.</td>
</tr>
<tr>
<td>Remove plates</td>
<td>The option to remove the specified labware from a plate group after the labware is moved out of storage.</td>
</tr>
<tr>
<td>from group</td>
<td></td>
</tr>
<tr>
<td>when processed</td>
<td></td>
</tr>
</tbody>
</table>

Note: A compiler error will appear if you try to unload from a plate group (Groups tab) and another storage location type (Native tab or Locations tab).

Example: Unload microplates from the Plate Hub Carousel for processing

Goal
Unload the specified microplates from Plate Hub Carousel cassette 1 in preparation for liquid-handling tasks.

Implementation
In the protocol, add the Unload task before the liquid-handling tasks as shown.
In the Unload Task Parameters area, click the Native tab. Select cassette 1 in the Plate Hub Carousel to use the cassette.

Related information

<table>
<thead>
<tr>
<th>For information about...</th>
<th>See...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adding devices</td>
<td>“Adding devices” on page 25</td>
</tr>
<tr>
<td></td>
<td>Device user guide</td>
</tr>
<tr>
<td>Adding tasks in a protocol</td>
<td>“Adding and deleting tasks” on page 51</td>
</tr>
<tr>
<td>Setting up plate locations and plate groups in inventory manager</td>
<td>VWorks Automation Control Setup Guide</td>
</tr>
<tr>
<td>Load task</td>
<td>“Load” on page 311</td>
</tr>
<tr>
<td>Microplate-handling tasks</td>
<td>“Setting parameters for microplate storage tasks” on page 305</td>
</tr>
<tr>
<td>Liquid-handling tasks</td>
<td>“Setting parameters for liquid-handling tasks” on page 333</td>
</tr>
<tr>
<td>Scheduling tasks</td>
<td>“Setting parameters for scheduling tasks” on page 459</td>
</tr>
<tr>
<td>I/O-handling tasks</td>
<td>“Setting parameters for I/O-handling tasks” on page 233</td>
</tr>
</tbody>
</table>
Setting parameters for microplate storage tasks

Upstack

Description

The Upstack task (upstack) moves labware as follows:

- Into the bottom of stacking devices such as the Labware Stacker or the BenchCel Workstation
- Onto the top of a stack of labware at a Bravo deck location or the Perkin Elmer PlateStaks

For example, you can use the Upstack task to move a microplate from a platepad into the Labware Stacker.

You can use a single Upstack task to move labware into multiple stacking devices. For example, if three stackers are available, the upstack task can dynamically move microplates into any of the three stacking devices.

<table>
<thead>
<tr>
<th>Task is available for...</th>
<th>Task is available in...</th>
</tr>
</thead>
<tbody>
<tr>
<td>BenchCel Workstation</td>
<td>Main Protocol</td>
</tr>
<tr>
<td>Bravo Platform</td>
<td>Main Protocol, Bravo Subprocess</td>
</tr>
<tr>
<td>Stacker</td>
<td>Main Protocol</td>
</tr>
<tr>
<td>Perkin Elmer PlateStaks</td>
<td>Main Protocol</td>
</tr>
</tbody>
</table>

Requirements

Bravo Pipettor

To use the Upstack task in a Bravo Subprocess, you must:

- Select the desired stacking options in the Bravo profile.
- Specify the maximum stack height in the Bravo deck location properties area.
- Add a Scan Stack task for each Upstack task.
Task parameters

The Upstack task does not have any task parameters.

Device selection

You must select a device for Upstack tasks. If you have multiple devices of the same type, you can prioritize the list of devices for the task. If the first device in the list is busy, the software will automatically use the next device in the list. If all of the devices in the list are busy, the task that needs the device will wait until one becomes available.

IMPORTANT The multiple devices must have the same setup and configuration.

After adding the Upstack task at the desired point in the protocol, select the task, and then click **Device Selection** in the **Task Parameters** area.

To select a device for the task:

1. Double-click a device or deck location in the **Devices available to perform task** area to add it to the **Devices involved in task** area.

 Note: If you want the software to dynamically move labware to available stackers, double-click **Dynamically assigned** in the **Devices available to perform task** area. You can check the run log to determine the location of the labware in the various stackers.

2. To prioritize its use, select the device in the **Devices involved in task** area, and then click **Use earlier** or **Use later**. The devices that are higher in the list are favored by the software scheduler during the protocol run.

Example 1: Dynamically upstack microplates into a stacking device

Goal

After the Destination Plate is finished with the Bravo liquid-handling process, upstack it to any available stacker.
Implementation
Add a Upstack task after the Bravo Subprocess task that contains the liquid-handling sub-routine.

The device selection is:

Example 2: Stacking on the Bravo Platform

Goal
Downstack microplates for liquid-handling process, then upstack them.

Implementation
The protocol is set up as follows:
- A stack of microplates (Process Plates) is at deck location 4.
- A tip box (Tip Box) is configured at deck location 6.
- A Manual Fill Reservoir (Reservoir) is configured at deck location 9.
- The Startup Protocol (not shown) contains Scan Stack tasks for deck locations 4 (where the stack starts) and 7 (where the stack will end up after upstacking).
The protocol performs the following:

1. The robot scans deck location 4 to confirm the presence of the stack and determines the number of microplates. (The Scan Stack task in the Startup Protocol, not shown, performs this task.)

2. The robot scans deck location 7 to confirm the absence of labware. (The Scan Stack task in the Startup Protocol, not shown, performs this task.)

3. The top-most Process Plate is downstacked from deck location 4 to deck location 1.
 By default, when the <auto-select> location is selected for a process plate task, the process plates are always placed or downstacked at deck location 1. If deck location 1 is occupied, the process plate will be placed or downstacked at the next-available location.

4. Tips are installed on the pipette head at deck location 6.

5. The robot aspirates solution from the Reservoir at deck location 9.

6. The robot dispenses the solution into the Process Plate at deck location 1.

7. The robot mixes the solution in the Process Plate at deck location 1.

8. The pipette tips are removed at the Tip Box at deck location 6.

9. The Process Plate at deck location 1 is upstacked to deck location 7.

10. Steps 1 through 8 is repeated for each Process Plate stacked at deck location 4.

Related information

<table>
<thead>
<tr>
<th>For information about...</th>
<th>See...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adding devices</td>
<td>“Adding devices” on page 25</td>
</tr>
<tr>
<td>Adding tasks in a protocol</td>
<td>“Adding and deleting tasks” on page 51</td>
</tr>
<tr>
<td>Scan Stack task</td>
<td>“Scan Stack” on page 319</td>
</tr>
<tr>
<td>Downstack task</td>
<td>“Downstack” on page 307</td>
</tr>
<tr>
<td>For information about...</td>
<td>See...</td>
</tr>
<tr>
<td>-------------------------</td>
<td>-------</td>
</tr>
<tr>
<td>Microplate-handling tasks</td>
<td>“Setting parameters for microplate storage tasks” on page 305</td>
</tr>
<tr>
<td>Liquid-handling tasks</td>
<td>“Setting parameters for liquid-handling tasks” on page 333</td>
</tr>
<tr>
<td>Scheduling tasks</td>
<td>“Setting parameters for scheduling tasks” on page 459</td>
</tr>
<tr>
<td>I/O-handling tasks</td>
<td>“Setting parameters for I/O-handling tasks” on page 233</td>
</tr>
</tbody>
</table>
10
Setting parameters for liquid-handling tasks

This chapter describes the Bravo and Vertical Pipetting Station liquid-handling tasks you can add in a protocol:

- “SubProcess (Bravo, Vertical Pipetting Station)” on page 334
- “Aspirate (Bravo, Vertical Pipetting Station)” on page 338
- “Assemble Vacuum (Bravo)” on page 346
- “Dilute to Final Volume (Bravo)” on page 349
- “Disassemble Vacuum (Bravo)” on page 356
- “Dispense (Bravo, Vertical Pipetting Station)” on page 358
- “Evaporate (Bravo)” on page 366
- “Hit Pick Replication (Bravo)” on page 368
- “Mix (Bravo, Vertical Pipetting Station)” on page 398
- “Move and Filter Plate (Bravo)” on page 406
- “Pin Tool (Bravo, Vertical Pipetting Station)” on page 413
- “Pump Reagent (Bravo, Vertical Pipetting Station)” on page 422
- “Serial Dilution (Bravo, Vertical Pipetting Station)” on page 425
- “Set Head Mode (Bravo)” on page 431
- “Shake (Bravo, Vertical Pipetting Station)” on page 438
- “Tips Off (Bravo, Vertical Pipetting Station)” on page 441
- “Tips On (Bravo, Vertical Pipetting Station)” on page 444
- “Toggle Vacuum (Bravo, Vertical Pipetting Station)” on page 447
- “Wash Tips (Bravo, Vertical Pipetting Station)” on page 452
SubProcess (Bravo, Vertical Pipetting Station)

Description

The Subprocess (Bravo) and Subprocess (Vertical Pipetting Station) tasks indicate the start of a protocol subroutine that employs either the Bravo Platform or the Vertical Pipetting Station. Within the subprocess, you can add tasks that are unique to the device. You can expand or collapse the subprocess to show or hide the subprocess tasks.

IMPORTANT All Bravo or Vertical Pipetting Station liquid-handling tasks must be added within a Bravo or Vertical Pipetting Station Subprocess respectively.

<table>
<thead>
<tr>
<th>Task is available for...</th>
<th>Task is available in...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bravo Platform</td>
<td>Main Protocol</td>
</tr>
<tr>
<td>Vertical Pipetting Station</td>
<td>Main Protocol</td>
</tr>
</tbody>
</table>

Task parameters

IMPORTANT The latest version of the VWorks software is backward-compatible with protocols created in VWorks4 version 6.2.3 or earlier and will continue to support static labware configuration procedures. However, Agilent Technologies recommends that you use the concepts and procedure in “Configuring labware” on page 38 when writing new protocols.

After adding the Subprocess task at the desired point in the protocol, you have the option of assigning static labware to locations on a device. You assign static labware in the subprocess to override the static labware configuration in the Startup Protocol. For more information about static labware, see “Planning labware use” on page 20.

To assign static labware to locations on the device, set the following parameters in the **Task Parameters** area:
Device selection

You must select a device for Subprocess tasks. If you have multiple devices of the same type, you can:

- Prioritize the list of devices for the task. If the first device in the list is busy, the software will automatically use the next device in the list. If all of the devices in the list are busy, the task that needs the device will wait until one becomes available.

- Set up a backup pool. If the primary device encounters an error, the software will automatically use the next device in the list. However, if all of the devices in the list are in an error state, the software will automatically use the device in the backup pool.

IMPORTANT The multiple devices must be configured with the same static labware and accessories, and all the accessories must have identical setups.

After adding the Subprocess task at the desired point in the protocol, select the task, and then click **Device Selection** in the **Task Parameters** area.

To select a device for the task:

1. Double-click the desired device (deck location or shelf) in the **Devices available to perform task** area to move it to the **Devices involved in task** area. If you have multiple devices of the same type, you can move them to the **Devices involved in task** area.

2. If you have multiple devices in the **Devices involved in task** area, select a device, and then click **Use earlier** or **Use later** to prioritize it.

3. **Optional.** Select backup devices to use in case all of the devices in the **Devices involved in task** area encounter an error.
 - Select **Devices in backup pool**.
 - Drag one or more devices from the **Devices available to perform task** area to the **Devices in backup pool** area.
 - If you have multiple devices in the backup pool, select a device in the **Devices in backup pool** area, and then click **Use earlier** or **Use later** to prioritize it.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subprocess name</td>
<td>The name of the subprocess. Select from the list of available subprocesses currently in the protocol.</td>
</tr>
<tr>
<td>Display confirmation</td>
<td>The option to display a message at the beginning of the protocol run and the subprocess to remind you to verify the physical locations of the labware match what you specified in the software.</td>
</tr>
<tr>
<td>Location/Shelf n</td>
<td>The Bravo deck locations or Vertical Pipetting Station shelves. Select the labware for the specific locations or shelves.</td>
</tr>
</tbody>
</table>
Subprocess Order

If more than one sub-process uses the same configured labware, and the sub-processes are in different protocol processes, you can specify the sequence in which the sub-processes will be performed.

To specify the sequence in which the sub-processes will be performed on the same configured labware:

1. In the protocol process, select the sub-process that contains the task that uses the configured labware.

 In the following example, the Bravo Subprocess named Dilute is selected.

2. In the Task Parameters area, click Sub Process Order.

3. In the Sub Process Order area, double-click the subprocess names to rearrange the order.
In the following example, the Dilute subprocess is selected. So the task sequence will be Replicate subprocess, followed by the Dilute subprocess.

Related information

<table>
<thead>
<tr>
<th>For information about...</th>
<th>See...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Configured labware</td>
<td>“Planning labware use” on page 20</td>
</tr>
<tr>
<td>Static labware</td>
<td>“Planning labware use” on page 20</td>
</tr>
<tr>
<td>Startup Protocol</td>
<td>“Setting up Startup and Cleanup Protocol processes” on page 58</td>
</tr>
</tbody>
</table>
| Adding devices | • “Adding devices” on page 25
 | • Device user guide |
| Adding tasks in a protocol | “Adding and deleting tasks” on page 51 |
| Microplate-handling tasks | “Setting parameters for microplate-handling tasks” on page 241 |
| Microplate-storage tasks | “Setting parameters for microplate storage tasks” on page 305 |
| Liquid-handling tasks | “Setting parameters for liquid-handling tasks” on page 333 |
| Scheduling tasks | “Setting parameters for scheduling tasks” on page 459 |
| I/O-handling tasks | “Setting parameters for I/O-handling tasks” on page 233 |
Aspirate (Bravo, Vertical Pipetting Station)

Description

The Aspirate (Bravo) and Aspirate (Vertical Pipetting Station) tasks draw liquid from a microplate or reservoir.

Task parameters

Note: The task parameters for Aspirate (Bravo) and Aspirate (Vertical Pipetting Station) are identical.

After adding the Aspirate task at the desired point in the protocol, set the following parameters in the **Task Parameters** area:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Location, plate</td>
<td>The labware involved in the Aspirate task.</td>
</tr>
</tbody>
</table>

Task is available for...

<table>
<thead>
<tr>
<th>Bravo Platform</th>
<th>Main Protocol, Bravo Subprocess</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vertical Pipetting Station</td>
<td>Main Protocol, Vertical Pipetting Station Subprocess</td>
</tr>
</tbody>
</table>
Parameter Description

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Location, location</td>
<td>The location at which the Aspirate task occurs. <auto-select> automatically places the labware at the first-available or appropriate location for the task. If accessories are installed on the deck or shelf, the software uses the accessory configuration information in Bravo Diagnostics or Vertical Pipetting Station Diagnostics to determine the correct location for the task.</td>
</tr>
<tr>
<td>Volume (µL)</td>
<td>The volume of liquid to be drawn into each pipette tip.</td>
</tr>
<tr>
<td>Pre-aspirate volume (µL)</td>
<td>The volume of air to be drawn before the pipette tips enter the liquid.</td>
</tr>
<tr>
<td>Post-aspirate volume (µL)</td>
<td>The volume of air to be drawn after the liquid is drawn.</td>
</tr>
<tr>
<td>Liquid class</td>
<td>The pipetting speed and accuracy.</td>
</tr>
<tr>
<td>IMPORTANT</td>
<td>To ensure consistent pipetting, always select a liquid class for liquid-handling tasks.</td>
</tr>
<tr>
<td>Distance from well bottom (0–100 mm)</td>
<td>The distance between the end of the pipette tips and the well bottoms during the Aspirate task.</td>
</tr>
<tr>
<td></td>
<td>If you specify dynamic tip extension, this is the distance at the end of the Aspirate task.</td>
</tr>
<tr>
<td>IMPORTANT</td>
<td>The labware definition must be accurate and the teachpoint must be precise in order for the system to position the tips at the correct distance from the well bottom.</td>
</tr>
</tbody>
</table>
Dynamic tip extension (0–20 mm/µL)

The rate at which the pipette head moves during the Aspirate task. The software calculates the distance over which the tips will move without crashing.

Use dynamic tip extension to prevent spills as the pipette tips displace the liquid.

To move the tips:

- *At the same rate as the volume change.*

 Calculate dynamic tip extension (DTE) as follows:

 \[DTE = \frac{\text{well depth}}{\text{well vol}} = \frac{1}{A} \]

 where \(A \) is the cross-sectional area of a well with straight walls

- *Faster than the volume change.*

 \[DTE > \frac{1}{A} \]

- *Slower than the volume change.*

 \[DTE < \frac{1}{A} \]

The starting and ending positions can be calculated as follows:

\[(V_{\text{aspirated}} \times DTE) + \text{Distance}_{\text{well bottom}} \]

Note: Instead of a negative aspirated volume, the software automatically moves downward toward the well bottom with each aspirate action.

Well selection

The wells at which the Aspirate task occurs. Click in the parameter box, and then click the Browse button to select the wells in the Well Selection dialog box.

Use this parameter only if the pipette head has fewer tips than the number of wells in the microplate, or if you are in single-row or single-column mode.

Pipette technique

The pipette location offset you want to use for the Aspirate task.

The list of pipette techniques are defined in the Pipette Technique Editor.

Perform tip touch

The option to touch the pipette tip on one or more sides of the well.

Which sides to use for tip touch

The side or sides of the well to use during tip touch: North, South, East, West, North/South, West/East, West/East/South/North.

Tip touch retract distance (–20 to 50 mm)

The vertical distance for the pipette tips to rise before touching the sides of the wells.
Tip touch horizontal offset

The horizontal distance the tips move. The value is based on the well diameter specified by the labware definition.

For example, if you set a value of:
- 0, the tips move a horizontal distance equal to the well radius
- > 0, the tips attempt to move past the well radius, which results in a more forceful tip touch
- < 0, the tips move a distance less than the radius of the well, resulting in a lighter tip touch

Quadrant pattern well selection

A quadrant is an evenly spaced array of locations that are accessible by the tips on a pipette head. The following table lists the types of pipette heads and the number of accessible quadrants in various microplates.

<table>
<thead>
<tr>
<th>Pipette head channels/ pin tool pins</th>
<th>Microplate</th>
<th>Number of quadrants</th>
</tr>
</thead>
<tbody>
<tr>
<td>96</td>
<td>96-well</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>384-well</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>1536-well</td>
<td>16</td>
</tr>
<tr>
<td>384</td>
<td>384-well</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>1536-well</td>
<td>4</td>
</tr>
<tr>
<td>1536 (pin tool only)</td>
<td>1536-well</td>
<td>1</td>
</tr>
</tbody>
</table>

The following diagram demonstrates the concept of quadrants. The diagram shows a portion of a 384-well microplate and highlights the four quadrants (Q1, Q2, Q3, and Q4) that are accessible by the A1 tip of a 96-channel pipette head. Notice that the green color highlights all of the quadrant 1 (Q1) wells across the microplate.
Instead of a column- or row-wise pattern, you can select a quadrant pattern during well selection.

The quadrant pattern option is available only if:

- The number of channels in the pipette head (or pins in a pin tool) is fewer than the number of wells in the microplate. For example, you can use a 96-channel pipette head to dispense liquid into a 384-well microplate or 1536-well microplate.

- All the channels are selected in the Set Head Mode task when using a pipette head. (The Set Head Mode task is not an option when using a pin tool).

- The liquid-handling task is inside a loop.

IMPORTANT If you select a quadrant pattern, specifications in the Well Selection dialog box will override task.WellSelection values assigned in the Advanced Settings area.

To select a quadrant pattern:

1. In the Task Parameters area, click the Well selection parameter box, and then click the Browse button. The Well Selection dialog box opens. By default, the Normal well selection option is selected. This option is used for column- and row-wise liquid-handling patterns.

2. Select Quadrant pattern in a loop. The contents of the dialog box change. Notice the following:

 - Red numbers (1 through 4) appear on wells A1, A2, B1, and B2. The numbers indicate the pipetting sequence: 1 is the starting well, and 4 is the last well. In the following example, the sequence is A1, A2, B1, B2.
 - Green wells indicate the starting well in the pipetting sequence.
 - Pattern buttons at the bottom of the dialog box indicate the movement of the pipette channels. The movement description is provided in the text box above the buttons.

 Note: The last two patterns are unavailable if a group contains 16 wells. For example, the last two patterns are not available if you have a 96-well pipette head and a 1536-well microplate.
3 Select the starting well. The well becomes green and is labeled 1. In the following example, the third quadrant (B1 well) is selected.

4 Click a pattern button to specify the pipette channel movement. After you click a pattern, the red numbers in the graphic are updated to show the sequence.

In the following example, the second pattern is selected (right-to-left, then top-to-bottom). The third quadrant (B1) is the starting well. The resulting movement is:

Quadrant 3 (B1)
Quadrant 2 (A2)
Quadrant 1 (A1)
Quadrant 4 (B2)
5 When you are finished, click OK to save the changes and return to the VWorks window.

Example: Aspirate from a source microplate on the Bravo Platform

Goal
Aspirate contents from a source microplate (Source 1) and dispense into a destination microplate.

Implementation
The Bravo deck is physically set up as follows:
- The destination microplates are at Bravo deck location 1.
- The source microplate is at deck location 2.
- The tipbox is at deck location 9.
In the protocol, the following are added:
- Process for the destination microplate
- Configured labware for the source microplate
- Configured labware for the tipbox
In the Destination plate process, a Bravo subprocess is added. Within the subprocess, an Aspirate task and a Dispense task are added as shown in the following example.

In the Aspirate Task Parameters area, Source 1 is selected, because the goal is to aspirate from that microplate.
Related information

<table>
<thead>
<tr>
<th>For information about...</th>
<th>See...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adding devices</td>
<td>“Adding devices” on page 25</td>
</tr>
<tr>
<td></td>
<td>• Device user guide</td>
</tr>
<tr>
<td>Adding tasks in a protocol</td>
<td>“Adding and deleting tasks” on page 51</td>
</tr>
<tr>
<td>Liquid classes</td>
<td>VWorks Automation Control Setup Guide</td>
</tr>
<tr>
<td>Pipette techniques</td>
<td>“Specifying pipetting techniques” on page 499</td>
</tr>
<tr>
<td>Dispense task</td>
<td>“Dispense (Bravo, Vertical Pipetting Station)” on page 358</td>
</tr>
<tr>
<td>Set Head Mode task</td>
<td>“Set Head Mode (Bravo)” on page 431</td>
</tr>
<tr>
<td>Tips On task</td>
<td>“Tips On (Bravo, Vertical Pipetting Station)” on page 444</td>
</tr>
<tr>
<td>Tips Off task</td>
<td>“Tips Off (Bravo, Vertical Pipetting Station)” on page 441</td>
</tr>
<tr>
<td>Microplate-handling tasks</td>
<td>“Setting parameters for microplate-handling tasks” on page 241</td>
</tr>
<tr>
<td>Microplate-storage tasks</td>
<td>“Setting parameters for microplate storage tasks” on page 305</td>
</tr>
</tbody>
</table>
Assemble Vacuum (Bravo)

Description

The Assemble Vacuum task () directs the robot to pick up the Vacuum Filtration Station components from designated deck locations and stack them in the order you specify.

The task is used in conjunction with the following tasks:

- Disassemble Vacuum
- Move and Filter Plate, or Toggle Vacuum

Supported configurations

To accommodate different assay types, the Bravo Platform supports the Vacuum Filtration Station configurations shown in the diagram. Note the following:

- **Configuration A.** The filter microplate is part of the station assembly. The assembly process can be automated during the protocol run. The filtrate in the collection microplate is retained.

- **Configuration B.** The filter microplate is not part of the station assembly. The assembly process can be automated during the protocol run. The robot will move the filter microplate to the station after the assembly process is finished. The filtrate in the collection microplate is retained.

- **Configuration C.** The basic configuration that must be assembled before a protocol run (assembly is not automated, so the Assembly and Disassembly tasks are not used). The filter microplate is not part of the station assembly. The robot will move the filter microplate to the station during the protocol run. The filtrate is discarded.
Requirements

To use the Assemble Vacuum (Bravo) task, you must first:

- Configure the Vacuum Filtration Station in Bravo Diagnostics.
- Set the robot gripper offset for labware that will be placed on the Vacuum Filtration Station during a protocol run. You set the offset in the Labware Editor.

Task parameters

After adding the Assemble Vacuum (Bravo) task at the desired point in the protocol, set the following parameters in the Task Parameters area:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assembly order</td>
<td>The order, from bottom to top, in which you want to stack the station components. The selections are:</td>
</tr>
<tr>
<td></td>
<td>• Base-Collection plate-Filter plate-Collar (configuration A)</td>
</tr>
<tr>
<td></td>
<td>• Base-Collection plate-Collar (configuration B)</td>
</tr>
<tr>
<td></td>
<td>• Base-Collar (configuration C)</td>
</tr>
<tr>
<td>Collection Plate, plate</td>
<td>The type of microplate for collecting the filtrate.</td>
</tr>
</tbody>
</table>
Parameter Description

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Collection Plate, location</td>
<td>The location of the collection microplate. Select the deck location of the collection microplate. Select <auto-select> only if the software knows of the collection microplate location (for example, if you used a Place Plate task earlier in the protocol to specify its location).</td>
</tr>
<tr>
<td>Filter Plate, plate</td>
<td>The type of microplate used for the filtering process.</td>
</tr>
<tr>
<td>Filter Plate, location</td>
<td>The location of the filtering microplate. Select the deck location of the filter microplate. Select <auto-select> only if the software knows of the filter microplate location (for example, if you used a Place Plate task earlier in the protocol to specify its location).</td>
</tr>
<tr>
<td>Vacuum Filtration base</td>
<td>The location of the Vacuum Filtration Station base.</td>
</tr>
</tbody>
</table>

Examples:

See the example in:
- “Move and Filter Plate (Bravo)” on page 406
- “Toggle Vacuum (Bravo, Vertical Pipetting Station)” on page 447

Related information

<table>
<thead>
<tr>
<th>For information about...</th>
<th>See...</th>
</tr>
</thead>
</table>
| Adding devices | • “Adding devices” on page 25
 | • Bravo Automated Liquid Handling Platform User Guide |
| Adding tasks in a protocol | “Adding and deleting tasks” on page 51 |
| Configuring the Vacuum Filtration Station | Bravo Automated Liquid Handling Platform User Guide |
| Setting the robot gripper offset in the Labware Editor | VWorks Automation Control Setup Guide |
| Move and Filter Plate task | “Move and Filter Plate (Bravo)” on page 406 |
| Toggle task | “Toggle Vacuum (Bravo, Vertical Pipetting Station)” on page 447 |
| Disassemble Vacuum (Bravo) task | “Disassemble Vacuum (Bravo)” on page 356 |
Dilute to Final Volume (Bravo)

Description

The Dilute to Final Volume task () allows you to transfer liquid from a reagent labware to a destination microplate. The task is available only if you specified dilution series parameters within the Format Wizard in the Hit Pick Replication task.

You can add the Dilute to Final Volume task before or after the Hit Pick Replication task.

- **Before hit-picking.** Prefills the destination microplate with reagent. If the destination microplates are empty when the task starts, you only need to change the pipette tip with every destination microplate. You do not have to change the pipette tip between each reagent well, thus reducing the number of tips used.
- **After hit-picking.** Backfills the destination microplate with reagent. In this case, you must change the pipette tip between each reagent well to prevent contamination, thus using more tips.

Adding the Dilute to Final Volume task

To add the Dilute to Final Volume task:

1. Add another Bravo Subprocess in the destination microplate process. (You cannot add the Dilute to Final Volume task in the subprocess that contains the Hit Pick Replication task.)

 In the following example, the first Bravo subprocess (called Hit Picking) contains the Hit Pick Replication task. The second Bravo subprocess, Back Fill, contains the Dilute to Final Volume task. Notice that both subprocesses are in the Destination Plate process.
When you add the Dilute to Final Volume (Bravo) task, the software automatically starts the Dilute to Final Volume Wizard.

2 On the first page of the wizard:
 a Select the source and destination labware to use.

 Note: The source labware is the labware that contains the reagent for back filling. It is not the source microplate used for the Hit Pick Replication task.
 b Specify the locations of the reagent and destination labware.

 When you are finished, click Next.

3 Specify the Aspirate and Dispense task parameters. For detailed parameter descriptions, see “Aspirate (Bravo, Vertical Pipetting Station)” on page 338 and “Dispense (Bravo, Vertical Pipetting Station)” on page 358.

 When you are finished, click Next.
4. Select additional operations, if applicable.

![Dilute to Final Volume Wizard](image)

<table>
<thead>
<tr>
<th>Additional operation</th>
<th>Description</th>
</tr>
</thead>
</table>
| **Mixing Options** | Select where you want to add a Mix task:
 - Before each aspirate task
 - After each dispense task
You will need to set the Mix parameters later in the wizard.
If you do not want to mix, clear both check boxes. |
| **Enable Washing** | Select the check box if you want to add one or more Wash Tips tasks. You can specify the number of tip washes and whether you want to:
 - Wash after every transfer
 - Wash with every source microplate change
You will need to set the Wash Tips parameters later in the wizard.
Clear the check box if you do not want to add any Wash Tips tasks. |
Setting parameters for liquid-handling tasks

Dilute to Final Volume (Bravo)

When you are finished, click **Next**.

5 Select the pipette channels to use. For a description of the selections, see “Set Head Mode (Bravo)” on page 431.

<table>
<thead>
<tr>
<th>Additional operation</th>
<th>Description</th>
</tr>
</thead>
</table>
| Tip Options | Select the tip-change option:
 • *Never change.* If you select option, you must add the Set Head Mode, Tips On, and Tips Off tasks in the subprocess, outside of the Dilute to Final Volume routine, after you are finished with the wizard.
 • *Change after every dispense.* Changes the tips after every dispense within the routine.
 • *Change with every reagent well change.* Changes the tips after every reagent well change during the routine. |
| Tip Box Options | Select when to change the tipbox:
 • *Never.* Use single instance of tip boxes *(example: Static labware).* Does not change the tipbox within the routine.
 • *Change tip box based on Automatic Tip Selection.* Uses tip-tracking within the routine, and changes the tipbox when the box if fully used. Select this option if the tipboxes you are using are configured labware.
 Note: Tip-tracking continues in subsequent tasks in the process.
 • *Change tipbox with every source plate change (replication only).* Changes the tipbox every time the source microplate changes. This option is available only when a replication format file is selected.
 • *Change tipbox with every destination plate change (replication only).* Changes the tipbox every time the destination microplate changes. This option is available only when a replication format file is selected. |
Setting parameters for liquid-handling tasks

10

Dilute to Final Volume (Bravo)

When you are finished, click Next.

6 If you selected mixing options in step 4. Set the mixing parameters. For a description of the parameters, see “Mix (Bravo, Vertical Pipetting Station)” on page 398.

When you are finished, click Next.

7 If you selected wash options in step 4. Set the wash parameters.

a In the Wash In area, select the type of labware to be used for the wash task:

- Microwash reservoir. Adds Wash Tips tasks and will use either configured or static labware.
- A microplate or standard reservoir. Adds Mix tasks.

b In the Wash plate list, select the desired labware and location.
c Set wash-tip parameters. For a description of the parameters, see “Wash Tips (Bravo, Vertical Pipetting Station)” on page 452.

When you are finished, click Next.

8 If you selected a tip-change option in step 4. Select the tipbox options.
 a Select the tipboxes you want to use.
 b Select the tip-tracking options you want to use:
 – Allow automatic tracking of tip usage. Allows the software to track pipette tip usage during the protocol run or across different protocol runs. If you select the option in this task, you must also select the option in the Tips Off task. In general, use the default selections displayed.
 – Mark tips as used. The option to use only new pipette tips during the protocol run. Select the option so that the software counts the number of tips used during the protocol run. The tips that have been used once are marked as used so that they cannot be reused. Clear the check box so that during the next Tips On task, the same tips can be reused. In general, use the default selections displayed.
10 Setting parameters for liquid-handling tasks

Dilute to Final Volume (Bravo)

Click Finish.

Based on the information you provide in the wizard, the software adds the Aspirate, Dispense, Mix, tip-washing, and other tasks that are necessary to produce the desired results.

Notice the following:

- The Hit Pick Routine (Begin) and Hit Pick Routine (End) tasks mark the beginning and end of the dilute-to-final-volume tasks.
- You can modify any of the task parameters directly in the Task Parameters area.
- You can return to the Dilute to Final Volume Wizard. To do this, select either the Hit Pick Routine (Begin) or Hit Pick Routine (End) task. In the Task Parameters area, click Launch hit pick routine wizard.

Related information

<table>
<thead>
<tr>
<th>For information about...</th>
<th>See...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adding tasks in a protocol</td>
<td>“Adding and deleting tasks” on page 51</td>
</tr>
</tbody>
</table>
Disassemble Vacuum (Bravo)

Description

The Disassemble Vacuum task () directs the robot to remove components from the Vacuum Filtration Station and place them back at the locations specified in the Assemble Vacuum task. If a filter microplate was placed on top of the station, the Disassemble Vacuum task directs the robot to move the microplate to a specified location before disassembly.

<table>
<thead>
<tr>
<th>Task is available for...</th>
<th>Task is available in...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bravo Platform</td>
<td>Main Protocol, Bravo Subprocess</td>
</tr>
</tbody>
</table>

The task is used in conjunction with the following tasks:

- Assemble Vacuum
- Move and Filter Plate, or Toggle Vacuum

Requirements

To use the Disassemble Vacuum (Bravo) task, you must first:

- Configure the Vacuum Filtration Station in Bravo Diagnostics.
- Set the robot gripper offset for labware that will be placed on the Vacuum Filtration Station during a protocol run. You set the offset in the Labware Editor.
- Add an Assemble Vacuum (Bravo) task.
Task parameters

After adding the Disassemble Vacuum (Bravo) task at the desired point in the protocol, set the following parameters in the **Task Parameters** area:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Filter Plate, plate</td>
<td>The type of microplate for collecting the filtrate.</td>
</tr>
</tbody>
</table>
| Filter Plate, location | The location at which you want to place the filter microplate during the disassembly process.

<auto-select> automatically places the labware at the first-available or appropriate location for the task. If accessories are installed on the deck or shelf, the software uses the accessory configuration information in Bravo Diagnostics or Vertical Pipetting Station Diagnostics to determine the correct location for the task. |
| Vacuum Filtration Assembly | The location of the Vacuum Filtration Station. |

Examples:

See the example in:
- “Move and Filter Plate (Bravo)” on page 406
- “Toggle Vacuum (Bravo, Vertical Pipetting Station)” on page 447

Related information

<table>
<thead>
<tr>
<th>For information about...</th>
<th>See...</th>
</tr>
</thead>
</table>
| Adding devices | • “Adding devices” on page 25

• Device user guide |
| Adding tasks in a protocol | “Adding and deleting tasks” on page 51 |
| Configuring the Vacuum Filtration Station | Bravo Automated Liquid Handling Platform User Guide |
Dispense (Bravo, Vertical Pipetting Station)

Description

The Dispense (Bravo) and Dispense (Vertical Pipetting Station) tasks dispense liquid into a microplate, reservoir, or tubes in a tube rack.

<table>
<thead>
<tr>
<th>Task is available for...</th>
<th>Task is available in...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bravo Platform</td>
<td>Main Protocol, Bravo Subprocess</td>
</tr>
<tr>
<td>Vertical Pipetting Station</td>
<td>Main Protocol, Vertical Pipetting Station Subprocess</td>
</tr>
</tbody>
</table>

Task parameters

Note: The task parameters for Dispense (Bravo) and Dispense (Vertical Pipetting Station) are identical.

After adding the Dispense task at the desired point in the protocol, set the following parameters in the **Task Parameters** area:
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Location, plate</td>
<td>The labware involved in the Dispense task.</td>
</tr>
<tr>
<td>Location, location</td>
<td>The location at which the Dispense task occurs.</td>
</tr>
<tr>
<td></td>
<td><auto-select> automatically places the labware at the first-available or appropriate location for the task. If accessories are installed on the deck or shelf, the software uses the accessory configuration information in Bravo Diagnostics or Vertical Pipetting Station Diagnostics to determine the correct location for the task.</td>
</tr>
<tr>
<td>Empty tips</td>
<td>The option to empty all liquid from the tips instead of using the dispense volume specification.</td>
</tr>
<tr>
<td>Volume (µL)</td>
<td>The volume of liquid to be dispensed from each pipette tip.</td>
</tr>
<tr>
<td>Blowout volume (µL)</td>
<td>Specifies the volume of air to dispense after the main volume has been dispensed while the tips are still in the wells. The blowout volume is the same as the pre-aspirate volume. Note: Blowout only occurs in the last quadrant dispensed for a given Dispense task.</td>
</tr>
<tr>
<td>Parameter</td>
<td>Description</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Liquid class</td>
<td>The pipetting speed and accuracy.</td>
</tr>
<tr>
<td>IMPORTANT</td>
<td>To ensure consistent pipetting, always select a liquid class for liquid-handling tasks.</td>
</tr>
<tr>
<td>Distance from well bottom (0–100 mm)</td>
<td>The distance between the end of the pipette tips and the well bottoms during the Dispense task. If you specify dynamic tip retraction, this is the starting distance.</td>
</tr>
<tr>
<td>IMPORTANT</td>
<td>The labware definition must be accurate and the teachpoint must be precise in order for the system to position the tips at the correct distance from the well bottom.</td>
</tr>
<tr>
<td>Dynamic tip retraction (0–20 mm/µL)</td>
<td>The rate at which to raise the pipette head during the Dispense task. Use dynamic tip retraction to prevent spills as the pipette tips displace the liquid.</td>
</tr>
<tr>
<td></td>
<td>To move the tips:</td>
</tr>
<tr>
<td></td>
<td>• At the same rate as the volume change. Calculate dynamic tip retraction (DTR) as follows: DTR = (well depth)/(well vol) = 1/A, where A is the cross-sectional area of a well with straight walls</td>
</tr>
<tr>
<td></td>
<td>• Faster than the volume change. DTR > 1/A</td>
</tr>
<tr>
<td></td>
<td>• Slower than the volume change. DTR < 1/A</td>
</tr>
<tr>
<td></td>
<td>The starting and ending positions can be calculated as follows: (V_{dispensed} * DTR) + Distance_{well bottom}</td>
</tr>
<tr>
<td>Well selection</td>
<td>The wells at which the Dispense task occurs. Click in the parameter box, and then click the Browse button to select the wells in the Well Selection dialog box.</td>
</tr>
<tr>
<td></td>
<td>Use this parameter only if the pipette head has fewer tips than the number of wells in the microplate, or if you are in single-row or single-column mode.</td>
</tr>
<tr>
<td>Pipette technique</td>
<td>The pipette location offset you want to use for the Dispense task. The list of pipette techniques are defined in the Pipette Technique Editor.</td>
</tr>
<tr>
<td>Perform tip touch</td>
<td>The option to touch the pipette tip on one or more sides of the well.</td>
</tr>
</tbody>
</table>
Setting parameters for liquid-handling tasks
Dispense (Bravo, Vertical Pipetting Station)

Quadrant pattern well selection

A quadrant is an evenly spaced array of locations that are accessible by the tips on a pipette head. The following table lists the types of pipette heads and the number of accessible quadrants in various microplates.

<table>
<thead>
<tr>
<th>Pipette head channels/pin tool pins</th>
<th>Microplate</th>
<th>Number of quadrants</th>
</tr>
</thead>
<tbody>
<tr>
<td>96</td>
<td>96-well</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>384-well</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>1536-well</td>
<td>16</td>
</tr>
<tr>
<td>384</td>
<td>384-well</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>1536-well</td>
<td>4</td>
</tr>
<tr>
<td>1536 (pin tool only)</td>
<td>1536-well</td>
<td>1</td>
</tr>
</tbody>
</table>

The following diagram demonstrates the concept of quadrants. The diagram shows a portion of a 384-well microplate and highlights the four quadrants (Q1, Q2, Q3, and Q4) that are accessible by the A1 tip of a 96-channel pipette head. Notice that the green color highlights all of the quadrant 1 (Q1) wells across the microplate.
Instead of a column- or row-wise pattern, you can select a quadrant pattern during well selection.

The quadrant pattern option is available only if:

- The number of channels in the pipette head (or pins in a pin tool) is fewer than the number of wells in the microplate. For example, you can use a 96-channel pipette head to dispense liquid into a 384-well microplate or 1536-well microplate.
- All the channels are selected in the Set Head Mode task when using a pipette head. (The Set Head Mode task is not an option when using a pin tool).
- The liquid-handling task is inside a loop.

IMPORTANT If you select a quadrant pattern, specifications in the Well Selection dialog box will override task.WellSelection values assigned in the Advanced Settings area.

To select a quadrant pattern:

1. In the Task Parameters area, click the Well selection parameter box, and then click the Browse button. The Well Selection dialog box opens. By default, the Normal well selection option is selected. This option is used for column- and row-wise liquid-handling patterns.

2. Select **Quadrant pattern in a loop**. The contents of the dialog box change. Notice the following:
 - Red numbers (1 through 4) appear on wells A1, A2, B1, and B2. The numbers indicate the pipetting sequence: 1 is the starting well, and 4 is the last well. In the following example, the sequence is A1, A2, B1, B2.
 - Green wells indicate the starting well in the pipetting sequence.
• Pattern buttons at the bottom of the dialog box indicate the movement of the pipette channels. The movement description is provided in the text box above the buttons.

Note: The last two patterns are unavailable if a group contains 16 wells. For example, the last two patterns are not available if you have a 96-well pipette head and a 1536-well microplate.

3 Select the starting well. The well becomes green and is labeled 1. In the following example, the third quadrant (B1 well) is selected.

4 Click a pattern button to specify the pipette channel movement. After you click a pattern, the red numbers in the graphic are updated to show the sequence.

In the following example, the second pattern is selected (right-to-left, then top-to-bottom). The third quadrant (B1) is the starting well. The resulting movement is:

- Quadrant 3 (B1)
- Quadrant 2 (A2)
- Quadrant 1 (A1)
- Quadrant 4 (B2)
5 When you are finished, click **OK** to save the changes and return to the VWorks window.

Example: Dispense into a microplate on the Bravo Platform

Goal
Aspirate contents from a source microplate (Source 1) and dispense into a destination microplate.

Implementation
The Bravo deck is physically set up as follows:
- The destination microplates are at Bravo deck location 1.
- The source microplate is at deck location 2.
- The tipbox is at deck location 9.

In the protocol, the following are added:
- Process for the destination microplate
- Configured labware for the source microplate
- Configured labware for the tipbox

In the Destination plate process, a Bravo subprocess is added. Within the subprocess, an Aspirate task and a Dispense task are added as shown in the following example.
In the Dispense Task Parameters area, Destination is selected, because the goal is to dispense into that microplate.

Related information

<table>
<thead>
<tr>
<th>For information about...</th>
<th>See...</th>
</tr>
</thead>
</table>
| Adding devices | • “Adding devices” on page 25
 | • Device user guide |
| Adding tasks in a protocol | “Adding and deleting tasks” on page 51 |
| Liquid classes | VWorks Automation Control Setup Guide |
| Pipette techniques | “Specifying pipetting techniques” on page 499 |
| Aspirate task | “Aspirate (Bravo, Vertical Pipetting Station)” on page 338 |
| Set Head mode task | “Set Head Mode (Bravo)” on page 431 |
| Tips On task | “Tips On (Bravo, Vertical Pipetting Station)” on page 444 |
| Tips Off task | “Tips Off (Bravo, Vertical Pipetting Station)” on page 441 |
| Microplate-handling tasks| “Setting parameters for microplate-handling tasks” on page 241 |
| Microplate-storage tasks | “Setting parameters for microplate storage tasks” on page 305 |
Evaporate (Bravo)

Description

The Evaporate (Bravo) task places labware on the Evaporator accessory and blows air over the labware to remove solvent or dry the sample.

Requirements

To use the Evaporate (Bravo) task, you must first configure the Evaporator in Bravo Diagnostics.

Task parameters

After adding the Evaporate (Bravo) task at the desired point in the protocol, set the following parameters in the Task Parameters area:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Location, plate</td>
<td>The labware involved in the Evaporate task.</td>
</tr>
</tbody>
</table>
Setting parameters for liquid-handling tasks

Evaporate (Bravo)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Location, location</td>
<td>The location at which the Evaporate task occurs. <auto-select> automatically places the labware at the first-available or appropriate location for the task. If accessories are installed on the deck or shelf, the software uses the accessory configuration information in Bravo Diagnostics to determine the correct location for the task.</td>
</tr>
</tbody>
</table>
| Mode | The action of the task:
 - **On**. Turns on the Evaporator.
 - **Off**. Turns off the Evaporator.
 - **Timed**. Turns on the Evaporator timer. You must specify the length of time the Evaporator must remain on.
 If you did not select Timed, add a second Evaporate task to turn off the Evaporator. |
| Time for operation in Timed mode | The length of time, in seconds, you want to leave the Evaporator on. At the end of the period, the Evaporator will turn off. |
| Concurrent operation | The option to permit the accessory to operate simultaneously with other tasks. |

Related information

For information about...

Adding devices

- “Adding devices” on page 25
- *Bravo Automated Liquid Handling Platform User Guide*

Adding tasks in a protocol

“Adding and deleting tasks” on page 51

Configuring the Evaporator

Bravo Automated Liquid Handling Platform User Guide

Microplate-handling tasks

“Setting parameters for microplate-handling tasks” on page 241

Microplate-storage tasks

“Setting parameters for microplate storage tasks” on page 305

Scheduling tasks

“Setting parameters for scheduling tasks” on page 459

I/O-handling tasks

“Setting parameters for I/O-handling tasks” on page 233
Hit Pick Replication (Bravo)

Description

The Hit Pick Replication (Bravo) task allows you to:

- Hit pick, or transfer contents, from selected wells in a source microplate to a destination microplate.
- Replicate a microplate by transferring contents from a source microplate into multiple destination microplates.

Workflow

The following table presents the steps for using the Hit Pick Replication task.

<table>
<thead>
<tr>
<th>Step</th>
<th>For this task...</th>
<th>See...</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Set up labware on the Bravo deck.</td>
<td>“Setting up labware on the Bravo deck” on page 368</td>
</tr>
<tr>
<td>2</td>
<td>Create an input file.</td>
<td>“Creating input files” on page 370</td>
</tr>
<tr>
<td>3</td>
<td>Create the protocol.</td>
<td>“Creating a protocol: basic procedure” on page 13</td>
</tr>
<tr>
<td>4</td>
<td>Add the Hit Pick Replication task, and select or create a format file.</td>
<td>“Adding the Hit Pick Replication task” on page 371 “Creating format files” on page 381</td>
</tr>
<tr>
<td>5</td>
<td>Verify source-destination transfers.</td>
<td>“Verifying source-destination transfers” on page 397</td>
</tr>
</tbody>
</table>

Setting up labware on the Bravo deck

For hit-picking transfers, the deck locations you can access depends on the pipette head channel you select. In addition, because tipboxes and reservoirs are tall, you must consider the locations of the these labware relative to the source and destination microplates.

The following table shows the channel selection and corresponding deck location limits for both microplates and tall labware. Use this information when setting up labware for the hit-picking task.

For example, if you select the A1 channel, you can place microplates at locations 1, 2, 4, and 5. If you have tall labware, such as a tipbox and a reservoir, place them at locations 1 and 2. Doing so permits the pipette head to access the microplates at locations 4 and 5 without colliding with the tall labware.
Pipette channel selection

- **Back left-corner channel (A1) only**

Accessible Bravo deck locations

- **Front view**

- **Back right-corner channel only**

- **Front left-corner channel only**

Microplates - 1, 2, 4, 5

Tall labware - 1, 2

Microplates - 2, 3, 5, 6

Tall labware - 2, 3

Microplates - 4, 5, 7, 8

Tall labware - 7, 8
Creating input files

Both the hit-picking and microplate replication tasks require an input file. An input file contains information about the source microplates.

You must have the required input file before adding the Hit Pick Replication task or before you start the protocol run. The input file can be from a LIMS or created manually. The file must meet the following requirements:

- The file must be in the comma-separated value (CSV) format.
• The file can contain a heading in the first row, or the first few consecutive rows.

• *Microplate replication.* The input file must contain a column that lists source microplate barcodes or IDs.

• *Hit picking.* The input file must contain the following columns, in any order:
 – Source microplate barcode or ID
 – Well locations (in a single column or across two columns)
 – Variable dilution factors (if dilution series will be created)
 – Transfer-volume information (if variable-volume transfer is desired)

IMPORTANT Hits from each source microplate must be in consecutive rows in the input file. In addition, the order in which the microplates are processed in protocol runs must match the order of the microplates in the input files.

The following examples show two input files (1 and 2) displayed in Microsoft Excel. The heading is in the first row in both files. Microplate IDs are used instead of barcodes. Notice that the well locations are displayed differently in the two files. The file on the right (2) also contains dilution factor information.

Adding the Hit Pick Replication task

When you add the Hit Pick Replication (Bravo) task, the software automatically starts the Hit Pick Routine Wizard.

In the Hit Pick Routine Wizard:

1. Select the source and destination microplates. You must also select their locations.

When setting up hit-picking transfers, make sure the source microplate and destination microplate are at one of the accessible deck locations. See “Setting up labware on the Bravo deck” on page 368.
For example, if you are using the A24 (back right-corner channel) pipette-tip channel for hit picking, the accessible deck locations are 2, 3, 5, and 6. If the source microplate will be at deck location 5 and the destination microplate will be at deck location 6, you must provide this information on the first page of the Hit Pick Routine Wizard as shown.

2 Do one of the following:
- Select an existing format file from the Hit pick replication format list.
- Click Launch format wizard to create a new format file. See “Creating format files” on page 381 for detailed instructions.

When you are finished, click Next.
Supply the input file information. If you do not have an input file, see “Creating input files” on page 370.

<table>
<thead>
<tr>
<th>Item</th>
<th>Input file specification</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Operation type</td>
<td>Displays the type of operation: Hit picking, or replication. The selection is made in the format file and cannot be changed on this page. For information about the format file, see “Creating format files” on page 381.</td>
</tr>
</tbody>
</table>
10 Setting parameters for liquid-handling tasks
Hit Pick Replication (Bravo)

When you are finished, click Next.

Specify the Aspirate and Dispense task parameters. For detailed parameter descriptions, see “Aspirate (Bravo, Vertical Pipetting Station)” on page 338 and “Dispense (Bravo, Vertical Pipetting Station)” on page 358.

<table>
<thead>
<tr>
<th>Item</th>
<th>Input file specification</th>
<th>Description</th>
</tr>
</thead>
</table>
| 2 | Select input file | Allows you to select one of the following:
- Specify an input file when the protocol runs
- Specify an input file now
If you select Specify an input file now, use the browse button to locate and select the desired input file.
In either case, you can select one of the following:
- Auto skip heading. Enables the software to automatically find and skip rows that contain heading information.
- Skip heading lines. Skips the specified number of rows at the top of the input file. Select this option if you want to manually specify the number of heading rows.
In addition, you can specify the row to start the transfer from in the Start from transfer number box. 1 indicates starting the first transfer from the first row after the heading rows. |
| 3 | Input file contents | Displays the contents of the input file. |
| 4 | Source plate barcode/ID | Allows you to select the column that contains the source plate barcode or ID. |
| 5 | Source well format and corresponding input file column | Hit-picking only. Allows you to indicate whether the well location is specified as:
- Well ID. The well location is in a single column (for example, A24). Select the column that contains the well ID.
- Well row and column. The well location is in two columns. Select the columns that contain the well row and well column information. The row information can be a letter or a number. |
| 6 | Variable dilution factor and Variable transfer volume | Hit-picking only. Allows you to select the column that contains the dilution factors and transfer volume. |
When you are finished, click **Next**.

8. Select additional operations, if applicable.
<table>
<thead>
<tr>
<th>Additional operation</th>
<th>Description</th>
</tr>
</thead>
</table>
| Mixing Options | Select where you want to add a Mix task:
 • Before each aspirate task
 • After each dispense task
 You will need to set the Mix parameters later in the wizard.
 If you do not want to mix, clear both check boxes. |
| Enable Washing | Select the check box if you want to add one or more Wash Tips tasks. You can specify the number of tip washes and whether you want to:
 • Wash after every transfer
 • Wash with every source microplate change
 You will need to set the Wash Tips parameters later in the wizard.
 Clear the check box if you do not want to add any Wash Tips tasks. |
| Tip Options | Select the tip-change option:
 • *Never change*. Does not change the tips within the hit-picking routine.
 Note: If you select *Never change*, you must add the Set Head Mode, Tips On, and Tips Off tasks in the subprocess, outside of the hit-picking routine, after you are finished with the wizard.
 • *Change after every dispense*. Changes the tips after every dispense within the hit-picking routine.
 • *Change with every source well change*. Changes the tips after every source well change during the hit-picking routine. |
Tip Box Options

Select when to change the tipbox:

- **Never. Use single instance of tip boxes (example: Static labware)**. Does not change the tipbox within the hit-picking routine.

- **Change tip box based on Automatic Tip Selection (recommended for hit picking)**. Uses tip-tracking within the hit-picking routine, and changes the tipbox when the box is fully used. Select this option if the tipboxes you are using for hit-picking are configured labware.

 Note: Tip-tracking continues in the Dilute to Final Volume routine.

- **Change tip box with every source plate change (replication only)**. Changes the tipbox every time the source microplate changes. This option is available only when a replication format file is selected.

- **Change tip box with every destination plate change (replication only)**. Changes the tipbox every time the destination microplate changes. This option is available only when a replication format file is selected.

When you are finished, click **Next**.
9 Select the pipette channels to use. For a description of the selections, see “Set Head Mode (Bravo)” on page 431.

When you are finished, click **Next**.

10 *If you selected mixing options in step 8.* Set the mixing parameters. For a description of the parameters, see “Mix (Bravo, Vertical Pipetting Station)” on page 398.

When you are finished, click **Next**.

11 *If you selected wash options in step 8.* Set the wash parameters.
 a In the **Wash In** area, select the type of labware to be used for the wash task:
 - *Microwash reservoir.* Adds Wash Tips tasks and will use either configured or static labware.
 - *A microplate or standard reservoir.* Adds Mix tasks.
 b In the **Wash plate** list, select the desired labware and location.
c Set wash-tip parameters. For a description of the parameters, see “Wash Tips (Bravo, Vertical Pipetting Station)” on page 452.

When you are finished, click **Next.**
12 If you selected a tip-change option in step 8. Select the tipbox options.
 a Select the tipboxes you want to use.
 b Select the tip-tracking options you want to use:
 – Allow automatic tracking of tip usage. Allows the software to
 track pipette tip usage during the protocol run or across
 different protocol runs. If you select the option in this task, you
 must also select the option in the Tips Off task. In general, use
 the default selections displayed.
 – Mark tips as used. The option to use only new pipette tips
 during the protocol run. Select the option so that the software
 counts the number of tips used during the protocol run. The tips
 that have been used once are marked as used so that they
 cannot be reused. Clear the check box so that during the next
 Tips On task, the same tips can be reused. In general, use the
 default selections displayed.

13 Click Finish.
 Based on the information you provide in the wizard, the software adds the
 Aspirate, Dispense, Mix, Wash Tips, and other tasks that are necessary to
 produce the desired hit-picking or replication results.
Notice the following:

- The Hit Pick Routine (Begin) and Hit Pick Routine (End) tasks mark the beginning and end of the microplate-replication or hit-picking tasks.
- You can modify any of the task parameters directly in the Task Parameters area.
- You can add more tasks to or delete tasks from the routine.
- You can return to the Hit Pick Routine Wizard. To do this, select either the Hit Pick Routine (Begin) or Hit Pick Routine (End) task. In the Task Parameters area, click **Launch hit pick routine wizard**.

CAUTION Whenever you return to the Hit Pick Routine Wizard, make modifications, and finish the wizard, a new set of tasks will replace the existing tasks in the routine.

Creating format files

About format files

For both microplate replication and hit picking, you are required to use a format file. The format file shows the dispense pattern in destination microplates.

Workflow

You use the Hit Pick Replication Format Wizard to create the format file. You can access the wizard when you add the Hit Pick Replication task. The overall workflow for creating the format file is:
10 Setting parameters for liquid-handling tasks
Hit Pick Replication (Bravo)

Creating new format files

To create a new format file:

1 On the first page of the Hit Pick Routine Wizard, click Launch format wizard.

The Hit Pick Replication Format Editor opens.

2 Click Create new format file, type a name for the file in the prompt dialog box, and then click OK. The new format file name appears in the list.
Adding hit-picking information in the format file

To add hit picking information in the format file:

1. In the Hit Pick Replication Format Editor, make sure the format file name is selected, and then click Launch format wizard.

The Hit Pick Replication Format Wizard opens.

2. On the first page of the wizard:
10 Setting parameters for liquid-handling tasks
Hit Pick Replication (Bravo)

In the Operation Type area, select Hit picking.

In the Labware area, select the Source plate labware and the Destination plate labware.

Click Next.

On the dispense information page:

a In the Dispense Pattern area, select one of the following dispense methods:
 - Row-wise
 - Column-wise

b In the Dispense Properties area, type the number of Replicates per source well, if applicable.
c In the destination plate graphic, select the wells into which the source contents will be dispensed. Click a well to individually select or clear the well. Alternatively, right-click a desired well and select a command from the menu that appears.

d Click Next.

4 On the dilution series page:

a In the Dilution Series area, select one of the following:

- Yes. If you select Yes, you must supply additional information about the dilution series.

<table>
<thead>
<tr>
<th>Dilution selection or parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dilution in adjacent wells</td>
<td>Dispenses the dilution in adjacent wells before replicating the same series, as the following example shows. Notice that the dispense pattern is row-wise.</td>
</tr>
</tbody>
</table>
10 Setting parameters for liquid-handling tasks

Hit Pick Replication (Bravo)

<table>
<thead>
<tr>
<th>Dilution selection or parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Replications in adjacent wells</td>
<td>Dispenses the replicates in adjacent wells before continuing the dilution series, as the following example shows. Notice that the dispense pattern is row-wise.</td>
</tr>
<tr>
<td>Number of dilutions</td>
<td>Specifies the number of dilutions to perform. A value of 1 means no dilution is performed.</td>
</tr>
<tr>
<td>Dilution factor</td>
<td>Uses the specified dilution factor:</td>
</tr>
<tr>
<td></td>
<td>• Constant. The same dilution factor is used throughout the process. Type the factor to use in the box. For example, a factor of 1:2 dilutes the starting concentration by one-half. If the number of dilutions is 3, then the concentrations in the series are 1, 1:2, and 1:4.</td>
</tr>
<tr>
<td></td>
<td>• Variable (from input file). Different factors are used during the process. The factors are specified in the input file.</td>
</tr>
<tr>
<td>Stock concentration</td>
<td>Specifies the concentration of the stock solution.</td>
</tr>
<tr>
<td>Starting concentration</td>
<td>Specifies the concentration of the starting concentration.</td>
</tr>
<tr>
<td>Final volume</td>
<td>Specifies the concentration of the final volume in each well. The software will use this value to calculate the volume for prefilling or backfilling. See “Dilute to Final Volume (Bravo)” on page 349.</td>
</tr>
</tbody>
</table>
No. If you select No, you must select the type of volume transfer.

<table>
<thead>
<tr>
<th>Dilution selection or parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constant transfer volume</td>
<td>Uses the same transfer volume throughout the process.</td>
</tr>
<tr>
<td>Variable transfer volume</td>
<td>Uses different transfer volumes during the process. The volumes are specified in the input file.</td>
</tr>
</tbody>
</table>

b Click Next.

5 If you selected dilution series in step 4, Select the desired options for dilute to final volume.

a Select whether you want to backfill or prefill the destination microplate. If you select Yes, you must supply additional information. If you select No, you can proceed to step d.

b Select the reagent microplate to use for the backfilling or prefilling process.
10 Setting parameters for liquid-handling tasks
Hit Pick Replication (Bravo)

Select whether the transfer will be from one of the following:

- **Single location in a reservoir.** Some reservoir designs might limit the pipette's access. You can allow the software to determine how to access the reservoir, based on the labware definition. To do this, select **VWorks will choose selection from reservoir.** Alternatively, you can clear the check box and manually select the access point in the reservoir, using the microplate graphic displayed. The wells in the microplate represent different access points in the reservoir.

- **Multiple locations in a plate.** If the transfer will be from a microplate, you can select the wells from which to aspirate. In addition, you can specify a constant reagent volume, or indicate that the reagent volume information will be obtained from a database.

d Click **Next.**

6 On the destination plate preview page, confirm that the dispense pattern is correct.

Note: The dispense pattern shown on the screen is a preview of the *first* destination microplate only. To check the mapping in all of the destination microplates, compile the protocol, and then view the output files. Alternatively, you can check the Pipette Log after running the protocol in simulation mode. For more information about output files and the Pipette Log, see “Verifying source-destination transfers” on page 397.

When you are done, click **Finish.**

7 Back in the **Hit Pick Replication Format Editor,** make sure the correct format file name is selected, and then click **Save changes.** If you altered an existing format file, you can click **Save changes as** to save it as a different file.
8 Click the close button (×) at the top right corner of the dialog box to return to the Hit Pick Routine Wizard. To continue in the Hit Pick Routine Wizard, return to step 3 in “Adding the Hit Pick Replication task” on page 371.

Adding replication information in the format file

To add replication information in the format file:

1 In the **Hit Pick Replication Format Editor**, make sure the format file name is selected, and then click **Launch format wizard**.

The Hit Pick Replication Format Wizard opens.

2 On the first page of the wizard:
10 Setting parameters for liquid-handling tasks
Hit Pick Replication (Bravo)

In the **Operation Type** area, select **Plate replication**.

In the **Labware** area, select the **Source plate labware** and the **Destination plate labware**.

Click **Next**.

On the transfer page, select the **Transfer mode**.

Transfer Properties

- **Transfer mode:**
 - Dilution
 - Quadrants
- **Transfer volume:** 2.5 (2.5-well volume mL)
- **Number of copies of each source plate:** 1 (1 - 1000)

Destination plate formatting:
- All destination plates will have identical format/patterning
- Normalize the number of destination plates used
- Don't place replicates of source plates on the same destination

Select Source Wells to Transfer

- Wells A to M
- Wells 1 to 24

Right-click for multi-select options
Transfer mode

<table>
<thead>
<tr>
<th>Transfer mode</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interleaved</td>
<td>Contents of corresponding wells from different source microplates are placed consecutively in the destination microplate. For example, if you are transferring contents from four 384-well source microplates into a 1536-well destination microplate, the Interleaved transfer would result in the following destination microplate layout:</td>
</tr>
<tr>
<td>Quadrants</td>
<td>Contents from different source microplates are placed in quadrants of the destination microplate. For example, if you are transferring contents from four 384-well source microplates into a 1536-well microplate, the Quadrant transfer will result in the following destination microplate layout:</td>
</tr>
</tbody>
</table>

4 Type the volume to transfer from each source microplate well.
Type the number of copies you want to transfer from the source microplate.

IMPORTANT This value will affect the layout of the contents in the destination microplate.

For example, if you are transferring three copies of the contents from a 384-well source microplate into a 1536-well destination microplate, the Interleaved transfer will result in the following destination microplate layout. Notice that the wells in the fourth quadrant remain empty.
6 Select the destination microplate format:

<table>
<thead>
<tr>
<th>Transfer mode</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>All destination plates will have identical format/patterning</td>
<td>All destination microplates will look identical. The layout of the destination microplate depends on the format of the source microplate, the number of copies you want to transfer, the total number of source microplates, and other selections in the wizard. For example, suppose you want to transfer contents from five 384-well source microplates into one or more 1536-well destination microplates. One 1536-well microplate can only accommodate contents from four 384-well microplates. To maintain the same layout across all of the destination microplates, five destination microplates will be used. The contents from each source microplate are transferred to one 1536-well destination microplate. Note: In the example, five destination microplates are used.</td>
</tr>
</tbody>
</table>

Note: In the example, five destination microplates are used.
10 Setting parameters for liquid-handling tasks
Hit Pick Replication (Bravo)

<table>
<thead>
<tr>
<th>Transfer mode</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimize the number of destination plates used</td>
<td>The destination microplate will contain as many source contents as allowable to minimize the number of destination microplates used.</td>
</tr>
<tr>
<td></td>
<td>For example, suppose you want to transfer contents from five 384-well source microplates into one or more 1536-well destination microplates. One 1536-well microplate can accommodate contents from four 384-well microplates. The contents from the fifth source microplate will be transferred into a second 1536-well destination microplate.</td>
</tr>
<tr>
<td></td>
<td>Note: In this example, only two destination microplates are used.</td>
</tr>
</tbody>
</table>

Minimize the number of destination plates used

Transfer mode Description

7 Select Don’t place replicates of the source plates on the same destination if you want to place replicates in different destination microplates. Do not select the option if you want to place replicates in the same destination microplate.

In the following example, the Quadrant transfer mode is used and the All destination plates will have identical format/patterning option is selected. Two replicates are requested from each source microplate.

In example a, the two replicates are placed in the same destination microplate. In example b, only one copy is placed in each destination microplate.
8 In the **Select Source Wells to Transfer** area, select the source wells from which to transfer the contents.

9 Click **Next** to preview the layout of the first destination microplate. The wells are color coded so you can see the replication pattern in the microplate.

To see the layout of all of the destination microplates, compile the protocol and check the output file. Alternatively, you can run the protocol in simulation mode and check the Pipette Log. For more information, see “Verifying source-destination transfers” on page 397.

Note that the layout shown in the preview might differ from the actual layout at run time if:
- The destination microplate has more wells than the source microplate.
- More than four source microplates will be processed during the run.
- You have selected *All destination plates will have identical format/patterning* in step 6.
- You have cleared the *Don’t place replicates of source plates on the same destination* check box in step 7.

When you are done, click **Finish**.

10 Back in the **Hit Pick Replication Format Editor**, make sure the correct format file name is selected, and then click **Save changes**. If you altered an existing format file, you can click **Save changes as** to save it as a different file.
Click the close button (×) at the top right corner of the dialog box to return to the Hit Pick Routine Wizard. To continue in the Hit Pick Routine Wizard, return to step 3 in “Adding the Hit Pick Replication task” on page 371.

Verifying source-destination transfers

Before you start an actual run, you can verify that the source-destination transfers are correct using either output files or the Pipette Log.

Using output files

Compile your protocol to generate output files. The files list source-destination transfers by well and show the volume transferred. One output file is generated per source-destination microplate combination. For example, if contents from Source 1 are transferred to Destinations 1 and 2, then two output files are created, one for Source 1/Destination 1, and another for Source 1/Destination 2.

Output files are in the CSV format and are stored in the following folder:

...\VWorks Workspace\hit picking\output files

The following example shows an output file displayed in Excel. The first row shows the source and microplate IDs. Subsequent rows show the source wells, the corresponding destination wells, and the volume transferred.

Using the Pipette Log

Run your protocol in simulation mode and check the Pipette Log in the log area. The Pipette Log records every pipetting event that occurs, including aspirate location, dispense location, and volume information. For details, see “Pipette Log” on page 517.

Related information

<table>
<thead>
<tr>
<th>For information about...</th>
<th>See...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adding devices</td>
<td>• “Adding devices” on page 25</td>
</tr>
<tr>
<td></td>
<td>• Device user guide</td>
</tr>
<tr>
<td>Creating a protocol</td>
<td>• “Creating a protocol: basic procedure” on page 13</td>
</tr>
<tr>
<td>Adding tasks in a protocol</td>
<td>“Adding and deleting tasks” on page 51</td>
</tr>
<tr>
<td>Dilute to Final Volume task</td>
<td>“Dilute to Final Volume (Bravo)” on page 349</td>
</tr>
</tbody>
</table>
Mix (Bravo, Vertical Pipetting Station)

Description

The Mix (Bravo) (Mix (Bravo)) and Mix (Vertical Pipetting Station) (Mix (Vertical Pipetting Station)) tasks aspirate and dispense liquid multiple times to mix it. The task allows you to specify different well-bottom distances for the aspirate and dispense actions.

<table>
<thead>
<tr>
<th>Task is available for...</th>
<th>Task is available in...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bravo Platform</td>
<td>Main Protocol, Bravo Subprocess</td>
</tr>
<tr>
<td>Vertical Pipetting Station</td>
<td>Main Protocol, Vertical Pipetting Station Subprocess</td>
</tr>
</tbody>
</table>

Task parameters

Note: The task parameters for Mix (Bravo) and Mix (Vertical Pipetting Station) are identical.

After adding the Mix task at the desired point in the protocol, set the following parameters in the Task Parameters area:
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Location, plate</td>
<td>The labware involved in the Mix task.</td>
</tr>
<tr>
<td>Location, location</td>
<td>The location at which the Mix task occurs. <auto-select> automatically places the labware at the first-available or appropriate location for the task. If accessories are installed on the deck or shelf, the software uses the accessory configuration information in Bravo Diagnostics or Vertical Pipetting Station Diagnostics to determine the correct location for the task.</td>
</tr>
<tr>
<td>Volume (0–200 µL)</td>
<td>The volume of liquid to be mixed in each well.</td>
</tr>
<tr>
<td>Pre-aspirate volume (0–200 µL)</td>
<td>The volume of air to be drawn before the pipette tips enter the liquid.</td>
</tr>
<tr>
<td>Blowout volume (0–200 µL)</td>
<td>Specifies the volume of air to dispense after the main volume has been dispensed while the tips are still in the wells. Typically, the blowout volume is the same as the pre-aspirate volume.</td>
</tr>
<tr>
<td>Liquid class</td>
<td>The pipetting speed and accuracy.</td>
</tr>
</tbody>
</table>

IMPORTANT To ensure consistent pipetting, always select a liquid class for liquid-handling tasks.
Parameter Description

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mix cycles ((0–100))</td>
<td>Specifies how many times to repeat the aspirate-and-dispense cycle.</td>
</tr>
</tbody>
</table>
| Dynamic tip extension (0–20 mm/µL) | The rate at which the pipette head moves during the Aspirate task. The software calculates the distance over which the tips will move without crashing. Use dynamic tip extension to prevent spills as the pipette tips displace the liquid. To move the tips:
 - *At the same rate as the volume change.*
 Calculate dynamic tip extension (DTE) as follows:
 \[
 DTE = \frac{\text{well depth}}{\text{well vol}} = \frac{1}{A},
 \]
 where \(A \) is the cross-sectional area of a well with straight walls
 - *Faster than the volume change.*
 \(DTE > \frac{1}{A} \)
 - *Slower than the volume change.*
 \(DTE < \frac{1}{A} \)
 The starting and ending positions can be calculated as follows:
 \[
 (V_{\text{aspirated}} \times DTE) + \text{Distance}_{\text{well bottom}}
 \]
 Note: Instead of a negative aspirated volume, the software automatically moves downward toward the well bottom with each aspirate action. |
| Well selection | The wells at which the Dispense task occurs. |
| Pipette technique | The pipette location offset you want to use for the Dispense task. The list of pipette techniques are defined in the Pipette Technique Editor. |
| Aspirate distance (0–100 mm) | The distance between the end of the pipette tips and the well bottoms during the aspirate action. \textbf{IMPORTANT} The labware definition must be accurate and the teachpoint must be precise in order for the system to position the tips at the correct distance from the well bottom. |

Note: Instead of a negative aspirated volume, the software automatically moves downward toward the well bottom with each aspirate action.
10 Setting parameters for liquid-handling tasks
Mix (Bravo, Vertical Pipetting Station)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dispense at different distance</td>
<td>The option to dispense at a pipette tip height that is different than the aspirate distance. Select the check box to enter a value for the dispense distance.</td>
</tr>
<tr>
<td>Dispense distance (0–100 mm)</td>
<td>The distance between the end of the pipette tips and the well bottoms during the dispense action.</td>
</tr>
<tr>
<td>Perform tip touch</td>
<td>The option to touch the pipette tip on one or more sides of the well.</td>
</tr>
<tr>
<td>Which sides to use for tip touch</td>
<td>The side or sides of the well to use during tip touch: North, South, East, West, North/South, West/East, West/East/South/North.</td>
</tr>
<tr>
<td>Tip touch retract distance (–20 to 50 mm)</td>
<td>The vertical distance for the pipette tips to rise before touching the sides of the wells.</td>
</tr>
<tr>
<td>Tip touch horizontal offset (–5 to 5 mm)</td>
<td>The horizontal distance the tips move. The value is based on the well diameter specified by the labware definition. For example, if you set a value of: • 0, the tips move a horizontal distance equal to the well radius • > 0, the tips attempt to move past the well radius, which results in a more forceful tip touch • < 0, the tips move a distance less than the radius of the well, resulting in a lighter tip touch</td>
</tr>
</tbody>
</table>

Quadrant pattern well selection

A quadrant is an evenly spaced array of locations that are accessible by the tips on a pipette head. The following table lists the types of pipette heads and the number of accessible quadrants in various microplates.

<table>
<thead>
<tr>
<th>Pipette head channels/pin tool pins</th>
<th>Microplate</th>
<th>Number of quadrants</th>
</tr>
</thead>
<tbody>
<tr>
<td>96</td>
<td>96-well</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>384-well</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>1536-well</td>
<td>16</td>
</tr>
<tr>
<td>384</td>
<td>384-well</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>1536-well</td>
<td>4</td>
</tr>
<tr>
<td>1536 (pin tool only)</td>
<td>1536-well</td>
<td>1</td>
</tr>
</tbody>
</table>
The following diagram demonstrates the concept of quadrants. The diagram shows a portion of a 384-well microplate and highlights the four quadrants (Q1, Q2, Q3, and Q4) that are accessible by the A1 tip of a 96-channel pipette head. Notice that the green color highlights all of the quadrant 1 (Q1) wells across the microplate.

Instead of a column- or row-wise pattern, you can select a quadrant pattern during well selection.

The quadrant pattern option is available only if:

- The number of channels in the pipette head (or pins in a pin tool) is fewer than the number of wells in the microplate. For example, you can use a 96-channel pipette head to dispense liquid into a 384-well microplate or 1536-well microplate.
- All the channels are selected in the Set Head Mode task when using a pipette head. (The Set Head Mode task is not an option when using a pin tool).
- The liquid-handling task is inside a loop.

IMPORTANT If you select a quadrant pattern, specifications in the Well Selection dialog box will override task.Wellselection values assigned in the Advanced Settings area.

To select a quadrant pattern:

1. In the Task Parameters area, click the Well selection parameter box, and then click the Browse button. The Well Selection dialog box opens. By default, the Normal well selection option is selected. This option is used for column- and row-wise liquid-handling patterns.

2. Select Quadrant pattern in a loop. The contents of the dialog box change. Notice the following:
• Red numbers (1 through 4) appear on wells A1, A2, B1, and B2. The numbers indicate the pipetting sequence: 1 is the starting well, and 4 is the last well. In the following example, the sequence is A1, A2, B1, B2.

• Green wells indicate the starting well in the pipetting sequence.

• Pattern buttons at the bottom of the dialog box indicate the movement of the pipette channels. The movement description is provided in the text box above the buttons.

 Note: The last two patterns are unavailable if a group contains 16 wells. For example, the last two patterns are not available if you have a 96-well pipette head and a 1536-well microplate.

3 Select the starting well. The well becomes green and is labeled 1. In the following example, the third quadrant (B1 well) is selected.

4 Click a pattern button to specify the pipette channel movement. After you click a pattern, the red numbers in the graphic are updated to show the sequence.

 In the following example, the second pattern is selected (right-to-left, then top-to-bottom). The third quadrant (B1) is the starting well. The resulting movement is:
 - Quadrant 3 (B1)
 - Quadrant 2 (A2)
 - Quadrant 1 (A1)
 - Quadrant 4 (B2)
When you are finished, click OK to save the changes and return to the VWorks window.

Example: Mix the contents in the destination microplate on the Bravo Platform

Goal
Aspirate contents from a source microplate (Source 1), dispense into a destination microplate, and then mix the contents in the destination microplate. Use the default Mix parameters.

Implementation
The Bravo deck is physically set up as follows:
- The destination microplates are at Bravo deck location 1.
- The source microplate is at deck location 2.
- The tipbox is at deck location 9.

In the protocol, the following are added:
- Process for the destination microplate
- Configured labware for the source microplate
- Configured labware for the tipbox

In the Destination plate process, a Bravo subprocess is added. Within the subprocess, a Mix task is added after the Aspirate and Dispense tasks as shown in the following example.
In the Mix Task Parameters area, Destination is selected, because the goal is to mix the contents in the destination microplate.

Related information

<table>
<thead>
<tr>
<th>For information about...</th>
<th>See...</th>
</tr>
</thead>
</table>
| Adding devices | • “Adding devices” on page 25
 | • Device user guide |
| Adding tasks in a protocol | “Adding and deleting tasks” on page 51 |
| Aspirate task | “Aspirate (Bravo, Vertical Pipetting Station)” on page 338 |
| Dispense task | “Dispense (Bravo, Vertical Pipetting Station)” on page 358 |
| Set Head mode task | “Set Head Mode (Bravo)” on page 431 |
| Tips On task | “Tips On (Bravo, Vertical Pipetting Station)” on page 444 |
| Tips Off task | “Tips Off (Bravo, Vertical Pipetting Station)” on page 441 |
| Pipette technique | “Specifying pipetting techniques” on page 499 |
Move and Filter Plate (Bravo)

Description

The Move and Filter Plate (Bravo) task ():

- Moves a specified filter microplate from its current location to the Vacuum Filtration Station.
- Turns on and turns off the vacuum.

Use the Move and Filter Plate task if the Vacuum Filtration Station has configuration B or C shown in the following diagram. In this configuration, the filter microplate is not part of the station assembly.

If the Vacuum Filtration Station has configuration A, where the filter microplate is part of the assembly (it sits under the collar), use the Toggle Vacuum (Bravo, Vertical Pipetting Station) task to turn on and turn off the vacuum. See “Toggle Vacuum (Bravo, Vertical Pipetting Station)” on page 447.

<table>
<thead>
<tr>
<th>Task is available for...</th>
<th>Task is available in...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bravo Platform</td>
<td>Main Protocol, Bravo Subprocess</td>
</tr>
</tbody>
</table>
Task parameters

Note: The Move and Filter task parameters displayed can vary, depending on the type of vacuum pump used with the Vacuum Filtration Station.

After adding the Move and Filter task at the desired point in the Bravo Subprocess, set the following parameters in the **Task Parameters** area:

Parameter	**Description**
Location, plate | The name of the filter microplate. The robot will move this filter microplate to the Vacuum Filtration Station (specified by the Location, location parameter).
Location, location | The deck location of the Vacuum Filtration Station.
Select <auto-select> if you want the robot to place the filter microplate at the first-available Vacuum Filtration Station. If more than one Vacuum Filtration Station is on the deck, select the specific deck location.
Mode | The action of the task:
- **On.** Turns on the vacuum.
- **Off.** Turns off the vacuum.
- **Timed.** Turns on the vacuum timer. You must specify the vacuum length of time.

If you plan to time the filtering process, add only one Move and Filter Plate task (the task turns on the vacuum, and at the end of the time period, the vacuum turns off automatically). If you are not timing the filtering process, add two Move and Filter Plate tasks in the protocol (one to turn on the vacuum and the other to turn off the vacuum).

Note: If the filtering process is not timed, the protocol can perform other tasks in parallel.
10 Setting parameters for liquid-handling tasks
Move and Filter Plate (Bravo)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
</table>
| When filtration timing begins (ME4C Vario Vacuum Pump Unit only) | The different options for when to start timing the filtration process:
 • When pressure is achieved
 • When the pump starts
 This parameter is only used if the ME4C Vario Vacuum Pump Unit is configured as part of the Vacuum Filtration Station. |
| Time for operation in Timed mode | The length of time, in seconds, you want to leave the vacuum on. At the end of the period, the vacuum will turn off. |
| Hold down filter plate | The option to have the robot hold down the filter microplate when the vacuum is turned on to ensure a secure vacuum seal. |
| Allow concurrent operation | The option to permit the accessory to operate simultaneously with other tasks. |
| Time allowed to reach pressure(s) (ME4C Vario Vacuum Pump Unit only) | The length of time, in seconds, to allow the vacuum to reach the specified target pressure. An error message displays if the target pressure is not reached within the time specified.
 This parameter is only used if the ME4C Vario Vacuum Pump Unit is configured as part of the Vacuum Filtration Station. |
| Target pressure (ME4C Vario Vacuum Pump Unit only) | The desired vacuum pressure, in mbar, Torr, or hPa. The pressure unit is set on the Vario vacuum pump.
 This parameter is only used if the ME4C Vario Vacuum Pump Unit is configured as part of the Vacuum Filtration Station. |
| Vent delay (ME4C Vario Vacuum Pump Unit only) | The length of time, in seconds, to wait for the air pressure under the filter to equalize with the ambient air pressure.
 This parameter is only used if the ME4C Vario Vacuum Pump Unit is configured as part of the Vacuum Filtration Station. |

Example

Goal
Assemble a Vacuum Filtration Station whose configuration is base-collection plate-collar. Move a filter microplate to the station. Filter for 30 seconds. Disassemble the station.

Implementation
In Bravo Diagnostics, the Bravo deck is configured such that:
• The Vacuum Filtration Station will be assembled at deck location 3.
• The Vacuum Filtration Station base is at deck location 3.
• The collar is at deck location 9.
• During the disassembly process, the filter microplate will be placed at the first-available deck location.

In the protocol, the following are added as shown:
• Filter Plate process
• Collection Plate configured labware (at deck location 8)
• Place Plate (to place the Filter Plate at location 5), Assemble Vacuum, Move and Filter Plate, and Disassemble Vacuum tasks

The Assemble Vacuum task parameters are set as follows:
The Move and Filter Plate task parameters are set as follows:

Set the Disassemble Vacuum task parameters as follows:
The resulting protocol will run as follows:

1. Acknowledge that the filter microplate (Filter Plate) is starting at deck location 5.
2. Acknowledge that the collection microplate (Collection Plate) is starting at deck location 8.
3. Assemble the Vacuum Filtration Station (base-collection plate-collar):
 a. Move the Collection Plate from deck location 8 and place it on top of the base at deck location 3.
 b. Move the collar from deck location 9 and place it on top of the Collection Plate at deck location 3.
4. Move the Filter Plate from deck location 5 and place it on top of the assembled Vacuum Filtration Station at deck location 3.
5. Turn on the vacuum for 30 seconds, and then turned off the vacuum.
6. Disassemble the Vacuum Filtration Station:
 a. Move the Filter Plate to an available deck location.
 b. Move the collar back to deck location 9.
 c. Move the Collection Plate back to deck location 8.

Related information

<table>
<thead>
<tr>
<th>For information about...</th>
<th>See...</th>
</tr>
</thead>
</table>
| Adding devices | • “Adding devices” on page 25
<pre><code> | • Device user guide |
</code></pre>
<p>| Adding tasks in a protocol | “Adding and deleting tasks” on page 51 |</p>
<table>
<thead>
<tr>
<th>For information about...</th>
<th>See...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assemble Vacuum task</td>
<td>“Assemble Vacuum (Bravo)” on page 346</td>
</tr>
<tr>
<td>Disassemble Vacuum task</td>
<td>“Disassemble Vacuum (Bravo)” on page 356</td>
</tr>
<tr>
<td>Toggle Vacuum task</td>
<td>“Toggle Vacuum (Bravo, Vertical Pipetting Station)” on page 447</td>
</tr>
<tr>
<td>Microplate-handling tasks</td>
<td>“Setting parameters for microplate-handling tasks” on page 241</td>
</tr>
<tr>
<td>Microplate-storage tasks</td>
<td>“Setting parameters for microplate storage tasks” on page 305</td>
</tr>
<tr>
<td>Scheduling tasks</td>
<td>“Setting parameters for scheduling tasks” on page 459</td>
</tr>
<tr>
<td>I/O-handling tasks</td>
<td>“Setting parameters for I/O-handling tasks” on page 233</td>
</tr>
</tbody>
</table>
Pin Tool (Bravo, Vertical Pipetting Station)

Description

The Pin Tool (Bravo) and Pin Tool (Vertical Pipetting Station) tasks can be used to perform low-volume transfers of a fixed volume using a pin tool. You can use the Pin Tool task repeatedly in a protocol subprocess to perform all the pin-tool-related steps, such as:

- Pin Tool—Adsorb
- Pin Tool—Dispense
- Pin Tool—Wash
- Pin Tool—Blot
- Pin Tool—Mix

Before you begin

Ensure the following:

- The Bravo or Vertical Pipetting Station device profile specifies an appropriate pin tool. To create or edit a profile, see the user guide for the applicable device.

 IMPORTANT Ensure the pin tool teachpoints are set up in the same manner as a fixed-tip pipette head.

- The protocol includes the SubProcess (Bravo) or SubProcess (Vertical Pipetting Station).

Task parameters

Note: The Pin Tool task parameters for the Bravo Platform and Vertical Pipetting Station are identical.

After adding the Pin Tool task at the desired point in the subprocess, set the following parameters in the Task Parameters area:
10 Setting parameters for liquid-handling tasks
Pin Tool (Bravo, Vertical Pipetting Station)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Location, plate</td>
<td>The labware involved in the Pin Tool task.</td>
</tr>
<tr>
<td>Location, location</td>
<td>The location at which the Pin Tool task occurs. <auto-select> automatically places the labware at the first-available or appropriate location for the task. If accessories are installed on the deck or shelf, the software uses the accessory configuration information in Bravo Diagnostics or Vertical Pipetting Station Diagnostics to determine the correct location for the task.</td>
</tr>
</tbody>
</table>
| Dwell time (s) | The time duration that the pins remain at the specified height (First distance or Second distance) within the well. For example, you might start with the following values:
 • Adsorb, Dispense into fluid, or Mix—0.5 s or longer for more viscous fluids
 • Blot—2 s, or longer for more viscous fluids |
| Descriptive label | A text label that you can add to the task icon in the protocol. Click the arrow in the Descriptive label box to choose an option. The options include:
 • Enter a JavaScript variable or script.
 • Use a predefined label: Adsorb, Dispense, Wash, Blot, or Mix
 • Type your own label in the box. |
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liquid class</td>
<td>A parameter that you can use to control the accuracy and the speed of the pin tool as it moves into and out of the wells.</td>
</tr>
<tr>
<td></td>
<td>IMPORTANT To ensure consistent pipetting, always select a liquid class for liquid-handling tasks.</td>
</tr>
<tr>
<td>Well selection</td>
<td>The wells at which the Pin Tool task occurs. Use this parameter only if the pin tool has fewer pins than the number of wells in the microplate, for example, a 96-pin pin tool and a 384-well microplate. Click in the parameter box, and then click the Browse button to select the wells in the Well Selection dialog box.</td>
</tr>
<tr>
<td>Pipette technique</td>
<td>The pipette location offset you want to use for the Pin Tool task. The list of pipette techniques are defined in the Pipette Technique Editor.</td>
</tr>
<tr>
<td>First distance (mm)</td>
<td>The first height for the pin tool during the Pin Tool task. The value is the distance between the pin tips and the well bottoms. For example, during an adsorb step, you might set this value to 0 mm so that the pin tips touch the bottom of the wells. This parameter can affect the quantity adsorbed. IMPORTANT The labware definition must be accurate and the teachpoint must be precise in order for the system to position the pins at the correct distance from the well bottom.</td>
</tr>
<tr>
<td>Use two distances</td>
<td>The option to specify a second height for the pins during the Pin Tool task. For example, you could cycle the pin positions between two heights within the wells repeatedly to perform mixing or to wash the pins. Default: Not selected</td>
</tr>
<tr>
<td>Second distance (mm)</td>
<td>The distance between the pin tips and the well bottoms at the second height for the pins. IMPORTANT The labware definition must be accurate and the teachpoint must be precise in order for the system to position the pins at the correct distance from the well bottom.</td>
</tr>
</tbody>
</table>
Setting parameters for liquid-handling tasks

Pin Tool (Bravo, Vertical Pipetting Station)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cycles</td>
<td>Available if you select the Use two distances option. The Cycles parameter sets the number of times to move the pins repeatedly to the two heights, for example to perform mixing or to wash the pins.</td>
</tr>
<tr>
<td>Perform tip touch</td>
<td>The option to touch the pins on one or more sides of the well, or to enable the pins to make lateral stirring moves inside the fluid, for example during a wash task.</td>
</tr>
<tr>
<td>Which sides to use for tip touch</td>
<td>The side or sides of the well to use during tip touch: North, South, East, West, North/South, West/East, West/East/South/North.</td>
</tr>
</tbody>
</table>
| Tip touch retract distance (mm) | The vertical distance for the pins to move before moving laterally within the well, where
- 0 is the vertical distance equal to the well bottom
- > 0 is the vertical distance the pins rise above the bottom
- < 0 is the vertical distance the pins attempt to move past the well bottom |
| Tip touch horizontal offset (mm) | The horizontal distance that the pins move. The value is based on the well diameter specified by the labware definition, where
- 0 is a distance equal to the well radius
- > 0 is the distance the pins attempt to move past the well radius, which results in a more forceful tip touch
- < 0 is a distance less than the radius of the well, resulting in a lighter tip touch or no tip touch |
Quadrant pattern well selection

A quadrant is an evenly spaced array of locations that are accessible by the tips on a pipette head. The following table lists the types of pipette heads and the number of accessible quadrants in various microplates.

<table>
<thead>
<tr>
<th>Pipette head channels/pin tool pins</th>
<th>Microplate</th>
<th>Number of quadrants</th>
</tr>
</thead>
<tbody>
<tr>
<td>96</td>
<td>96-well</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>384-well</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>1536-well</td>
<td>16</td>
</tr>
<tr>
<td>384</td>
<td>384-well</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>1536-well</td>
<td>4</td>
</tr>
<tr>
<td>1536 (pin tool only)</td>
<td>1536-well</td>
<td>1</td>
</tr>
</tbody>
</table>

The following diagram demonstrates the concept of quadrants. The diagram shows a portion of a 384-well microplate and highlights the four quadrants (Q1, Q2, Q3, and Q4) that are accessible by the A1 tip of a 96-channel pipette head. Notice that the green color highlights all of the quadrant 1 (Q1) wells across the microplate.

Instead of a column- or row-wise pattern, you can select a quadrant pattern during well selection.

The quadrant pattern option is available only if:

- The number of channels in the pipette head (or pins in a pin tool) is fewer than the number of wells in the microplate. For example, you can use a 96-channel pipette head to dispense liquid into a 384-well microplate or 1536-well microplate.
- All the channels are selected in the Set Head Mode task when using a pipette head. (The Set Head Mode task is not an option when using a pin tool).
- The liquid-handling task is inside a loop.

IMPORTANT If you select a quadrant pattern, specifications in the Well Selection dialog box will override task.Wellselection values assigned in the Advanced Settings area.
To select a quadrant pattern:

1. In the **Task Parameters** area, click the **Well selection** parameter box, and then click the Browse button. The Well Selection dialog box opens. By default, the **Normal well selection** option is selected. This option is used for column- and row-wise liquid-handling patterns.

![Well Selection Dialog Box]

2. Select **Quadrant pattern in a loop**. The contents of the dialog box change. Notice the following:
 - Red numbers (1 through 4) appear on wells A1, A2, B1, and B2. The numbers indicate the pipetting sequence: 1 is the starting well, and 4 is the last well. In the following example, the sequence is A1, A2, B1, B2.
 - Green wells indicate the starting well in the pipetting sequence.
 - Pattern buttons at the bottom of the dialog box indicate the movement of the pipette channels. The movement description is provided in the text box above the buttons.

 Note: The last two patterns are unavailable if a group contains 16 wells. For example, the last two patterns are not available if you have a 96-well pipette head and a 1536-well microplate.

![Quadrant Pattern Dialog Box]

3. Select the starting well. The well becomes green and is labeled 1. In the following example, the third quadrant (B1 well) is selected.
Click a pattern button to specify the pipette channel movement. After you click a pattern, the red numbers in the graphic are updated to show the sequence.

In the following example, the second pattern is selected (right-to-left, then top-to-bottom). The third quadrant (B1) is the starting well. The resulting movement is:

- Quadrant 3 (B1)
- Quadrant 2 (A2)
- Quadrant 1 (A1)
- Quadrant 4 (B2)

When you are finished, click **OK** to save the changes and return to the VWorks window.

Example: Pin Tool tasks on a Vertical Pipetting Station

Goal
Using a pin tool, transfer a small volume from a source microplate (Source 1) into a destination microplate, and wash and blot the pins.

Implementation
The Vertical Pipetting Station is physically set up as follows:

- The source microplate is on shelf 3.
- The destination microplate is on shelf 4.
- The wash station is on shelf 5.
- The blotting material is on shelf 6.

In the protocol, the following are added:
• Process for the destination microplate
• Configured labware for the source microplate
• Configured labware for the wash station
• Configured labware for the blotting station

In the process, a Vertical Pipetting Station subprocess is added. Within the subprocess, four Pin Tool tasks are added for Adsorb, Dispense, Wash, and Blot.

Parameter settings for each Pin Tool task in the example

• Adsorb
 – Dwell time 0.5 s
 – First distance 0 mm
 – Second distance 10 mm
 – Cycles 3
 – No tip touch

• Dispense (into dry microplate)
 – Dwell time 0.5 s
 – First distance –2 mm
 – No second distance
 – No tip touch

• Wash
 – Dwell time 0.5 s
 – First distance 0 mm
 – Second distance 10 mm
 – Cycles 3
 – Perform tip-touch on all sides with horizontal offset of 0 mm and at a retract distance of 2 mm

• Blot
 – Dwell time 2 s
 – First distance –2 mm
 – No second distance
 – No tip touch
Related information

<table>
<thead>
<tr>
<th>For information about...</th>
<th>See...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adding devices</td>
<td>• “Adding devices” on page 25</td>
</tr>
<tr>
<td></td>
<td>• Device user guide</td>
</tr>
<tr>
<td>Adding tasks in a protocol</td>
<td>“Adding and deleting tasks” on page 51</td>
</tr>
<tr>
<td>Liquid classes</td>
<td>VWorks Automation Control Setup Guide</td>
</tr>
<tr>
<td>Set Head Mode task</td>
<td>“Set Head Mode (Bravo)” on page 431</td>
</tr>
<tr>
<td>Microplate-handling tasks</td>
<td>“Setting parameters for microplate-handling tasks” on page 241</td>
</tr>
<tr>
<td>Microplate-storage tasks</td>
<td>“Setting parameters for microplate storage tasks” on page 305</td>
</tr>
<tr>
<td>Scheduling tasks</td>
<td>“Setting parameters for scheduling tasks” on page 459</td>
</tr>
<tr>
<td>I/O-handling tasks</td>
<td>“Setting parameters for I/O-handling tasks” on page 233</td>
</tr>
</tbody>
</table>
Pump Reagent (Bravo, Vertical Pipetting Station)

Description

The Pump Reagent (Bravo) and Pump Reagent (Vertical Pipetting Station) tasks fill or empty the Auto Filling Reservoir and MicroWash Reservoir by pumping for a specified number of seconds or until the percent of maximum tared weight is reached. If the reservoir is on a Weigh Station or Weigh Shelf, the pump stops fluid flow when the target weight is reached. Otherwise, gravity drain is used to empty the reservoir.

<table>
<thead>
<tr>
<th>Task is available for...</th>
<th>Task is available in...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bravo Platform</td>
<td>Main Protocol, Bravo Subprocess</td>
</tr>
<tr>
<td>Vertical Pipetting Station</td>
<td>Main Protocol, Vertical Pipetting Station Subprocess</td>
</tr>
</tbody>
</table>

Requirements

The following must be configured on the Bravo Platform or the Vertical Pipetting Station:

- Autofilling Reservoir or MicroWash Reservoir
- Pump Module
- Weigh Station or Weigh Shelf (optional)

Task parameters

Note: The task parameters for Pump Reagent (Bravo) and Pump Reagent (Vertical Pipetting Station) are identical.

After adding the Pump Reagent task at the desired point in the subprocess, set the following parameters in the Task Parameters area:
Parameter Description

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Location, plate</td>
<td>The labware involved in the Pump Reagent task.</td>
</tr>
<tr>
<td>Location, location</td>
<td>The location at which the Pump Reagent task occurs. <auto-select> automatically places the labware at the first-available or appropriate location for the task. If accessories are installed on the deck or shelf, the software uses the accessory configuration information in Bravo Diagnostics or Vertical Pipetting Station Diagnostics to determine the correct location for the task.</td>
</tr>
<tr>
<td>Reservoir mode</td>
<td>The action of the task: • Fill • Empty</td>
</tr>
<tr>
<td>Pump speed</td>
<td>The speed, in percent of maximum, at which to pump the reagent.</td>
</tr>
<tr>
<td>Pump on time</td>
<td>The duration of the pumping time, in seconds.</td>
</tr>
<tr>
<td>Use weigh station/shelf</td>
<td>The option to use the Weigh Station or Weigh Shelf.</td>
</tr>
<tr>
<td>Weigh station/shelf action threshold</td>
<td>The minimum fluid weight, in percent of the full weight that was calibrated on the Weigh Station or Weigh Shelf. For example, you can set the minimum threshold at 45% so that when the fluid reaches 45% of the full weight, fluid starts to pump into the reservoir.</td>
</tr>
<tr>
<td>Weigh station stop action threshold</td>
<td>The maximum fluid weight, in percent of the full weight that was calibrated on the Weigh Station or Weigh Shelf. For example, you can set the stop threshold at 60% so that when the fluid reaches 60% of the full weight, fluid starts to drain or pump out of the reservoir.</td>
</tr>
<tr>
<td>Allow concurrent operation</td>
<td>The option to permit the accessory to operate simultaneously with other tasks.</td>
</tr>
</tbody>
</table>

Example: Fill the MicroWash Reservoir after the Tip Wash task

Goal

After some liquid-handling tasks, wash the tips, and then fill the MicroWash Reservoir.
Implementation

In Bravo Diagnostics, set up the Auto Filling Reservoir on a deck location. Associate the reservoir with one or more pump modules.

In the protocol, add a configured labware for the Auto Filling Reservoir in addition to the other processes and configured labware required by the protocol. In the example shown, the configured reservoir is called Wash.

In the Bravo subprocess where the liquid-handling tasks are specified, a Pump Reagent task is added after the Wash Tips task. After adding the Pump Reagent task, the task name changes to Fill or empty a reservoir in the protocol, as shown in the following example.

In the Pump Reagents Task Parameters area, Wash (the name for the Auto Filling Reservoir) is selected, because the goal is to pump fluid into the Auto Filling Reservoir.
Related information

<table>
<thead>
<tr>
<th>For information about...</th>
<th>See...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adding devices</td>
<td>• “Adding devices” on page 25</td>
</tr>
<tr>
<td></td>
<td>• Device user guide</td>
</tr>
<tr>
<td>Adding tasks in a protocol</td>
<td>“Adding and deleting tasks” on page 51</td>
</tr>
<tr>
<td>Aspirate task</td>
<td>“Aspirate (Bravo, Vertical Pipetting Station)” on page 338</td>
</tr>
<tr>
<td>Dispense task</td>
<td>“Dispense (Bravo, Vertical Pipetting Station)” on page 358</td>
</tr>
<tr>
<td>Set Head Mode task</td>
<td>“Set Head Mode (Bravo)” on page 431</td>
</tr>
<tr>
<td>Tips On task</td>
<td>“Tips On (Bravo, Vertical Pipetting Station)” on page 444</td>
</tr>
<tr>
<td>Tips Off task</td>
<td>“Tips Off (Bravo, Vertical Pipetting Station)” on page 441</td>
</tr>
<tr>
<td>Wash Tips task</td>
<td>“Wash Tips (Bravo, Vertical Pipetting Station)” on page 452</td>
</tr>
<tr>
<td>Microplate-handling tasks</td>
<td>“Setting parameters for microplate-handling tasks” on page 241</td>
</tr>
<tr>
<td>Microplate-storage tasks</td>
<td>“Setting parameters for microplate storage tasks” on page 305</td>
</tr>
<tr>
<td>Scheduling tasks</td>
<td>“Setting parameters for scheduling tasks” on page 459</td>
</tr>
<tr>
<td>I/O-handling tasks</td>
<td>“Setting parameters for I/O-handling tasks” on page 233</td>
</tr>
</tbody>
</table>

Serial Dilution (Bravo, Vertical Pipetting Station)

Description

The Serial Dilution (Bravo) (Serial Dilution (Bravo)) and Serial Dilution (Vertical Pipetting Station) (Serial Dilution (Vertical Pipetting Station)) tasks allows you to set up serial dilution in a microplate using a single task. You use the Serial Dilution wizard to set up the task parameters. The end result is a sequence of Aspirate, Dispense, and optional Mix tasks that produce a linear or non-linear concentration gradient in selected wells.

<table>
<thead>
<tr>
<th>Task is available for...</th>
<th>Task is available in...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bravo Platform</td>
<td>Main Protocol, Bravo Subprocess</td>
</tr>
</tbody>
</table>
10 Setting parameters for liquid-handling tasks
Serial Dilution (Bravo, Vertical Pipetting Station)

<table>
<thead>
<tr>
<th>Task is available for...</th>
<th>Task is available in...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vertical Pipetting Station</td>
<td>Main Protocol, Vertical Pipetting Station Subprocess</td>
</tr>
</tbody>
</table>

Requirements

Setup
Make sure you:

- Check that the Vertical Pipetting Station device has the 8- or 16-channel serial dilution head installed. In general, the Vertical Pipetting Station device can perform single-column or single-row serial dilution only.
- Configure the labware on the Bravo deck or the Vertical Pipetting Station shelves in the software. For instructions, see “Configuring labware” on page 38.
- If you are using a Series III pipette head on the Bravo Platform, add a Set Head mode task before the Serial Dilution task to select the pipette channels. See “Set Head Mode (Bravo)” on page 431 for details.
- If you are using a Series II pipette head and you want to dilute by quadrant, check that the number of channels is fewer than the number of wells in the microplate.

The Serial Dilution task can be used with the following pipette head and microplate formats:

<table>
<thead>
<tr>
<th>Series II pipette head</th>
<th>Microplate format</th>
</tr>
</thead>
<tbody>
<tr>
<td>8-channel head</td>
<td>96, 384, 1536</td>
</tr>
<tr>
<td>16-channel head</td>
<td>384, 1536</td>
</tr>
<tr>
<td>96-channel head</td>
<td>384, 1536</td>
</tr>
<tr>
<td>384-channel head</td>
<td>1536</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Series III pipette head</th>
<th>Microplate format</th>
</tr>
</thead>
<tbody>
<tr>
<td>96-channel head with disposable tips</td>
<td>96, 384, 1536</td>
</tr>
</tbody>
</table>
Table: Serial Dilution

<table>
<thead>
<tr>
<th>Series II pipette head</th>
<th>Microplate format</th>
</tr>
</thead>
<tbody>
<tr>
<td>384-channel head with disposable tips</td>
<td>384, 1536</td>
</tr>
</tbody>
</table>

Labware

IMPORTANT The Serial Dilution task can only be used with a microplate. The task cannot be used with a reservoir.

Make sure the serial dilution microplate meets the following requirements:
- A column, row, or quadrant contains the starting concentration of a compound to be diluted.
- One or more columns, rows, or quadrants contain the same amount of diluent.

Pipette-tip tracking

You can track pipette tip usage on the Bravo Platform and the Vertical Pipetting Station. To track pipette tip usage, turn on the tracking options in the following:
- Tips On task
- Tips Off tasks.
- Serial Dilution wizard, step 2

Custom parameters

Note: The custom parameters for Serial Dilution (Bravo) and Serial Dilution (Vertical Pipetting Station) are identical.

After adding the Serial Dilution task at the desired point in the protocol, set the following parameters in the **Custom Parameters** area:
10 Setting parameters for liquid-handling tasks

Serial Dilution (Bravo, Vertical Pipetting Station)

Serial dilution wizard

The serial dilution wizard guides you through the serial dilution setup.

To use the wizard:

1. In the Task Parameters area, click Launch serial dilution wizard. The Serial Dilution Wizard dialog box opens.
2. Follow the instructions to set up the serial dilution.

IMPORTANT In step 1 of the wizard, if you want the transfer volume to be determined by a concentration gradient, be sure to type a gradient factor.

For example, if the concentration gradient is 2, then the concentration of the first dilution will be the concentration in the starting column C_1 divided by 2, or $C_1/2$. The concentration of the second dilution will be the concentration of the second column C_2 divided by 2, or $C_2/2$, and so on.
The upper range of the transfer volume is determined by the capacity of the pipette head and the well volume of the microplate.

IMPORTANT Select whether you want the software to track tip usage in Step 2 of the wizard.

IMPORTANT If you want to track tips, make sure you also select the tracking options in the Tips On and Tips Off tasks.

For the description of the Aspirate parameters, see “Aspirate (Bravo, Vertical Pipetting Station)” on page 338. For the description of the Dispense parameters, see “Dispense (Bravo, Vertical Pipetting Station)” on page 358. For the description of the Mix parameters, see “Mix (Bravo, Vertical Pipetting Station)” on page 398.

When you are finished setting up the serial dilution task, the parameters you specified in the wizard appear in the **Task Parameters** area. Review the parameters. To see additional parameters, click the arrow buttons under the parameter table. If you need to edit a parameter value, double-click in the box and type the new value.

Related information

<table>
<thead>
<tr>
<th>For information about...</th>
<th>See...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Configured labware</td>
<td>“Planning labware use” on page 20</td>
</tr>
<tr>
<td>Static labware</td>
<td>“Planning labware use” on page 20</td>
</tr>
</tbody>
</table>
For information about... | See...
---|---
Startup Protocol | “Setting up Startup and Cleanup Protocol processes” on page 58
Adding devices | • “Adding devices” on page 25
| • Device user guide
Adding tasks in a protocol | “Adding and deleting tasks” on page 51
Microplate-handling tasks | “Setting parameters for microplate-handling tasks” on page 241
Microplate-storage tasks | “Setting parameters for microplate storage tasks” on page 305
Scheduling tasks | “Setting parameters for scheduling tasks” on page 459
I/O-handling tasks | “Setting parameters for I/O-handling tasks” on page 233
Set Head Mode (Bravo)

Description

The Set Head Mode (Bravo) task specifies the channels (or barrels) in the pipette head to be used for pipetting. You can select an m x n array of channels (barrels) for one of the following configurations:

- All of the pipette channels
- The first or last full column or row of pipette channels
- Multiple full columns or rows of pipette channels
- The first or last partial column or row of pipette channels
- Multiple partial columns or rows of pipette channels
- A single pipette barrel at the corner of the pipette head

This task should only be used if the Series III pipette head is installed.

<table>
<thead>
<tr>
<th>Task is available for...</th>
<th>Task is available in...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bravo Platform</td>
<td>Main Protocol, Bravo Subprocess</td>
</tr>
</tbody>
</table>

Pipette head requirements

You can use the following pipette heads with a flexible array of pipette tips:

<table>
<thead>
<tr>
<th>Pipette head</th>
<th>Microplate format</th>
</tr>
</thead>
<tbody>
<tr>
<td>Series III 96-channel head with disposable tips</td>
<td>96, 384, or 1536</td>
</tr>
<tr>
<td>Series III 384-channel head with disposable tips</td>
<td>96, 384 or 1536</td>
</tr>
</tbody>
</table>

Accessible deck locations

The deck locations you can access depends on the pipette head channels you select. The following table shows the channel selections and corresponding deck location limits. Use this information when you set up labware on the Bravo deck.
10 Setting parameters for liquid-handling tasks

Set Head Mode (Bravo)

<table>
<thead>
<tr>
<th>Pipette channel selection</th>
<th>Accessible Bravo deck locations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Front view</td>
<td>Accessible locations - all</td>
</tr>
<tr>
<td>All channels</td>
<td></td>
</tr>
<tr>
<td>An array containing the left-most column</td>
<td></td>
</tr>
<tr>
<td>An array containing the right-most column</td>
<td></td>
</tr>
</tbody>
</table>

Accessible locations:

1 2 3 4 5 6 7 8 9
Pipette channel selection

<table>
<thead>
<tr>
<th>Front View</th>
<th>Accessible Bravo deck locations</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Accessible locations</td>
</tr>
<tr>
<td>Front view</td>
<td>1</td>
</tr>
<tr>
<td>An array containing the first row</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>An array containing the last row</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Front left-corner channel only

<table>
<thead>
<tr>
<th>Front View</th>
<th>Accessible locations</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Front left-corner channel only</td>
<td></td>
</tr>
</tbody>
</table>
Before you add the task

Make sure:

- You have installed the correct pipette head. See “Pipette head requirements” on page 431 and the Bravo Automated Liquid Handling Platform User Guide.

- If you are going to use partial rows or columns of channels (barrels) on the pipette head, retract the tip box stripper pins on the pipette head. See the Bravo Automated Liquid Handling Platform User Guide for this procedure.
• The correct Bravo device file is open in the VWorks window.
• The profile you selected shows the correct head type, tip type, and miscellaneous settings.
• All the teachpoints have been added and verified.

Task parameters

IMPORTANT The Set Head Mode task should always precede the pipetting tasks that require the specified subset of pipettes.

IMPORTANT The Set Head Mode task should precede the Serial Dilution task. If you plan to change tips during the serial dilution process, add the Set Head Mode task before the Tips On task.

After adding the Set Head Mode task at the desired point in the protocol, set the following parameters in the **Task Parameters** area:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Head mode</td>
<td>The channel selection. Click the Head mode field, and then click the ... button that appears. In the Head Mode Selector dialog box that opens, select the pipette channels.</td>
</tr>
</tbody>
</table>

Head Mode Selector dialog box

The Head Mode Selector dialog box allows you to select the pipette channels. Except for the **Subset: All barrels** mode, you select the desired channels using a combination of the **Subset mode** selection with the **Subset orientation** selection.
To select the pipette channels:

1. In the **Subset** list, select one of the following:

<table>
<thead>
<tr>
<th>Subset mode</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>All barrels</td>
<td>Uses all of the pipette channels.</td>
</tr>
<tr>
<td>Full column</td>
<td>Uses one or more full columns of pipette channels, starting from the right-most or left-most column.</td>
</tr>
<tr>
<td>Full row</td>
<td>Uses one or more full rows of pipette channels, starting from the first row or the last row.</td>
</tr>
<tr>
<td>Partial row/column</td>
<td>Uses part of the selected columns or rows.</td>
</tr>
</tbody>
</table>

2. In the **Subset orientation** list, select one of the following:

<table>
<thead>
<tr>
<th>Subset orientation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Front right</td>
<td>Uses pipette channels that contain the single channel in the front right corner.</td>
</tr>
<tr>
<td>Back right</td>
<td>Uses pipette channels that contain the single channel in the back right corner.</td>
</tr>
<tr>
<td>Front left</td>
<td>Uses one or more full rows of pipette channels, starting from the first row or the last row.</td>
</tr>
<tr>
<td>Back right</td>
<td>Uses part of the selected columns or rows.</td>
</tr>
</tbody>
</table>
3 When you are finished, click **OK** to save the selection.

Example: Specify the pipette channels to use on the Bravo Platform

Goal
Use all of the channels of a Series III 96-channel pipette head for the liquid-handling tasks.

Implementation
At the beginning of the Bravo subprocess, add a Set Head Mode task as shown.

In the Set Head Mode Task Parameters area, All barrels is selected.

Related information

<table>
<thead>
<tr>
<th>For information about...</th>
<th>See...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Configured labware</td>
<td>“Planning labware use” on page 20</td>
</tr>
<tr>
<td>Static labware</td>
<td>“Planning labware use” on page 20</td>
</tr>
<tr>
<td>Startup Protocol</td>
<td>“Setting up Startup and Cleanup Protocol processes” on page 58</td>
</tr>
<tr>
<td>Adding devices</td>
<td>• “Adding devices” on page 25</td>
</tr>
<tr>
<td></td>
<td>• Device user guide</td>
</tr>
<tr>
<td>Adding tasks in a protocol</td>
<td>“Adding and deleting tasks” on page 51</td>
</tr>
<tr>
<td>Tips On task</td>
<td>“Tips On (Bravo, Vertical Pipetting Station)” on page 444</td>
</tr>
</tbody>
</table>
Shake (Bravo, Vertical Pipetting Station)

Description

The Shake (Bravo) and Shake (Vertical Pipetting Station) tasks instruct the Orbital Shaking Station to shake.

Requirements

To use the Shake task, you must first configure the Orbital Shaking Station in Bravo Diagnostics or Vertical Pipetting Station Diagnostics.

Task parameters

Note: The task parameters for Shake (Bravo) and Shake (Vertical Pipetting Station) are identical.

After adding the Shake task at the desired point in the protocol, set the following parameters in the **Task Parameters** area:

<table>
<thead>
<tr>
<th>For information about...</th>
<th>See...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tips Off task</td>
<td>“Tips Off (Bravo, Vertical Pipetting Station)” on page 441</td>
</tr>
<tr>
<td>Microplate-handling tasks</td>
<td>“Setting parameters for microplate-handling tasks” on page 241</td>
</tr>
<tr>
<td>Microplate-storage tasks</td>
<td>“Setting parameters for microplate storage tasks” on page 305</td>
</tr>
<tr>
<td>Liquid-handling tasks</td>
<td>“Setting parameters for liquid-handling tasks” on page 333</td>
</tr>
<tr>
<td>Scheduling tasks</td>
<td>“Setting parameters for scheduling tasks” on page 459</td>
</tr>
<tr>
<td>I/O-handling tasks</td>
<td>“Setting parameters for I/O-handling tasks” on page 233</td>
</tr>
</tbody>
</table>
Setting parameters for liquid-handling tasks

Shake (Bravo, Vertical Pipetting Station)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Location, plate</td>
<td>The labware involved in the Shake task.</td>
</tr>
<tr>
<td>Location, location</td>
<td>The location at which the Shake task occurs. <auto-select> automatically places the labware at the first-available or appropriate location for the task. If accessories are installed on the deck or shelf, the software uses the accessory configuration information in Bravo Diagnostics or Vertical Pipetting Station Diagnostics to determine the correct location for the task.</td>
</tr>
<tr>
<td>Mode</td>
<td>The action of the task:</td>
</tr>
<tr>
<td></td>
<td>• On. Turns on the Orbital Shaking Station.</td>
</tr>
<tr>
<td></td>
<td>• Off. Turns off the Orbital Shaking Station.</td>
</tr>
<tr>
<td></td>
<td>• Timed. Turns on the shaking timer. You must specify the length of time to shake. If you plan to time the shaking, add only one Shake task (the task turns on the shaking, and at the end of the time period, the shaking turns off automatically). If you are not timing the shaking, add two Shake tasks in the protocol (one to turn on the shaking and the other to turn off the shaking).</td>
</tr>
<tr>
<td>RPM</td>
<td>The shake speed, in revolutions per minute.</td>
</tr>
<tr>
<td>Direction</td>
<td>The direction to shake. Select one of the direction combinations: NWSE, NESW, NS, EW, NW/SE, NE/SW.</td>
</tr>
<tr>
<td>Time for operation in Timed mode</td>
<td>The length of time, in seconds, you want to leave the shaking on. At the end of the period, the shaking will turn off.</td>
</tr>
</tbody>
</table>
Parameter Description

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allow concurrent operation</td>
<td>The option to permit the accessory to operate simultaneously with other tasks. For example, the Shake and Mix tasks can operate simultaneously.</td>
</tr>
<tr>
<td>CAUTION</td>
<td>To shake and mix concurrently, use only 96-well disposable-tip pipette heads in 96-well microplates.</td>
</tr>
</tbody>
</table>

Example: Shake the destination microplate after adding reagents

Goal
Shake the destination microplate after adding reagents from two source microplates.

Implementation
In the liquid-handling subprocess, a Shake task is added after the second reagent is added. In the following example, a Shake task is added in a Bravo subprocess.

![Diagram of task sequence](image)

In the Shake Task Parameters area, Destination is selected, because the goal is to shake the destination microplate.
For information about...

Configured labware
Static labware
Startup Protocol
Adding devices
Adding tasks in a protocol
Microplate-handling tasks
Microplate-storage tasks
Scheduling tasks
I/O-handling tasks

See...
“Planning labware use” on page 20
“Planning labware use” on page 20
“Setting up Startup and Cleanup Protocol processes” on page 58
• “Adding devices” on page 25
• Device user guide
“Adding and deleting tasks” on page 51
“Setting parameters for microplate-handling tasks” on page 241
“Setting parameters for microplate storage tasks” on page 305
“Setting parameters for scheduling tasks” on page 459
“Setting parameters for I/O-handling tasks” on page 233

Tips Off (Bravo, Vertical Pipetting Station)

Description
The Tips Off (Bravo) and Tips Off (Vertical Pipetting Station) tasks remove disposable pipette tips from the pipette head. The task is not for use with fixed-tip pipette heads.

<table>
<thead>
<tr>
<th>Task is available for...</th>
<th>Task is available in...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bravo Platform</td>
<td>Main Protocol, Bravo Subprocess</td>
</tr>
<tr>
<td>Vertical Pipetting Station</td>
<td>Main Protocol, Vertical Pipetting Station Subprocess</td>
</tr>
</tbody>
</table>

Note: Options in the Tips On and Tips Off tasks permit tracking of pipette tip usage during and across protocol runs. In addition, an option in the Tips Off task allows you to reuse pipette tips for a portion of the protocol run.
Requirements

Tracking tips in serial dilution tasks
In addition to selecting the tracking option in the Tips On and Tips Off tasks, you must also turn on the tracking in the Serial Dilution Wizard. For more detailed information, see “Serial Dilution (Bravo, Vertical Pipetting Station)” on page 425.

Tracking tips across different protocols
If you want to track pipette tip usage across different protocols that contain Bravo and Vertical Pipetting Station Subprocesses, make sure:

- The protocols reference the same device file.
- The tip boxes are at the same physical locations.
- In the software, the tip boxes are configured at the same locations across the protocols.

Note: When a set of tipboxes are designated as a process plate, tip usage is tracked during the protocol run. At the end of a run, the software resets the tipbox to the original state. The software assumes that in each subsequent run, you will load tipboxes in the original state before the run.

Task parameters

Note: The task parameters for Tips Off (Bravo) and Tips Off (Vertical Pipetting Station) are similar.

After adding the Tips Off task at the desired point in the protocol, set the following parameters in the Task Parameters area:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Location, plate</td>
<td>The labware involved in the Tips Off task.</td>
</tr>
<tr>
<td>Location, location</td>
<td>The location at which the Tips Off task occurs.</td>
</tr>
<tr>
<td></td>
<td><auto-select> automatically places the labware at the first-available or appropriate location for the task. If accessories are installed on the deck or shelf, the software uses the accessory configuration information in Bravo Diagnostics or Vertical Pipetting Station Diagnostics to determine the correct location for the task.</td>
</tr>
</tbody>
</table>
Parameter Description

Allow automatic tracking of tip usage

The option to allow the software to track pipette tip usage during the protocol run or across different protocol runs. When you start the run, the software will determine the positions to use in the tip box.

If you select the option in this task, you must also select the option in the Tips On task.

If you do not select this option, you must specify the positions to use in the tip box using the Well selection parameter.

Mark tips as used

The option to use only new pipette tips during the protocol run.

Select the option so that the software counts the number of tips used during the protocol run. The tips that have been used once are marked as used so that they cannot be picked up and reused.

Clear the check box so that during the next Tips On task, the same tips can be reused.

Well selection

The well positions to use for the Tips Off task.

This parameter is available only for manual tracking of pipette tips.

Example: Change tips during liquid-handling tasks on the Bravo Platform

Goal

Add reagents from two source microplates into a destination microplate. Change tips between source microplate 1 and source microplate 2 to prevent contaminating the source microplates.

Implementation

In the liquid-handling subprocess, add a Tips Off task after each Dispense task as shown.
Because the tips are removed at a Tips Off tipbox, the Tips Off tipbox is selected in the Tips Off Task Parameters area.

Related information

<table>
<thead>
<tr>
<th>For information about...</th>
<th>See...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tips On task</td>
<td>“Tips On (Bravo, Vertical Pipetting Station)” on page 444</td>
</tr>
<tr>
<td>Serial Dilution task</td>
<td>“Serial Dilution (Bravo, Vertical Pipetting Station)” on page 425</td>
</tr>
<tr>
<td>Adding devices</td>
<td>“Adding devices” on page 25</td>
</tr>
<tr>
<td></td>
<td>Device user guide</td>
</tr>
<tr>
<td>Adding tasks in a protocol</td>
<td>“Adding and deleting tasks” on page 51</td>
</tr>
<tr>
<td>Microplate-handling tasks</td>
<td>“Setting parameters for microplate-handling tasks” on page 241</td>
</tr>
<tr>
<td>Microplate-storage tasks</td>
<td>“Setting parameters for microplate storage tasks” on page 305</td>
</tr>
<tr>
<td>Scheduling tasks</td>
<td>“Setting parameters for scheduling tasks” on page 459</td>
</tr>
<tr>
<td>I/O-handling tasks</td>
<td>“Setting parameters for I/O-handling tasks” on page 233</td>
</tr>
</tbody>
</table>

Tips On (Bravo, Vertical Pipetting Station)

Description

The Tips On (Bravo) and Tips On (Vertical Pipetting Station) tasks presses disposable pipette tips on the pipette head. The task is not for use with fixed-tip pipette heads.
Setting parameters for liquid-handling tasks

Tips On (Bravo, Vertical Pipetting Station)

Note: Options in Tips On and Tips Off tasks permit the tracking of pipette tip usage during and across protocol runs. In addition, an option in the Tips Off task allows you to reuse pipette tips for a portion of the protocol run.

Requirements

Tracking tips in serial dilution tasks

In addition to selecting the tracking option in the Tips On and Tips Off tasks, you must also turn on the tracking in the Serial Dilution Wizard. For more detailed information, see “Serial Dilution (Bravo, Vertical Pipetting Station)” on page 425.

Tracking tips across different protocols

If you want to track pipette tip usage across different protocols that contain Bravo and Vertical Pipetting Station Subprocesses, make sure:

- The protocols reference the same device file.
- The tip boxes are at the same physical deck locations.
- In the software, the tip boxes are configured at the same locations across the protocols.

Note: When a set of tip boxes are designated as a process plate, tip usage is tracked during the protocol run. At the end of a run, the software resets the tip box to the original state. The software assumes that in each subsequent run, you will load tip boxes in the original state before the run.

Task parameters

Note: The task parameters for Tips On (Bravo) and Tips On (Vertical Pipetting Station) are similar.

After adding the Tips On task at the desired point in the protocol, set the following parameters in the **Task Parameters** area:
10. Setting parameters for liquid-handling tasks

Tips On (Bravo, Vertical Pipetting Station)

- **Goal**

 Make sure tips are pressed on before liquid-handling tasks start.

- **Implementation**

 In the liquid-handling subprocess, a Tips On task is added at the beginning. In the following example, because the protocol is run on a Bravo Platform, a Set Head Mode task must be added before the Tips On task.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Location, plate</td>
<td>The labware involved in the Tips On task.</td>
</tr>
<tr>
<td>Location, location</td>
<td>The location at which the Tips On task occurs.</td>
</tr>
<tr>
<td></td>
<td><auto-select> automatically places the labware at the first-available or appropriate location for the task. If accessories are installed on the deck or shelf, the software uses the accessory configuration information in Bravo Diagnostics or Vertical Pipetting Station Diagnostics to determine the correct location for the task.</td>
</tr>
<tr>
<td>Allow automatic tracking of tip usage</td>
<td>The option to allow the software to track pipette tip usage during the protocol run or across different protocol runs. When you start the run, the software will determine the positions to use in the tipbox. If you select the option in this task, you must also select the option in the Tips Off task. If you do not select this option, you must specify the positions to use in the tip box using the Well selection parameter.</td>
</tr>
<tr>
<td>Well selection</td>
<td>The well positions to use for the Tips On task.</td>
</tr>
<tr>
<td></td>
<td>This parameter is available only for manual tracking of pipette tips.</td>
</tr>
</tbody>
</table>

Example: Press tips on before liquid-handling tasks on the Bravo Platform

- **Goal**

 Make sure tips are pressed on before liquid-handling tasks start.

- **Implementation**

 In the liquid-handling subprocess, a Tips On task is added at the beginning. In the following example, because the protocol is run on a Bravo Platform, a Set Head Mode task must be added before the Tips On task.
Related information

<table>
<thead>
<tr>
<th>For information about...</th>
<th>See...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adding devices</td>
<td>• “Adding devices” on page 25</td>
</tr>
<tr>
<td></td>
<td>• Device user guide</td>
</tr>
<tr>
<td>Adding tasks in a protocol</td>
<td>“Adding and deleting tasks” on page 51</td>
</tr>
<tr>
<td>Tips On task</td>
<td>“Tips On (Bravo, Vertical Pipetting Station)” on page 444</td>
</tr>
<tr>
<td>Serial Dilution task</td>
<td>“Serial Dilution (Bravo, Vertical Pipetting Station)” on page 425</td>
</tr>
<tr>
<td>Set Head Mode task</td>
<td>“Set Head Mode (Bravo)” on page 431</td>
</tr>
<tr>
<td>Microplate-handling tasks</td>
<td>“Setting parameters for microplate-handling tasks” on page 241</td>
</tr>
<tr>
<td>Microplate-storage tasks</td>
<td>“Setting parameters for microplate storage tasks” on page 305</td>
</tr>
<tr>
<td>Scheduling tasks</td>
<td>“Setting parameters for scheduling tasks” on page 459</td>
</tr>
<tr>
<td>I/O-handling tasks</td>
<td>“Setting parameters for I/O-handling tasks” on page 233</td>
</tr>
</tbody>
</table>

Toggle Vacuum (Bravo, Vertical Pipetting Station)

Description

The Toggle Vacuum (Bravo) (UIImage) and Toggle Vacuum (Vertical Pipetting Station) (UIImage) tasks turn on and turn off the vacuum.

In a Bravo Subprocess, use the Toggle Vacuum (Bravo) task if the Vacuum Filtration Station has configuration A as shown in the following diagram. In configuration A, the filter microplate is part of the station assembly.
If the Vacuum Filtration Station has configuration B and you want the robot to move the filter microplate from another location to the station, use the Move and Filter Plate task to turn on and turn off the vacuum. See “Move and Filter Plate (Bravo)” on page 406.

<table>
<thead>
<tr>
<th>Task is available for...</th>
<th>Task is available in...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bravo Platform</td>
<td>Main Protocol, Bravo Subprocess</td>
</tr>
<tr>
<td>Vertical Pipetting Station</td>
<td>Main Protocol, Vertical Pipetting Station Subprocess</td>
</tr>
</tbody>
</table>

Task parameters

Note: The task parameters for Toggle Vacuum (Bravo) and Toggle Vacuum (Vertical Pipetting Station) are identical.

After adding the Toggle Vacuum task at the desired point in the subprocess, set the following parameters in the **Task Parameters** area:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Location</td>
<td>The location of the Vacuum Filtration Station.</td>
</tr>
</tbody>
</table>
Setting parameters for liquid-handling tasks

Toggle Vacuum (Bravo, Vertical Pipetting Station)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mode</td>
<td>The action of the task:</td>
</tr>
<tr>
<td>• On. Turn on the vacuum.</td>
<td></td>
</tr>
<tr>
<td>• Off. Turn off the vacuum.</td>
<td></td>
</tr>
<tr>
<td>• Timed. Turn on the vacuum timer. You must specify the vacuum length of time.</td>
<td></td>
</tr>
</tbody>
</table>

If you plan to time the filtering process, add only one Toggle Vacuum task (the task turns on the vacuum, and at the end of the time period, the vacuum turns off automatically). If you are not timing the filtering process, add two Toggle Vacuum tasks in the protocol (one to turn on the vacuum and the other to turn off the vacuum).

Note: If the filtering process is not timed, the protocol can perform other tasks in parallel.

<table>
<thead>
<tr>
<th>When filtration timing begins</th>
<th>The different options for when to start timing the filtration process:</th>
</tr>
</thead>
<tbody>
<tr>
<td>• When pressure is achieved</td>
<td></td>
</tr>
<tr>
<td>• When pump starts</td>
<td></td>
</tr>
</tbody>
</table>

This parameter is for the Vario vacuum pump only.

<table>
<thead>
<tr>
<th>Time for operation in Timed mode</th>
<th>The length of time, in seconds, you want to leave the vacuum on. At the end of the period, the vacuum will turn off.</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Hold down filter plate</th>
<th>The option to have the robot hold down the filter microplate when the vacuum is turned on to ensure a secure vacuum seal.</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Time allowed to reach pressure</th>
<th>The length of time, in seconds, during which the pump is allowed to reach the target pressure. The software will display an error message if the target pressure is not reached at the end of the specified time.</th>
</tr>
</thead>
</table>

This parameter is for the Vario vacuum pump only.

<table>
<thead>
<tr>
<th>Target pressure</th>
<th>The desired vacuum pressure, in mbar, Torr, or hPa. The pressure unit is set on the Vario vacuum pump.</th>
</tr>
</thead>
</table>

This parameter is for the Vario vacuum pump only.

<table>
<thead>
<tr>
<th>Allow concurrent operation</th>
<th>The option to permit the accessory to operate simultaneously with other tasks.</th>
</tr>
</thead>
</table>
Example

Goal
Assemble a Vacuum Filtration Station whose configuration is base-collection plate-filter plate-collar. Filter for 30 seconds. Disassemble the station.

Implementation
In Bravo Diagnostics, configure the Bravo deck such that:
- The Vacuum Filtration Station will be assembled at deck location 3.
- The Vacuum Filtration Station base is at deck location 3.
- The collar is at deck location 9.

In the protocol, add the following as shown:
- Filter Plate process
- Collection Plate configured labware (at deck location 8)
- Place Plate (to place the Filter Plate at location 5), Assemble Vacuum, Toggle Vacuum, and Disassemble Vacuum tasks

Set the Assemble Vacuum task parameters as shown:
Set the Toggle Vacuum task parameters as shown:

![Toggle Vacuum Task Parameters](image)

Set the Disassemble Vacuum task parameters as shown:

![Disassemble Vacuum Task Parameters](image)

The resulting protocol will run as follows:

1. Acknowledge that the filter microplate (Filter Plate) is starting at deck location 5.
2. Acknowledge that the collection microplate (Collection Plate) is starting at deck location 8.
3. Assemble the Vacuum Filtration Station (base-collection plate-filter plate-collar):
 a. Move the Collection Plate from deck location 8 and place it on top of the base at deck location 3.
 b. Move the Filter Plate from deck location 5 and place it on top of the Collection Plate at deck location 3.
 c. Move the collar from deck location 9 and place it on top of the Filter Plate at deck location 3.
4. Turn on the vacuum for 30 seconds, and then turn off the vacuum.
5 Disassemble the Vacuum Filtration Station:
 a Move the collar back to deck location 9.
 b Move the Filter Plate back to deck location 5.
 c Move the Collection Plate back to deck location 8.

Related information

<table>
<thead>
<tr>
<th>For information about...</th>
<th>See...</th>
</tr>
</thead>
</table>
| Adding devices | • “Adding devices” on page 25
 | • Device user guide |
| Adding tasks in a protocol | “Adding and deleting tasks” on page 51
 | |
| Assemble Vacuum task | “Assemble Vacuum (Bravo)” on page 346 |
| Disassemble Vacuum task | “Disassemble Vacuum (Bravo)” on page 356 |
| Move and Filter Plate task | “Move and Filter Plate (Bravo)” on page 406 |
| Microplate-handling tasks | “Setting parameters for microplate-handling tasks” on page 241 |
| Microplate-storage tasks | “Setting parameters for microplate storage tasks” on page 305 |
| Scheduling tasks | “Setting parameters for scheduling tasks” on page 459 |
| I/O-handling tasks | “Setting parameters for I/O-handling tasks” on page 233 |

Wash Tips (Bravo, Vertical Pipetting Station)

Description

The Wash Tips (Bravo) (Wash Tips (Bravo)) and Wash Tips (Vertical Pipetting Station) (Wash Tips (Vertical Pipetting Station)) tasks wash pipette tips using a number of aspirate and dispense actions.

<table>
<thead>
<tr>
<th>Task is available for...</th>
<th>Task is available in...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bravo Platform</td>
<td>Main Protocol, Bravo Subprocess</td>
</tr>
<tr>
<td>Vertical Pipetting Station</td>
<td>Main Protocol, Vertical Pipetting Station Subprocess</td>
</tr>
</tbody>
</table>
Requirements

One or more of the following must be configured on the Bravo Platform or the Vertical Pipetting Station:

- Autofilling Reservoir
- MicroWash Reservoir
- Open Wash Tray

Task parameters

Note: The task parameters for Wash Tips (Bravo) and Wash Tips (Vertical Pipetting Station) are identical.

After adding the Wash Tips task at the desired point in the subprocess, set the following parameters in the *Task Parameters* area:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Location, plate</td>
<td>The labware involved in the Wash Tips task.</td>
</tr>
</tbody>
</table>
Setting parameters for liquid-handling tasks

Wash Tips (Bravo, Vertical Pipetting Station)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Location, location</td>
<td>The location at which the Wash Tips task occurs. <auto-select> automatically places the labware at the first-available or appropriate location for the task. If accessories are installed on the deck or shelf, the software uses the accessory configuration information in Bravo Diagnostics or Vertical Pipetting Station Diagnostics to determine the correct location for the task.</td>
</tr>
<tr>
<td>Empty tips</td>
<td>The option to empty the entire contents of the pipette tips, including fluid and air. The Volume parameter is ignored if this option is selected.</td>
</tr>
<tr>
<td>Volume (µL)</td>
<td>The volume of liquid to be dispensed from each pipette tip.</td>
</tr>
<tr>
<td>Pre-aspirate volume (µL)</td>
<td>The volume of air to be drawn before the pipette tips enter the liquid.</td>
</tr>
<tr>
<td>Blowout volume (µL)</td>
<td>Specifies the volume of air to dispense after the main volume has been dispensed. Typically, the blowout volume is the same as the pre-aspirate volume. Note: Blowout only occurs in the last quadrant dispensed for a given dispense action.</td>
</tr>
<tr>
<td>Liquid class</td>
<td>The liquid class associated with this liquid.</td>
</tr>
<tr>
<td>IMPORTANT</td>
<td>To ensure consistent pipetting, always select a liquid class for liquid-handling tasks.</td>
</tr>
<tr>
<td>Mix cycles</td>
<td>The number of times you want to aspirate and dispense. Each cycle consists of one aspirate action and one dispense action.</td>
</tr>
<tr>
<td>Distance from well bottom (mm)</td>
<td>The distance between the end of the pipette tips and the well bottoms during the Wash Tips task.</td>
</tr>
<tr>
<td>IMPORTANT</td>
<td>The labware definition must be accurate and the teachpoint must be precise in order for the system to position the tips at the correct distance from the well bottom.</td>
</tr>
</tbody>
</table>
Setting parameters for liquid-handling tasks

Wash Tips (Bravo, Vertical Pipetting Station)

Dynamic tip extension (mm/(µL))

The rate at which the pipette head moves during the Wash Tips task. The software calculates the distance over which the tips will move without crashing.

Use dynamic tip extension to prevent spills as the pipette tips displace the liquid.

To move the tips:

- **At the same rate as the volume change.**
 Calculate dynamic tip extension (DTE) as follows:
 \[DTE = \frac{\text{well depth}}{\text{well vol}} = \frac{1}{A} \]
 where \(A \) is the cross-sectional area of a well with straight walls

- **Faster than the volume change.**
 \[DTE > \frac{1}{A} \]

- **Slower than the volume change.**
 \[DTE < \frac{1}{A} \]

The starting and ending positions can be calculated as follows:

\[
\begin{align*}
(V_{\text{dispensed}} \times DTE) + D_{\text{well bottom}} \\
(V_{\text{aspirated}} \times DTE) + D_{\text{well bottom}}
\end{align*}
\]

Well selection

The wells at which the Wash Tips task occurs.

Click in the parameter box, and then click the Browse button to select the wells in the Well Selection dialog box.

Use this parameter only if the pipette head has fewer tips than the number of wells in the microplate, or if you are in single-row or single-column mode.

Perform tip touch

The option to touch the pipette tip on one or more sides of the well.

Which side to perform tip touch

The wall or walls for tip touch: North, South, East, West, North/South, West/East, West/East/South/North.

Tip touch retract distance

The vertical distance the pipette tips rise before touching the sides of the wells.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
</table>
| Dynamic tip extension (mm/(µL)) | The rate at which the pipette head moves during the Wash Tips task. The software calculates the distance over which the tips will move without crashing. Use dynamic tip extension to prevent spills as the pipette tips displace the liquid. To move the tips: At the same rate as the volume change. Calculate dynamic tip extension (DTE) as follows: \[DTE = \frac{\text{well depth}}{\text{well vol}} = \frac{1}{A} \] where \(A \) is the cross-sectional area of a well with straight walls Faster than the volume change. \[DTE > \frac{1}{A} \] Slower than the volume change. \[DTE < \frac{1}{A} \] The starting and ending positions can be calculated as follows: \[
\begin{align*}
(V_{\text{dispensed}} \times DTE) + D_{\text{well bottom}} \\
(V_{\text{aspirated}} \times DTE) + D_{\text{well bottom}}
\end{align*}
\] |
| Well selection | The wells at which the Wash Tips task occurs. Click in the parameter box, and then click the Browse button to select the wells in the Well Selection dialog box. Use this parameter only if the pipette head has fewer tips than the number of wells in the microplate, or if you are in single-row or single-column mode. |
| Perform tip touch | The option to touch the pipette tip on one or more sides of the well. |
| Which side to perform tip touch | The wall or walls for tip touch: North, South, East, West, North/South, West/East, West/East/South/North. |
| Tip touch retract distance | The vertical distance the pipette tips rise before touching the sides of the wells. |
Parameter Description

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
</table>
| Tip touch horizontal offset | The horizontal distance the tips move. The value is based on the well diameter specified by the labware definition. The value of the parameter determines the direction of movement:
 - 0. Tips move a horizontal distance equal to the well radius.
 - Greater than 0. Tips attempt to move past the well radius, which results in a more forceful tip touch.
 - Less than 0. Tips move a distance less than the radius of the well, resulting in a lighter tip touch. |
| Pump fill speed (%) | The speed, in percent of maximum speed, of liquid flow into the reservoir. For the MicroWash Reservoir, this value should be high enough for the washing liquid to just bubble over the tops of the chimneys. |
| Pump empty speed (%) | The speed, in percent of maximum speed, of liquid flow out of the reservoir. For the MicroWash Reservoir, this value should be slightly higher than that of the inflow pump to prevent an overflow. |
| Dispense to waste during wash | The option to move the tips by a specified offset (defined in the Labware Editor) and dispense used fluid outside of the reservoir chimney. This option applies only to reservoirs that have chimneys. |
| Dispense to waste at height (mm) | The height at which the dispense action occurs. For example, during the dispense action, the tips move up to clear the chimneys, move the offset distance, and then lower to the distance you specified. If you want the lower the tips by 10 mm, specify –10 mm. |

Example: Wash the pipette tips after the liquid-handling tasks on the Bravo Platform

Goal

After some liquid-handling tasks, wash the pipette tips in preparation for reuse.

Implementation

In Bravo Diagnostics, set up the MicroWash Reservoir on a deck location. Associate the reservoir with one or more pump modules.
In the protocol, add a configured labware for the MicroWash Reservoir in addition to the other processes and configured labware required by the protocol. In the example shown, the configured reservoir is called Wash.

In the Bravo subprocess where the liquid-handling tasks are specified, a Wash Tips task is added at the end of a cycle of liquid-handling tasks.

In the Wash Tips Task Parameters area, Wash (the name for the MicroWash Reservoir) is selected so that the task is performed in this labware.
Related information

<table>
<thead>
<tr>
<th>For information about...</th>
<th>See...</th>
</tr>
</thead>
</table>
| Adding devices | • “Adding devices” on page 25
 • Device user guide |
| Adding tasks in a protocol | “Adding and deleting tasks” on page 51 |
| Aspirate task | “Aspirate (Bravo, Vertical Pipetting Station)” on page 338 |
| Dispense task | “Dispense (Bravo, Vertical Pipetting Station)” on page 358 |
| Set Head Mode task | “Set Head Mode (Bravo)” on page 431 |
| Tips On task | “Tips On (Bravo, Vertical Pipetting Station)” on page 444 |
| Tips Off task | “Tips Off (Bravo, Vertical Pipetting Station)” on page 441 |
| Pump Reagent task | “Pump Reagent (Bravo, Vertical Pipetting Station)” on page 422 |
| Microplate-handling tasks | “Setting parameters for microplate-handling tasks” on page 241 |
| Microplate-storage tasks | “Setting parameters for microplate storage tasks” on page 305 |
| Scheduling tasks | “Setting parameters for scheduling tasks” on page 459 |
| I/O-handling tasks | “Setting parameters for I/O-handling tasks” on page 233 |
11

Setting parameters for scheduling tasks

This chapter contains the following topics:

- “Define Plate Set” on page 460
- “Define Variables” on page 464
- “Change Instance” on page 468
- “Group Begin and Group End” on page 470
- “JavaScript” on page 472
- “Loop and Loop End” on page 473
- “Print” on page 477
- “Signal” on page 485
- “Spawn Process” on page 487
- “User Message” on page 491
- “Wait For” on page 494
- “Wait for User (Bravo)” on page 496
Define Plate Set

Description

The Define Plate Set task allows you to create an array variable to represent a group of process plates that will be processed using the same tasks in a looping routine. You can reference the plate set using the Location, plate parameter in a task.

<table>
<thead>
<tr>
<th>Task is available for...</th>
<th>Task is available in...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Any device</td>
<td>Main Protocol, not in a subprocess</td>
</tr>
</tbody>
</table>

Requirements

You must use the Define Plate Set task with the Loop and Loop End tasks, and it must be added in the protocol as follows:

- Before the Loop and Loop End tasks that uses it.
- In the top-level process, not in the subprocess that contains the Loop and Loop End tasks.
- At the beginning of the process, and the process is not spawned.

The Loop tasks allow you to specify the starting array index value, how frequently the variable will increment or decrement, and the amount by which the index will increment or decrement.

Custom parameters

After adding the Define Plate Set task at the desired point in the protocol, define the plate set in the Custom Parameters area:
Referencing a plate set in a task

To reference a plate set in a task:

1. Select the task in the protocol.

2. In the Task Parameters area, select the plate-set variable from the Location, plate list.

 If the variable does not appear in the list, make sure:
 - The task is inside of a loop.
 - The Loop task specifies the plate set name in its Custom Parameters area.

 The following example shows the Aspirate task parameters. Three plate-set variables were defined earlier in the protocol and are available for selection: Tips, Source, and Destination. The example shows the Source variable selected.
Example: Define a plate set for processing on the Bravo Platform

Goal

Define a plate set of source microplates (Source A, B, C, and D). Aspirate from each source microplate into a destination microplate.

Implementation

Add a Define Plate Set task at the beginning of the protocol.

The plate set is called PlateSet.
Instead of adding four separate Aspirate tasks for each source microplate, add only one Aspirate task in the liquid-handling subprocess. In the Aspirate Task Parameters area, PlateSet is selected.

Related information

<table>
<thead>
<tr>
<th>For information about...</th>
<th>See...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adding tasks in a protocol</td>
<td>“Adding and deleting tasks” on page 51</td>
</tr>
<tr>
<td>Loop and Loop End tasks</td>
<td>“Loop and Loop End” on page 473</td>
</tr>
<tr>
<td>Spawn Process task</td>
<td>“Spawn Process” on page 487</td>
</tr>
<tr>
<td>Task parameter variables</td>
<td>“Using simple variables” on page 73</td>
</tr>
</tbody>
</table>
Define Variables

Description

The Define Variables task () allows you to create variables and assign initial values. You can reference the variables in a task.

You can use the Define Variables task with the Loop and Loop End tasks. The Loop tasks allow you to specify the starting variable value, how frequently the value will increment or decrement, and the amount by which the value will increment or decrement.

<table>
<thead>
<tr>
<th>Task is available for...</th>
<th>Task is available in...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Any device</td>
<td>Startup Protocol</td>
</tr>
<tr>
<td></td>
<td>Main Protocol</td>
</tr>
<tr>
<td></td>
<td>Cleanup Protocol</td>
</tr>
</tbody>
</table>

Custom parameters

After adding the Define Variables task at the desired point in the protocol, define the variables in the Custom Parameters area:
Referencing variables in a task

To reference variables in a task:
1. Select the task.
2. In the Task Parameters area, type the =x in the parameter field, where x is the variable name. For more information about using variables, see “Using simple variables” on page 73.

Example: Define a plate set for processing on the Bravo Platform

Goal
Define a variable to represent the aspirate volume. Request the operator to provide the initial value of the aspirate volume.
Implementation

Add a Define Plate Set task at the beginning of the protocol.

The AspVol variable is defined and it represents the aspirate volume. Notice the options are selected to request input from the operator at the start of the protocol run. The operator’s input will override the initial value specified in the Custom Parameters area.

In the Aspirate Task Parameters area, the AspVol variable is selected for the aspirate volume.
Related information

<table>
<thead>
<tr>
<th>For information about...</th>
<th>See...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adding tasks in a protocol</td>
<td>“Adding and deleting tasks” on page 51</td>
</tr>
<tr>
<td>Loop and Loop End tasks</td>
<td>“Loop and Loop End” on page 473</td>
</tr>
<tr>
<td>Spawn Process task</td>
<td>“Spawn Process” on page 487</td>
</tr>
<tr>
<td>Task parameter variables</td>
<td>“Using simple variables” on page 73</td>
</tr>
<tr>
<td>Microplate-handling tasks</td>
<td>“Setting parameters for scheduling tasks” on page 459</td>
</tr>
<tr>
<td>Microplate-storage tasks</td>
<td>“Setting parameters for scheduling tasks” on page 459</td>
</tr>
<tr>
<td>Liquid-handling tasks</td>
<td>“Setting parameters for liquid-handling tasks” on page 333</td>
</tr>
<tr>
<td>I/O-handling tasks</td>
<td>“Setting parameters for I/O-handling tasks” on page 233</td>
</tr>
</tbody>
</table>
Change Instance

Description

The Change Instance task (\(\text{Change Instance}\)) allows you to change a plate instance within a loop. For example, you can use the Change Instance task within the Loop and Loop End tasks to aspirate from one source microplate and dispense into different instances of a destination microplate.

<table>
<thead>
<tr>
<th>Task is available for...</th>
<th>Task is available in...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Any device</td>
<td>Main Protocol</td>
</tr>
</tbody>
</table>

Do not include the Change Instance task in a subprocess of a spawned process that is running as a subroutine. For example, if process 1 spawns process 2 as a subroutine (Spawn as subroutine option) and process 2 contains a subprocess, the Change Instance task will not work in the subprocess.

Task parameters

After adding the Change Instance task at the desired point in the protocol, set the following parameters in the Task Parameters area:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plate to change</td>
<td>The process plate whose instance you want to change.</td>
</tr>
</tbody>
</table>
Example: Dispense into multiple destination microplates

Goal
Aspirate from one source microplate and dispense into multiple destination microplates.

Implementation
Within the liquid-handling subprocess loop, add a Change Instance task after the Dispense task.

In the Change Instance Task Parameters area, the Destination Plate is selected.
11 Setting parameters for scheduling tasks
Group Begin and Group End

Related information

<table>
<thead>
<tr>
<th>For information about...</th>
<th>See...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adding tasks in a protocol</td>
<td>“Adding and deleting tasks” on page 51</td>
</tr>
<tr>
<td>Loop and Loop End tasks</td>
<td>“Loop and Loop End” on page 473</td>
</tr>
<tr>
<td>Microplate-handling tasks</td>
<td>“Setting parameters for scheduling tasks” on page 459</td>
</tr>
<tr>
<td>Microplate-storage tasks</td>
<td>“Setting parameters for scheduling tasks” on page 459</td>
</tr>
<tr>
<td>Liquid-handling tasks</td>
<td>“Setting parameters for liquid-handling tasks” on page 333</td>
</tr>
<tr>
<td>I/O-handling tasks</td>
<td>“Setting parameters for I/O-handling tasks” on page 233</td>
</tr>
</tbody>
</table>

Group Begin and Group End

Description

The Group Begin (\(\text{Group Begin} \)) and Group End (\(\text{Group End} \)) tasks are used together to:

- Group a number of tasks within a subprocess.
- Constrain the grouped tasks to run in the specified sequence.
- Prevent downstream tasks from starting until the grouped tasks are finished.

Note: If the tasks are not grouped, the software will determine the fastest task sequence based on available resources.

During the protocol run, the software will make sure the labware needed by the grouped tasks are on the device locations before running the first task in the group. In addition, while the grouped tasks are running, only the microplates required by the grouped tasks will be allowed to be moved onto, off of, or within the device.
Use the Group Begin and Group End tasks if you want to control the sequence of liquid-handling tasks to make sure each microplate is handled the same way in the same sequence.

Note: To further control the tasks, especially those with time limits, you can specify time constraints between dependent tasks. See “Specifying time constraints between dependent tasks” on page 55.

Task is available for... Task is available in...

<table>
<thead>
<tr>
<th>Bravo Platform</th>
<th>Main Protocol, Bravo Subprocess</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vertical Pipetting Station</td>
<td>Main Protocol, Vertical Pipetting Station Subprocess</td>
</tr>
</tbody>
</table>

Requirements

You cannot add a Change Instance task within the grouped tasks.

Task parameters

The Group Begin and Group End tasks do not have task parameters.

Example: Group liquid-handling tasks

Goal

Make sure all liquid-handling tasks are finished before incubation begins.

Implementation

Add the Group Begin and Group End tasks around the liquid-handling tasks. Notice that the Change Instance task is not within the group.

Related information

<table>
<thead>
<tr>
<th>For information about...</th>
<th>See...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adding tasks in a protocol</td>
<td>“Adding and deleting tasks” on page 51</td>
</tr>
<tr>
<td>Microplate-handling tasks</td>
<td>“Setting parameters for scheduling tasks” on page 459</td>
</tr>
<tr>
<td>Microplate-storage tasks</td>
<td>“Setting parameters for scheduling tasks” on page 459</td>
</tr>
</tbody>
</table>
11 Setting parameters for scheduling tasks

JavaScript

Description

The JavaScript task (JavaScript) runs the specified JavaScript at the desired point in the protocol. Typically, you use the JavaScript task to run a program that is independent of any task.

Note: If you want to run a JavaScript that skips a task or changes the parameters of the task, write the JavaScript code in the Advanced Settings area of that task. See “Using JavaScript” on page 80 for more information.

<table>
<thead>
<tr>
<th>Task is available for...</th>
<th>Task is available in...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Any device</td>
<td>Startup Protocol</td>
</tr>
<tr>
<td></td>
<td>Main Protocol</td>
</tr>
<tr>
<td></td>
<td>Cleanup Protocol</td>
</tr>
</tbody>
</table>

Advanced Settings

After adding the JavaScript task at the desired point in the protocol, write the code in the **Advanced Settings** area:
Loop and Loop End

Description

The Loop (_loop_) and Loop End (_loop_end_) tasks are used together to repeat a set of tasks that are within the two tasks.

<table>
<thead>
<tr>
<th>Task is available for...</th>
<th>Task is available in...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Any device</td>
<td>Startup Protocol</td>
</tr>
<tr>
<td></td>
<td>Main Protocol</td>
</tr>
<tr>
<td></td>
<td>Cleanup Protocol</td>
</tr>
</tbody>
</table>

Task parameters

Note: Loop End does not have any task parameters.

After adding the Loop task at the desired point in the protocol, set the following parameters in the **Task Parameters** area:
Setting parameters for scheduling tasks

Loop and Loop End

If you want to change the value of variables during the looping process, click **Custom Parameters** and set the following:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of times to loop</td>
<td>The number of times you want to run the tasks within the loop.</td>
</tr>
<tr>
<td>Change tips every N times, N=</td>
<td>The number of times to run the tasks in the loop before changing the tips. For example, if N is set to 2, the Tips On task will be run every odd number of the loop: first, third, fifth, and so on. The Tips Off and Change Instance tasks that operate on the tip box used by the Tips On task will run every even number of the loop: second, fourth, sixth, and so on.</td>
</tr>
</tbody>
</table>

Note: If the loop does not contain any tasks that require pipette tips, the software ignores this parameter.

If you want to change the value of variables during the looping process, click **Custom Parameters** and set the following:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Add Variable</td>
<td>The command that adds a variable in the Variable table. To add a variable, click Add Variable. A blank row appears in the table. Select the desired value for each column.</td>
</tr>
<tr>
<td>Delete Variable</td>
<td>The command that deletes the selected variable from the table.</td>
</tr>
</tbody>
</table>
Variable Table
- **Parameter:** Variable table
- **Description:** The table that lists the variables to be incremented or decremented in the loop.

Variable Name
- **Parameter:** Variable name
- **Description:** The variable you want to increment or decrement. Select the variable from the list. The variables are defined in the Define Variables task, the Define Plate Set task, or the JavaScript code in the Advanced Settings area.
 - If the variable is new and was not previously defined elsewhere, and an initial value is given, the variable will be defined the moment the Loop task runs.

Initial Value
- **Parameter:** Initial value
- **Description:** The starting value to be used the first time through the loop.
 - For variables, the Initial value is the starting value of the variable. For plate sets, the Initial value is the starting array index value.
 - **Note:** The starting variable value specified in this task overrides the starting variable value the operator provides during run time.

Increment
- **Parameter:** Increment
- **Description:** The amount you want the variable to increment or decrement.

Frequency
- **Parameter:** Frequency
- **Description:** The frequency of the increment or decrement:
 - *Every time.* The variable should increment or decrement every loop.
 - *Every n times.* The variable should increment or decrement every specified number of times.
 - *After first time.* The variable should increment or decrement starting from the second loop.
 - *After last time.* The variable should increment or decrement after the last loop.

n
- **Parameter:** n
- **Description:** The number of times to loop before a variable increments or decrements.
 - This field is available only if you selected Every n times.
Example: Use the Loop task for plate set indexing

Goal
In a protocol where a plate set variable is defined, use the Loop task to specify the starting plate set (or array) index, how frequently the variable will increment or decrement, and the amount by which the index will increment or decrement.

Implementation
In the following protocol example, a plate set is defined and used in the liquid-handling tasks.

In the Define Plate Set Task Parameters area, an array of source microplates is defined and indexed (0, 1, 2, and 3). In the Loop Custom Parameters area, the PlateSet variable is selected. The Initial Value is set to 0 to match the first PlateSet index (0). The PlateSet variable will increment by 1 every time through the loop. So the first time through the loop, PlateSet index 0, or SourceA is processed. The second time through the loop, PlateSet index 1, or Source B is processed, and so on.
Related information

For information about... See...
Adding devices • “Adding devices” on page 25
 • Device user guide
Adding tasks in a protocol “Adding and deleting tasks” on page 51
Define Plate Set task “Define Plate Set” on page 460
Task parameter variables “Using simple variables” on page 73
Microplate-handling tasks “Setting parameters for scheduling tasks” on page 459
Microplate-storage tasks “Setting parameters for scheduling tasks” on page 459
Liquid-handling tasks “Setting parameters for liquid-handling tasks” on page 333
Scheduling tasks “Setting parameters for scheduling tasks” on page 459

Print

Description

The Print task () prints barcode labels using the Microplate Labeler. The task does not apply labels to labware. Use this task if you want to print labels and manually apply the labels to labware such as tubes or other containers. You can also apply the labels to pages in your lab notebook for record keeping purposes.

<table>
<thead>
<tr>
<th>Task is available for...</th>
<th>Task is available in...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microplate Labeler (standalone only)</td>
<td>Startup Protocol</td>
</tr>
<tr>
<td></td>
<td>Cleanup Protocol</td>
</tr>
</tbody>
</table>

Requirements

The requirements for the Print task is identical to the requirements for the Print and Apply task. See “Print and Apply” on page 273.
Selecting devices for the task

You must select a device for the Print task before you can set the task parameters. After adding the Print task in the protocol, select the task, and then click Device Selection in the Task Parameters area.

To select a device for the task:
Double-click the desired device in the Devices available to perform task area to move it to the Devices involved in task area.

Setting the task parameters

IMPORTANT Make sure the label formats are uploaded to the printer. Be sure to initialize the Microplate Labeler device before you set the task parameters.

After selecting the device to use for the Print and Apply task, you can set the parameters in the Task Parameters area. The area lists the four sides of a microplate (south, west, north, and east). For each side, you can select a label format and specify the data that will substitute for the text and barcode fields in the label format.

CAUTION Format selection and field information are saved with the protocol. If the formats on the printer are changed, initializing the device will overwrite the information in the protocol. For example, suppose you created a protocol and selected a format called MyFormat. Later, MyFormat was deleted from the printer. The next time you initialize the device and open the protocol, MyFormat will not appear in the protocol.

To set the task parameters:
1 Select the barcode format in the Format list:
As soon as you select a format, fields appear in the Task Parameters area. You can specify the information you want to print in these fields.

Note: The number of fields that appear depends on the format you select.

<table>
<thead>
<tr>
<th>Format selection</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>Indicates no label will be printed.</td>
</tr>
<tr>
<td>Format name or number</td>
<td>Uses a format that was set up in Microplate Labeler Diagnostics.</td>
</tr>
<tr>
<td></td>
<td>Note: If you do not see a list of formats, make sure the label formats are not empty (formats must contain at least one field), the formats are uploaded to the printer, and the Microplate Labeler device is initialized.</td>
</tr>
</tbody>
</table>

2. Click a field, and then click the button that appears. The Field Composer dialog box opens.

The Field Composer allows you to specify the information to print on the barcode label. For example, you can print the current date and time.
3 In the **Tools** area, double-click one or more of the following icons to specify the information to be printed on the barcode label. The selected icon appears in the **Field Value** area.

IMPORTANT For field limitations, such as the maximum number of characters permitted or symbology-dependent limitations, check the format you set up in Microplate Labeler Diagnostics. See also the *Microplate Barcode Labeler User Guide*.

<table>
<thead>
<tr>
<th>Icon</th>
<th>Description</th>
</tr>
</thead>
</table>
| ![Calender Icon](image) | Prints the current date.
Click the icon in the **Field Value** area. In the **Properties** area, select the desired date format. YYYY is the year, MM is the month, and DD is the day.
Note: The Use System Format option uses the local computer’s date format. |
Setting parameters for scheduling tasks

<table>
<thead>
<tr>
<th>Icon</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Prints the current time. Click the icon in the Field Value area. In the Properties area, select the desired data format: 12 hours (AM/PM) or 24 hours.</td>
</tr>
</tbody>
</table>

![Time Format](image2)

<table>
<thead>
<tr>
<th>Icon</th>
<th>Description</th>
</tr>
</thead>
</table>
| ![Icon](image3) | Prints a numeric or alphanumeric value that can be incremented. Click the icon in the Field Value area. Set the following in the Properties area:
- **Character Set.** The option to use either numeric or alphanumeric characters.
- **Start at.** The starting value.
- **Increment by.** The amount by which the value increments.
- **Total number of digits.** The total number of digits or characters, including leading 0s.
- **Increment every N plates.** The increment value. For example, 1 increments the value every microplate. |

![Counter](image4)

<table>
<thead>
<tr>
<th>Icon</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Not used. If you add this icon, the software will ignore it.</td>
</tr>
</tbody>
</table>

VWorks Automation Control User Guide

481
11 Setting parameters for scheduling tasks

Print

<table>
<thead>
<tr>
<th>Icon</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Prints the values in the specified barcode input file. Click the icon in the Field Value area. In the Properties area, click the button to select the input file. Specify the row and column number of the starting value. During the run, the software automatically increments to the next row to print the next value. For example, Start at row is set at 2, Start at col is set at 3. During the run, the software starts with the value in row 2 column 3 (C00002). Then, the software moves to row 3 column 3 (C00003), row 4 column 3 (C00004), row 5 column 3 (C00005), and so on.</td>
</tr>
<tr>
<td></td>
<td>Prints the text you specify. Click the icon in the Field Value area. In the Properties area, type the text you want to print on every microplate.</td>
</tr>
<tr>
<td></td>
<td>Not used. If you add this icon, the software will ignore it.</td>
</tr>
</tbody>
</table>

4 When you are finished, click OK. The information you specified appears in the Task Parameters area.

Example

Goal

Using the Microplate Labeler, print values read from a barcode data file. The software should start reading the file from row 1 column 1.

The software should pause after it prints a label to permit you to remove the label from the device and manually apply it to a page in your lab notebook.
Implementation

Note: This example assumes that the Microplate Labeler is set up correctly and the format, MyFormat, is already defined and loaded to the printer. MyFormat contains two fields. Field 1 is a human-readable text field. Field 2 is a barcode field.

Create a device file that contains both the Microplate Labeler and a Phantom Robot, as shown. In the Microplate Labeler Location Properties area, make sure the Teachpoint for Phantom Robot is <accessible>.

Create a Startup Protocol as shown and add a Print task and a User Message task. The User Message task creates the pause to permit you to remove the label from the device. When setting the Print and Apply task parameter, select MyFormat.

For each of the two format fields (1 and 2), open the Field Composer dialog box and double-click the data file icon in the Tools area to add it to the Field Value area. In the Properties area, locate and select the data file. In the Start at row box, type 1. In the Start at col box, type 1.
Related information

<table>
<thead>
<tr>
<th>For information about...</th>
<th>See...</th>
</tr>
</thead>
</table>
| Adding devices | • “Adding devices” on page 25
 | • Device user guide |
| Adding tasks in a protocol | “Adding and deleting tasks” on page 51 |
| Print and Apply task | “Print and Apply” on page 273 |
| Microplate-handling tasks | “Setting parameters for scheduling tasks” on page 459 |
| Microplate-storage tasks | “Setting parameters for scheduling tasks” on page 459 |
| Liquid-handling tasks | “Setting parameters for liquid-handling tasks” on page 333 |
| Scheduling tasks | “Setting parameters for scheduling tasks” on page 459 |
| I/O-handling tasks | “Setting parameters for I/O-handling tasks” on page 233 |
Signal

Description

The Signal task (Signal) permits another process that is currently in the wait state to continue to the next task. The wait state is from the Wait For task in the other process.

Note: Each Signal task can be used with multiple Wait For tasks.

<table>
<thead>
<tr>
<th>Task is available for...</th>
<th>Task is available in...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Any device</td>
<td>Startup Protocol</td>
</tr>
<tr>
<td></td>
<td>Main Protocol</td>
</tr>
<tr>
<td></td>
<td>Cleanup Protocol</td>
</tr>
</tbody>
</table>

Requirements

You must first add the Wait For task at the desired point in the protocol before adding the Signal task.

Waitfor Selection

After adding the Signal task at the desired point in the protocol, select the corresponding Waitfor task in the **Waitfor Selection** area. Double-click the Waitfor task name in the **Available waitfors** area. The selected Waitfor task name appears in the **Waitfors this task will signal** area.
Example

See the example in “Wait For” on page 494.

Related information

<table>
<thead>
<tr>
<th>For information about...</th>
<th>See...</th>
</tr>
</thead>
</table>
| Adding devices | • “Adding devices” on page 25
 | • Device user guide |
| Adding tasks in a protocol | “Adding and deleting tasks” on page 51 |
| Wait For task | “Wait For” on page 494 |
| Microplate-handling tasks| “Setting parameters for scheduling tasks” on page 459 |
| Microplate-storage tasks | “Setting parameters for scheduling tasks” on page 459 |
| Liquid-handling tasks | “Setting parameters for liquid-handling tasks” on page 333 |
| Scheduling tasks | “Setting parameters for scheduling tasks” on page 459 |
| I/O-handling tasks | “Setting parameters for I/O-handling tasks” on page 233 |
Spawn Process

Description

The Spawn Process task is used to initiate another process within the same protocol. For example, to reduce evaporation, you can use Spawn Process to deliver a certain labware into the system only when they are ready to be processed. You can also use the Spawn Process with JavaScript code to use operator-supplied information to initiate a new process or funnel incoming labware into a different process depending on the barcode.

<table>
<thead>
<tr>
<th>Task is available for...</th>
<th>Task is available in...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Any device</td>
<td>Main Protocol</td>
</tr>
</tbody>
</table>

Task parameters

After adding the Spawn Process task at the desired point in the protocol, set the following parameters in the Task Parameters area:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Process to spawn</td>
<td>The process that starts to run when the current process reaches the Spawn Process task. Select from the list of processes.</td>
</tr>
</tbody>
</table>
Example 1

Goal
Replicate Source Plate on the Bravo Platform. Deliver the Diluent Plate from the BenchCel Workstation into the system only when the Destination Plate is ready for dilution.

Implementation
The Bravo Platform and BenchCel Workstation in the example are configured as follows:
- The replication process will occur on the Bravo Platform.
- The Source Plate, Destination Plate, and Diluent Plate will be stored in different stacks in the BenchCel Workstation. At the end of the process, the microplates are stored in an empty stack in the BenchCel Workstation.

When writing the protocol:
- Add a process for the Source Plate as shown. In the Source Plate process, add a Bravo Subprocess (renamed Replication in the example) that aspirates contents from the Source Plate and dispenses into the Destination Plate.
- Add a process for the Destination Plate as shown. In the Destination Plate process, add two Bravo Subprocesses:
 - The first subprocess (renamed Replication in the example) reflects the movement of contents from the Source Plate and into the Destination Plate. This is a copy of the tasks in the Source Plate process.
 - The second subprocess (renamed Dilution in the example) aspirates contents from the Diluent Plate and dispenses into the Destination Plate.
- Add a process for the Diluent Plate as shown. In the Diluent Plate process, add a subprocess (renamed Diluent in the example) that reflects the movement of contents from the Diluent Plate into the Destination Plate. This is a copy of the tasks in the Diluent subprocess in the Destination Plate process.
- Add a configured labware for the Tip Box as shown.

Parameter Description

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spawn as subroutine</td>
<td>The option to run the spawned process as a subroutine (or subprocess) of the current process. IMPORTANT If the spawned subprocess specifies a different labware type, the software ignores the labware specification. Select the option if you want the software to start the spawned process when the Spawn Process task is reached, and continue the current process after the spawned process is finished. Clear the check box if the two processes can run in parallel when the current process reaches the Spawn Process task.</td>
</tr>
</tbody>
</table>
In the Destination Plate process, add a Spawn Process task between the Replication subprocess and the Dilution subprocess. Doing so holds the Diluent Plate in the BenchCel stack until the Replication subprocess is finished and the Destination Plate is ready to receive the diluent.

Example 2

Goal
The same goal as Example 1, except:
- Ask the operator to specify the number of replications.
- Control the spawning of the Source Plate and Destination Plate processes based on the operator input.

Implementation
The Bravo Platform and the BenchCel Workstation are configured as described in Example 1. Set up the Source Plate, Destination Plate, and Diluent Plate processes as described in Example 1.

Add a new process called Control at the top of the Main Protocol as shown. Add the following tasks in the Control process:
- **User Message.** Asks the operator to specify the number of replications.
- **Spawn Process.** Starts the Source Plate process. In addition, provide JavaScript code in the Advanced Settings area to incorporate the input from the operator during the run. For example, if the operator specified two replications, the JavaScript code should use that value to produce two replications during the run.
11 Setting parameters for scheduling tasks

Spawn Process. Starts the Destination Plate process. Provide JavaScript code in the Advanced Settings area to incorporate the input from the operator during the run.

Related information

For information about... See...
Adding devices
- “Adding devices” on page 25
- Device user guide
Adding tasks in a protocol “Adding and deleting tasks” on page 51
Task parameter variables “Using simple variables” on page 73
Microplate-handling tasks “Setting parameters for scheduling tasks” on page 459
Microplate-storage tasks “Setting parameters for scheduling tasks” on page 459
User Message

Description

The User Message task (User Message):

- Displays reminder messages. For example, the message can remind the operator to change pipette heads, empty the waste container, empty a reservoir, or replace labware.
- Prompts operators for variable values.

The protocol run is paused until the operator clicks Continue, or supplies the requested variable value and clicks Continue.

Note: Except for those that request variable input, user messages do not appear when running a protocol in simulation mode.

IMPORTANT Remove all user messages from protocols that will run unattended.

<table>
<thead>
<tr>
<th>Task is available for...</th>
<th>Task is available in...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Any device</td>
<td>Startup Protocol</td>
</tr>
<tr>
<td></td>
<td>Main Protocol</td>
</tr>
<tr>
<td></td>
<td>Cleanup Protocol</td>
</tr>
</tbody>
</table>

Requirements

If you want the User Message task to request variable input, add the variable in the desired tasks. For information, see “Using simple variables” on page 73.

Task parameters

After adding the User Message task at the desired point in the protocol, set the following parameters in the Task Parameters area:
11 Setting parameters for scheduling tasks
User Message

Example

Goal
Display messages at the beginning of the protocol run to remind the operator to check fluid levels and to set the aspirate volume.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Title</td>
<td>The text that appears in the titlebar of the message dialog box.</td>
</tr>
<tr>
<td>Body</td>
<td>The text that displays in the message dialog box.</td>
</tr>
<tr>
<td>Only show the first time</td>
<td>The option to display the message the first time it appears in the protocol if you are running the protocol multiple times, or if the User Message task is in the loop.</td>
</tr>
<tr>
<td>User data entry into variable</td>
<td>The option to prompt the operator for a variable value.</td>
</tr>
<tr>
<td>Variable name</td>
<td>The name of the variable.</td>
</tr>
</tbody>
</table>

To enter the message using the Input Text dialog box:

1. Click the Body field in the Task Parameters area, and then click the button that appears. The Input Text dialog box opens.
2. Type the message that you want to display, and then click OK.
Implementation

In the Startup Protocol, add two User Message tasks. The first task asks the operator to check fluid levels. The second message asks the operator for the aspirate volume. AspVol is the variable defined for the aspirate volume.

The task parameters for both User Message tasks are as follows:

Related information

For information about... See...
Adding tasks in a protocol “Adding and deleting tasks” on page 51
Using simple variables “Using simple variables” on page 73
Adding user message prompts “Adding user message prompts” on page 78
Defining variables “Define Variables” on page 464
Microplate-handling tasks “Setting parameters for scheduling tasks” on page 459
Microplate-storage tasks “Setting parameters for scheduling tasks” on page 459
Liquid-handling tasks “Setting parameters for liquid-handling tasks” on page 333
11 Setting parameters for scheduling tasks

Wait For

Description

In a multi-process protocol, the Wait For task () pauses the process that contains the task and waits for the go-ahead signal from another process before continuing to the next task. The go-ahead signal comes from the Signal task in the other process.

Note: Multiple Wait For tasks can be used with a single Signal task.

Requirements

The Wait For task is always used with the Signal task. You must first add the Wait For task at the desired point in the protocol before adding the Signal task.

Task parameters

After adding the Wait For task at the desired point in the protocol, double-click the corresponding Wait For task in the Task Parameters area:

<table>
<thead>
<tr>
<th>Task is available for...</th>
<th>Task is available in...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Any device</td>
<td>Startup Protocol</td>
</tr>
<tr>
<td></td>
<td>Main Protocol</td>
</tr>
<tr>
<td></td>
<td>Cleanup Protocol</td>
</tr>
</tbody>
</table>
Example: Finish all liquid-handling tasks before incubation

Goal
Make sure all liquid-handling tasks are finished before storing the source microplates.

Implementation
In the protocol where the source microplate and destination microplates are separate processes, add a Wait For task in the source microplate process, after the liquid-handling tasks. Add a Signal task in the destination microplate process after the liquid-handling tasks.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>The name you want to assign the Wait For task. Type a name that describes the waitfor condition.</td>
</tr>
</tbody>
</table>

The Wait For and Signal task parameters are set up as follows:

For other examples, see “Dismount” on page 256 and “Mount” on page 262.
Wait for User (Bravo)

Description

The Wait For User task (Wait For User (Bravo)) pauses the protocol and waits until the operator presses the go button on the pendant. When the operator presses the go button, the protocol resumes.

You use the Wait For User task if you want to perform a task manually at the desired point in the protocol. For example, you can use the Wait For User task to pause the run so that you can manually replace a microplate on the deck. When you are finished, you press the go button on the pendant.

Note: Alternatively, you can use the User Message task to insert a pause in a protocol. Use the User Message task instead of the Wait For User task if you have easier access to the computer than the pendant during a run.

<table>
<thead>
<tr>
<th>Task is available for...</th>
<th>Task is available in...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Any device</td>
<td>Startup Protocol</td>
</tr>
<tr>
<td></td>
<td>Main Protocol</td>
</tr>
<tr>
<td></td>
<td>Cleanup Protocol</td>
</tr>
</tbody>
</table>

Task parameters

The Wait For User task does not have task parameters.
Example

Goal
After the first dispense task, move the pipette head out of the way. Pause the run so that you can replace the destination microplate on the Bravo deck. Press the Go button on the pendant after the new destination microplate is placed.

Implementation
A Move to Location task is added after the first Dispense task to move the pipette head away from the current destination microplate. In the following example, because the destination microplate is at location 1, the pipette head is moved to location 5.
A Wait for User task is added after the Move to Location task to pause the run.

Related information

<table>
<thead>
<tr>
<th>For information about...</th>
<th>See...</th>
</tr>
</thead>
</table>
| Adding devices | • “Adding devices” on page 25
 | • Device user guide |
| Adding tasks in a protocol | “Adding and deleting tasks” on page 51 |
| User Message task | “User Message” on page 491 |
| Microplate-handling tasks| “Setting parameters for scheduling tasks” on page 459 |
| Microplate-storage tasks | “Setting parameters for scheduling tasks” on page 459 |
| Liquid-handling tasks | “Setting parameters for liquid-handling tasks” on page 333 |
| Scheduling tasks | “Setting parameters for scheduling tasks” on page 459 |
11 Setting parameters for scheduling tasks
Wait for User (Bravo)
12
Specifying pipetting techniques

This chapter contains the following topics:

- “About the Pipette Technique Editor” on page 500
- “Creating and editing pipetting techniques” on page 501
- “Managing pipetting techniques” on page 505
- “Storing Pipette Technique files" on page 506
About the Pipette Technique Editor

Pipette techniques

You can define a Pipette Technique to use different pipetting methods. Different applications can benefit from different pipetting methods. For example, in multiplexed microplates, dispensing at an offset from the well center can improve distribution of the fluid. In cell-based assays, moving the pipette to the side of the wells minimizes the removal of the cells from the center or reading area of the well.

Pipette Technique Editor

You use the Pipette Technique Editor to define any number of Pipette Techniques. After you create a technique, it becomes available for the following tasks in any Bravo or Vertical Pipetting Station Subprocess:

- Aspirate
- Dispense
- Mix
- Pin Tool

Related information

<table>
<thead>
<tr>
<th>For information about...</th>
<th>See...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Creating and editing Pipette Techniques</td>
<td>“Creating and editing pipetting techniques” on page 501</td>
</tr>
<tr>
<td>Managing Pipette Techniques</td>
<td>“Managing pipetting techniques” on page 505</td>
</tr>
<tr>
<td>Pipette Technique files</td>
<td>“Storing Pipette Technique files” on page 506</td>
</tr>
<tr>
<td>Aspirate task</td>
<td>“Aspirate (Bravo, Vertical Pipetting Station)” on page 338</td>
</tr>
<tr>
<td>Dispense task</td>
<td>“Dispense (Bravo, Vertical Pipetting Station)” on page 358</td>
</tr>
<tr>
<td>Mix task</td>
<td>“Mix (Bravo, Vertical Pipetting Station)” on page 398</td>
</tr>
<tr>
<td>Pin Tool task</td>
<td>“Pin Tool (Bravo, Vertical Pipetting Station)” on page 413</td>
</tr>
</tbody>
</table>
Creating and editing pipetting techniques

Creating a pipette technique

You can create a Pipette Technique in two ways:

- When setting task parameters in a protocol
- Using the Tools menu

To create a Pipette Technique when setting task parameters:

1. In the VWorks window, create a new protocol.
2. Add the Subprocess (Bravo) or Subprocess (Vertical Pipetting Station) task.
3. Add one of the following tasks:
 - Aspirate
 - Dispense
 - Mix
 - Pin Tool
4. In the Task Parameters area, select Edit technique in the Pipette Technique property list.

![Pipette Technique Editor dialog box](image)

The Pipette Technique Editor dialog box opens.
5 Click **Create new technique**, type a technique name, and then click **OK**. The new technique name appears in the Pipette Technique Editor dialog box. In addition, the **X/Y Offset** parameters appear to the right of the technique name.

6 In the **East/west offset (-100 - 100%)** box, type the distance (in percent of well radius) you want the pipette to move in the X direction:
 - 0 does not move the pipette horizontally.
 - Positive value moves the pipette to the right.
 - Negative value moves the pipette to the left.

 Note: The pipette offset directions do not correspond to the robot jog directions in Bravo and Vertical Pipetting Station Diagnostics.

7 In the **North/south offset (-100 - 100%)** box, type the distance (in percent of well radius) you want the pipette to move in the Y direction:
 - 0 does not move the pipette forward or backward.
• Positive value moves the pipette backward.
• Negative value moves the pipette forward.

Note: The pipette offset directions do not correspond to the robot jog directions in Bravo and Vertical Pipetting Station Diagnostics.

8 When you are finished, click **Update** the selected technique.

To create a Pipette Technique using the Tools menu:

1 In the **VWorks** window, on the **Tools** menu, click **Pipette Technique Editor**. The Pipette Technique Editor dialog box opens.

2 Click **Create new technique**, type a technique name, and then click **OK**. The new technique name appears in the Pipette Technique Editor dialog box. In addition, the X/Y Offset parameters appear to the right of the technique name.

3 Set the parameters in the **X/Y Offset Pipetting** table.

4 When you are finished, click **Update** the selected technique.

Editing a pipette technique

You can edit a Pipette Technique in two ways:

• When setting task parameters in a protocol
• Using the Tools menu

To edit a Pipette Technique when setting task parameters:

1 In the **VWorks** window, open the protocol.

2 In the **Main Protocol** area, select the task for which the Pipette Technique will change.

3 In the **Task Parameters** area, select **Edit technique** in the **Pipette Technique property** list.
12 Specifying pipetting techniques
Creating and editing pipetting techniques

The Pipette Technique Editor dialog box opens.

4 Select the **Pipette Technique** on the left side of the dialog box.
5 Make the desired changes in the **X/Y Offset Pipetting** table.
6 When you are finished, click **Update** the selected technique.

To create a Pipette Technique using the Tools menu:
1 In the **VWorks** window, on the **Tools** menu, click **Pipette Technique Editor**. The Pipette Technique Editor dialog box opens.
2 Select the **Pipette Technique** on the left side of the dialog box.
3 Make the desired changes in the **X/Y Offset Pipetting** table.
4 When you are finished, click **Update** the selected technique.
Managing pipetting techniques

To copy, rename, and delete an existing Pipette Technique:

1. In the VWorks window, on the Tools menu, click Pipette Technique Editor. The Pipette Technique Editor dialog box opens.

2. Select the Pipette Technique on the left side of the dialog box.

3. Click one of the following:
 - Create copy of technique. The software prompts you to type a new name for the duplicated technique, and then creates a copy of the selected technique and saves it using the new name.
12 Specifying pipetting techniques

Storing Pipette Technique files

- **Rename technique.** The software prompts you to type a new name for the selected technique, and then saves the technique using the new name.
- **Delete selected technique.** The software deletes the selected technique.

Related information

<table>
<thead>
<tr>
<th>For information about...</th>
<th>See...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pipette Techniques</td>
<td>“About the Pipette Technique Editor” on page 500</td>
</tr>
<tr>
<td>Creating and editing Pipette Techniques</td>
<td>“Creating and editing pipetting techniques” on page 501</td>
</tr>
<tr>
<td>Pipette Technique files</td>
<td>“Storing Pipette Technique files” on page 506</td>
</tr>
</tbody>
</table>

Storing Pipette Technique files

Default storage location

By default, the VWorks software stores Pipette Technique files in the following folder:

`...\VWorks Workspace\pipette techniques`

Changing the storage location

To change the location of the Pipette Technique files:

1. In the **VWorks** window, choose **Tools > Options**. The Options dialog box opens.
2. In the **Options** area, click the **Pipette technique editor root** field, and then click the `[...]` button that appears. The Browse for Folder dialog box opens.
3. Locate and select a folder for the Pipette Technique files.
4. Click **OK** to save the new location.

Related information

<table>
<thead>
<tr>
<th>For information about...</th>
<th>See...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pipette Techniques</td>
<td>“About the Pipette Technique Editor” on page 500</td>
</tr>
</tbody>
</table>
For information about...
<table>
<thead>
<tr>
<th>Creating and editing Pipette Techniques</th>
<th>See...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Managing Pipette Techniques</td>
<td></td>
</tr>
</tbody>
</table>

See...

- “Creating and editing pipetting techniques” on page 501
- “Managing pipetting techniques” on page 505
12 Specifying pipetting techniques

Storing Pipette Technique files
13

Maintenance and troubleshooting

This chapter contains the following topics:

- "Backing up and restoring files" on page 510
- "Exporting and importing protocols and associated components" on page 512
- "Viewing logs" on page 516
- "Resolving device initialization errors" on page 524
- "Resolving compilation error messages" on page 525
- "Disabling and enabling tasks" on page 526
- "Using breakpoints to monitor and troubleshoot tasks" on page 527
- "Resolving barcode reader error messages" on page 531
- "Recovering from deadlocks" on page 532
- "Setting up automated error responses" on page 537
- "Viewing the status of the UPS" on page 543
- "Reporting problems" on page 545
Backing up and restoring files

Backing up files
You should regularly back up the following files in case they become damaged or lost:
- Protocols and associated files
- System files
You should store the backup files on a different computer or storage device.

Backing up protocols and associated files
You can backup files if you have administrator or technician privileges.
You can use the **Files > Export** command to back up protocols and associated files. For instructions, see “Exporting and importing protocols and associated components” on page 512.

Backing up system files
You use the Backup Manager to back up system files. The Backup Manager creates a copy of the following information and stores them in the .vbk file:
- Existing state of the databases
- Labware definitions and liquid classes
- Pipette techniques

To back up system files:
1. In the **VWorks** window, select **Tools > Backup Manager > Backup**. The Backup dialog box opens.

2. Type a name for the backup file.
 Note: The backup file location is the ...\VWorks\backup folder. You cannot change this location.

3. Click **OK**. The .vbk file is created and stored in the ...\VWorks\backup folder.

Restoring system files

Restoring protocols and associated files
You can restore files if you have administrator or technician privileges.
You can use the **Files > Import** command to restore protocols and associated files. For instructions, see “Exporting and importing protocols and associated components” on page 512.

Restoring system files

You use the Backup Manager to restore system files. The Backup Manager restores the following information in the databases and Windows registry:

- Existing state of the databases
- Labware definitions and liquid classes
- Pipette techniques

To restore system files:

1. In the **VWorks** window, select **Tools > Backup Manager > Restore**. The Open dialog box appears.

2. Locate and select the .vbk file, and then click **Open**. A message dialog box opens and asks you if you want to replace the existing labware definition, liquid classes, and pipette techniques.

3. Do one of the following:
 - Click **Yes** to overwrite existing labware definition, liquid classes, and pipette techniques.
 - Click **No** to cancel the restore process.

Related information

<table>
<thead>
<tr>
<th>For information about...</th>
<th>See...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exporting and importing protocols and associated files</td>
<td>“Exporting and importing protocols and associated components” on page 512</td>
</tr>
<tr>
<td>VWorks software components: protocol, device file, and so on</td>
<td>“Relationship of VWorks components” on page 4</td>
</tr>
<tr>
<td>Viewing logs</td>
<td>“Viewing logs” on page 516</td>
</tr>
<tr>
<td>Contacting Agilent Technologies and Reporting problems</td>
<td>“Reporting problems” on page 545</td>
</tr>
</tbody>
</table>
Exporting and importing protocols and associated components

Reasons for exporting and importing files

You can export and import protocol and associated components to:

- Back up and recover protocols and associated files.
- Transport protocols between computers.
- Facilitate troubleshooting problems with protocols and other files when seeking assistance from Technical Support.

You can export or import the following:

- Protocol file, including any macros embedded in the protocol
- Form file
- Runset file
- Device file, including the device profile and teachpoint file
- Labware definitions
- Liquid classes
- Pipette techniques
- Hit-picking files
- Plate map files
- Barcode files
- Error library
- Log files

Exporting files

You can export files if you have administrator, technician, or operator privileges.

To export the system files:

1 In the VWorks window, select File > Export. The Export Wizard dialog box opens.
2 Follow the instructions in the wizard to:

a Specify the location and name of the .vzp file. The exported files are compressed and stored in a .vzp file.

b Select the protocol, runset, or form you want to export. You do not need to select the associated device file and other files. The software automatically exports all the associated files with the protocol.

c **Optional.** If a form (.VWForm file) is specified in the protocol’s options, verify the Include all Form files specified in Protocol options is selected (default) to include the form in the export. If you do not want to include the form, clear the Include all Form files specified in Protocol options check box.

 IMPORTANT Any custom image files that you provide for the form, must be in the same folder as the .VWForm file that you are exporting.

d **Optional.** If the protocol is associated with barcode files, select the option to export the barcode files.

e **Optional.** If the protocol is associated with an error library file, select the option to export the error library file.

f **Optional.** If the protocol is associated with a plate map database, select the option to export the plate-map database.

g Select the log files you want to include.

3 When you are finished, click Finish. The .vzp file appears in the specified location.

You can move the .vzp file to another computer and import it into the VWorks software, or send the .vzp file to Agilent Technologies if you are reporting a problem.

Importing files

You can import files if you have administrator or technician privileges.
To import the system files:

1. In the VWorks window, select File > Import. A message dialog box opens and asks if you want to back up the existing labware definitions, liquid classes, pipette techniques, and plate-map databases.

2. Do one of the following:
 - Click Yes to back up the information. In the Backup dialog box, type a name for the backup file (.vbk), and then click OK. The .vbk file is created and stored in the ...\VWorks\backup folder.
 - Click No to start the import process.

The Import Wizard dialog box opens.

3. Follow the instructions in the wizard to:
 a. Select the .vzp file you want to import. The .vzp file contains the protocol and associated files.
 b. Select the location to store the imported protocol file, device file, barcode files, and runset file, if applicable.
 c. Optional. Select the option to import the associated plate-map database.
 d. Select the labware entries and classes you want to import. If a labware entry or class has the same name as an existing entry or class in the database, you have the following options:
 - Labware classes only. Append new labware entries to the existing labware class.
 - Replace existing labware entries or classes with newly imported entries and classes.

CAUTION Protocols that rely on existing labware entries or classes might be affected.
Create a new file for the newly imported labware entries and classes. You can choose to append the import date on the name of either the new labware file or the existing labware file. The imported protocol will use the imported labware definitions. When running existing protocols, you have to use the old labware file.

- Select the pipette technique files.
- Select the hit-picking input and format files.
- Select the device profiles.
- Select the error handlers and log files.

4 When you are finished, click **Finish**. The files are imported in the specified locations. If you selected the option, the imported protocol opens in the VWorks window.

Related information

<table>
<thead>
<tr>
<th>For information about…</th>
<th>See…</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contacting Agilent Technologies and reporting problems</td>
<td>“Reporting problems” on page 545</td>
</tr>
<tr>
<td>VWorks software components: protocol, device file, and so on</td>
<td>“Relationship of VWorks components” on page 4</td>
</tr>
<tr>
<td>Viewing logs</td>
<td>“Viewing logs” on page 516</td>
</tr>
<tr>
<td>Backing up system files</td>
<td>“Backing up and restoring files” on page 510</td>
</tr>
</tbody>
</table>
Viewing logs

About the logs

The VWorks software records events that occur and stores the information in the following logs:

- **Main Log.** Contains all of the actions that occur in the software.
- **Pipette Log.** Contains all pipetting events and error information.
- **Time Constraints Log.** Contains all information about time-limited tasks.

The log text colors can help you distinguish between different types of messages and events. In addition, you have the option of backup and validating the log files for regulatory compliance.

Main Log

The Main Log records all available event and error information. You can view the Main Log in the following:

- VWorks window
- VWorks log file

Viewing the Main Log in the VWorks window

To view the Main Log in the VWorks window:

1. In the VWorks window, select View > Main Log.
2. Review the information in the Main Log tab.
Viewing the Main Log in a text editor

The VWorks log file is a text file with the following file name:

VWorks_log(date_time).log

To view the Main Log in a text editor:

1. In the Windows Explorer window, locate and select the VWorks_log(date_time).log file. The location is specified in the Options (Tools > Options) dialog box.
2. Open the file using a text editor such as Notepad.

Main Log contents

The Main Log contains the following information:

<table>
<thead>
<tr>
<th>Column name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Timestamp</td>
<td>Time and date of the event or error.</td>
</tr>
<tr>
<td>Class</td>
<td>The type of event or error message:</td>
</tr>
<tr>
<td></td>
<td>• Info. General information. For example, System start up, or Simulation mode toggled on.</td>
</tr>
<tr>
<td></td>
<td>• Event. A software action. For example, Scheduler started, or Move plate.</td>
</tr>
<tr>
<td></td>
<td>• Error. An error that can stop the software and must be resolved. For example, Location incompatible with labware.</td>
</tr>
<tr>
<td></td>
<td>• Warning. An error that might permit the software to continue. For example, Task requires that tips be on the pipette head.</td>
</tr>
<tr>
<td>Device</td>
<td>Device at which the event or error occurred.</td>
</tr>
<tr>
<td>Location</td>
<td>Location where the event or error occurred. For example, Bravo location 9.</td>
</tr>
<tr>
<td>Process</td>
<td>Name of the protocol process and subprocess that is running.</td>
</tr>
<tr>
<td>Task</td>
<td>Task at which the event or error occurred.</td>
</tr>
<tr>
<td>Description</td>
<td>Description of the action that is being recorded.</td>
</tr>
<tr>
<td>File name</td>
<td>Name and location of the protocol file.</td>
</tr>
<tr>
<td>Session ID</td>
<td>Login session number.</td>
</tr>
</tbody>
</table>

Pipette Log

The Pipette Log records all pipetting events and error information. You can view the Pipette Log in the following:

• VWorks window
• VWorks pipette log file
Viewing the Pipette Log in the VWorks window

To view the Pipette Log in the VWorks window:

1. In the VWorks window, select View > Pipette Log.
2. Review the information in the Pipette Log tab.

Viewing the Pipette Log in a text editor

The VWorks log file is a text file with the following file name:
VWorks_pipette_log(date_time).log

To view the Pipette Log in a text editor:

1. In the Windows Explorer window, locate and select the VWorks_pipette_log(date_time).log file. The location is specified in the Options (Tools > Options) dialog box.
2. Open the file using a text editor such as Notepad.

Pipette Log contents

The Pipette Log contains the following information:

<table>
<thead>
<tr>
<th>Column name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Timestamp</td>
<td>Time and date of the pipetting event or error.</td>
</tr>
<tr>
<td>Class</td>
<td>The type of event or error message:</td>
</tr>
<tr>
<td></td>
<td>• Event. A software action. For example, when a protocol is started, the event is logged.</td>
</tr>
<tr>
<td></td>
<td>• Transfer. A pipetting event.</td>
</tr>
<tr>
<td>Session ID</td>
<td>Login session number.</td>
</tr>
</tbody>
</table>
Viewing logs

The Time Constraints Log records any time-limited task events and errors. If you did not specify time constraints, no information appears in the log.

You can view the Time Constraints Log in the following:

- VWorks window
- VWorks time constraint log file

Viewing the Time Constraints Log in the VWorks window

To view the Time Constraints Log in the VWorks window:

1. In the **VWorks** window, select **View > Time Constraints Log**.
2. Review the information in the **Time Constraints Log** tab.

<table>
<thead>
<tr>
<th>Column name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volume</td>
<td>The volume of liquid transferred.</td>
</tr>
<tr>
<td>Aspirate Location</td>
<td>The location at which the Aspirate task occurred.</td>
</tr>
<tr>
<td>Aspirate Selection</td>
<td>The wells from which fluid was drawn for the Aspirate task.</td>
</tr>
<tr>
<td>Dispense Location</td>
<td>The location at which the Dispense task occurred.</td>
</tr>
<tr>
<td>Dispense Selection</td>
<td>The wells into which fluid was dispensed.</td>
</tr>
<tr>
<td>Description</td>
<td>The description of the action that is being recorded.</td>
</tr>
<tr>
<td>File name</td>
<td>The name and location of the protocol file.</td>
</tr>
</tbody>
</table>
13 Maintenance and troubleshooting

Viewing logs

Viewing the Time Constraints Log in a text editor

The VWorks log file is a text file with the following file name:
VWorks_time_constraints_log(date_time).log

To view the Time Constraints Log in a text editor:

1 In the Windows Explorer window, locate and select the VWorks_time_constraints_log(date_time).log file. The location is specified in the Options (Tools > Options) dialog box.

2 Open the file using a text editor such as Notepad.

Time Constraints Log contents

The Time Constraints Log contains the following information:

<table>
<thead>
<tr>
<th>Column name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Timestamp</td>
<td>Time and date of the event or error.</td>
</tr>
</tbody>
</table>

Class

The type of event or error message:

- **Info.** General information. For example, System start up, or Simulation mode toggled on.
- **Event.** A software action. For example, Scheduler started, or Move plate.
- **Error.** An error that can stop the software and must be resolved. For example, Location incompatible with labware.
- **Warning.** An error that might permit the software to continue. For example, Task requires that tips be on the pipette head.
<table>
<thead>
<tr>
<th>Column name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Session ID</td>
<td>The login session number.</td>
</tr>
<tr>
<td>Start Process</td>
<td>The name of the protocol process or subprocess that contains the first of the two dependent tasks. This field also includes the instance number to help you identify the plate instance. For example, Process - 1 1 means Process - 1, instance 1. Start Process is paired with Start Task to identify the first of the two dependent tasks.</td>
</tr>
<tr>
<td>Start Task</td>
<td>The task number that identifies the first of the two dependent tasks. For example, 1 is the first task in the process, and 5 is the fifth task in the process. Start Task is paired with Start Process to identify the first of the two dependent tasks in the protocol.</td>
</tr>
<tr>
<td>End Process</td>
<td>The name of the protocol process or subprocess that contains the second of the two dependent tasks. This field also includes the instance number to help you identify the plate instance. For example, Process - 3 1 means Process - 3, instance 1. End Process is paired with End Task to identify the second of the two dependent tasks.</td>
</tr>
<tr>
<td>End Task</td>
<td>The task number that identifies the second of the two dependent tasks. For example, 3 is the third task in the process, and 10 is the tenth task in the process. End Task is paired with End Process to identify the second of the two dependent tasks in the protocol.</td>
</tr>
<tr>
<td>Target interval</td>
<td>The time specified in the Edit Time Constraints dialog box.</td>
</tr>
<tr>
<td>Allowed deviation</td>
<td>The time tolerance specified in the Edit Time Constraints dialog box.</td>
</tr>
<tr>
<td>Actual interval</td>
<td>The length of time of the first task during the run.</td>
</tr>
<tr>
<td>Actual deviation</td>
<td>The difference between the Target interval and the Actual interval.</td>
</tr>
</tbody>
</table>
Viewing logs

Log text colors

Text in the logs appear in the following colors:

<table>
<thead>
<tr>
<th>Color</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grey</td>
<td>Standard events with a date stamp or operator-added notes</td>
</tr>
<tr>
<td>Blue</td>
<td>Liquid transfer events</td>
</tr>
<tr>
<td>Orange</td>
<td>Warnings</td>
</tr>
<tr>
<td>Red</td>
<td>Error</td>
</tr>
<tr>
<td>Green</td>
<td>General information</td>
</tr>
<tr>
<td>Purple</td>
<td>Debug information (shown only if the Debug log level is greater than 0 in Tools > Options)</td>
</tr>
</tbody>
</table>

Backing up and validating the log files

You can back up and validate the log files to comply with regulatory requirements. The validation process checks the log file to see if it has been altered.

Backing up log files

To back up the log files:

1. With the protocol file open in the **VWorks** window, select **Tools > Log Management**. The Log Management dialog box opens.

2. Click the **button, and then locate and select the log file you want to back up. The log file location is specified in Tools > Options. The file path and name appear in the **Target** box.*
3 Click *Backup*. The Please name backup log file dialog box opens.

4 Select the folder in which you want to store the backup copy. In addition, type a name for the backup file.

5 Click *Save*. A backup copy of the log file is created.

Validating log files

To validate a log file:

1 With the protocol file open in the VWorks window, select **Tools > Log Management**. The Log Management dialog box opens.

2 Click the *...* button, and then locate and select the log file you want to validate. The log file location is specified in **Tools > Options**. The file path and name appear in the **Target** box.

3 Click **Validate**. The software checks the log file and displays a message that explains whether the validation is successful. Validation is successful only if the file has not been altered.

Related information

<table>
<thead>
<tr>
<th>For information about...</th>
<th>See...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Setting system-wide options</td>
<td>“Setting general and view options” on page 193</td>
</tr>
<tr>
<td>Specifying log file storage locations</td>
<td>“Setting log file directories” on page 191</td>
</tr>
<tr>
<td>Exporting and importing protocol and associated files</td>
<td>“Exporting and importing protocols and associated components” on page 512</td>
</tr>
<tr>
<td>Contacting Agilent Technologies and reporting problems</td>
<td>“Reporting problems” on page 545</td>
</tr>
</tbody>
</table>
Resolving device initialization errors

Device initialization process

When you start the VWorks software, the software loads the driver files for all the devices in the automation system. A record of this process is displayed in the Main Log.

When you open a protocol, the device file associated with that protocol opens. The device file tells the software which devices are connected to the system. For some devices, an initialization step tests the communication between the VWorks software and the device.

Resolving initialization errors

During the device initialization process, the software displays the list of devices it is expecting to find. Devices are removed from the list as the software determines that the devices are ready.

If a problem occurs during initialization, an error message appears and explains the problem.

To resolve the problem:

1. Make sure the device is turned on.
2. Make sure the communication cable is connected properly.
3. Make sure the communication cable is connected to the correct COM port.
4. Check the device profile to make sure it is set up correctly for communication.
5. If applicable, follow the instructions in the error message to fix the communication problem.
6. Click Retry to re-initialize the device.
7. If the problem persists, contact Automation Solutions Technical Support.

Related information

<table>
<thead>
<tr>
<th>For information about...</th>
<th>See...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Turning on the device</td>
<td>Device user guide</td>
</tr>
<tr>
<td>Editing the device profile</td>
<td>Device user guide</td>
</tr>
<tr>
<td>Contacting Agilent Technologies and reporting problems</td>
<td>“Reporting problems” on page 545</td>
</tr>
</tbody>
</table>
Resolving compilation error messages

Compilation warnings and error messages

During the protocol-compiling process, the software reports errors in the Main Log. You can use the information to troubleshoot the protocol.

The software displays two types of messages during the compiling process:
- Warning messages
- Error messages

Note: If you are logged in with technician, operator, or guest privileges, you are unable to continue with the protocol. If you are logged in with administrator privileges, the dialog box allows you to run the protocol despite the errors.

Warning messages

A warning message alerts you to an error that should be fixed. If the error is left unresolved, the software can still continue. For example, a pipetting task requires that tips be on the pipette head, but there was no Tips On task preceding the pipetting task.

Error messages

Error messages alert you to situations where a protocol or device will fail. You must resolve the problem to continue the run.

Errors are generated when:
- Operating parameters are out of range, denoted by red text in the Task Parameters area.
- A task wants to use a labware that does not exist in the system.
- Volumes in pipette steps do not match, such as when a dispense volume is greater than a previous aspirate volume.
- A Signal task has no associated Wait For task.

Related information

<table>
<thead>
<tr>
<th>For information about...</th>
<th>See...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compiling protocols</td>
<td>“Compiling the protocol” on page 61</td>
</tr>
<tr>
<td>Viewing logs</td>
<td>“Viewing logs” on page 516</td>
</tr>
<tr>
<td>Contacting Agilent Technologies and reporting problems</td>
<td>“Reporting problems” on page 545</td>
</tr>
</tbody>
</table>
Disabling and enabling tasks

When to disable tasks

You can disable tasks when you test run a protocol. Disabling one or more tasks allows you to:

- Run a protocol but skip tasks that use problem devices or locations. Doing so allows you to verify that the rest of the protocol is working properly while you troubleshoot the problem devices and locations.
- Skip tasks that are not needed for certain runs. You can reuse the same protocol for a number of situations without creating a number of different protocols.

Disabling tasks

To disable a task:

1. Right-click the task that you want to disable.
2. In the shortcut menu that appears, select **Disable task**.

A red circle and strike line appears on the icon to indicate that it is a disabled task. The software will bypass the task when the protocol is running.

In the following example, the Seal a Plate task is disabled in the protocol.

![Protocol flow diagram showing a disabled task]

Enabling tasks

You can enable tasks individually or you can enable all tasks using one command.

To enable a task:

1. Right-click the disabled task.
2. In the shortcut menu that appears, select **Enable task**.

To enable all tasks in a protocol:

1. Right-click any task in the protocol.
2. In the shortcut menu that appears, select **Enable all tasks**.

Related information

<table>
<thead>
<tr>
<th>For information about...</th>
<th>See...</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Halt on barcode misreads option in the Options dialog box</td>
<td>“Setting general and view options” on page 193</td>
</tr>
</tbody>
</table>
Using breakpoints to monitor and troubleshoot tasks

About breakpoints

A breakpoint is a point in the protocol where you want the system to pause operation. Adding a breakpoint at a task pauses the run or simulation and opens the Debugger dialog box before the system performs the actual task. The Debugger dialog box provides JavaScript information for the corresponding task.

Breakpoints enable you to do the following:

- You can monitor parameter values and verify the actions of certain tasks during simulation or a dry run, and change the values if necessary.

 For example, you can add a breakpoint at an aspirate task to pause the system just before the aspirate task starts. During the pause, you can verify the task parameter values in the JavaScript engine, after the task’s script executes, and before the parameters are applied to the task.

- If you declare your own JavaScript variables for certain tasks, you can monitor the values by placing breakpoints at those tasks.

- You can troubleshoot tasks and fine-tune task parameter values.

- The Debugger dialog box also enables you to write and execute scripts in real time that are not necessarily associated with the selected task.

During the protocol run, the following sequence occurs when the software reaches a breakpoint:

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>The protocol pauses at the task with the breakpoint.</td>
</tr>
<tr>
<td>2</td>
<td>The JavaScript associated with the selected task executes.</td>
</tr>
<tr>
<td>3</td>
<td>The Debugger dialog box opens and displays the JavaScript for that task.</td>
</tr>
<tr>
<td>4</td>
<td>In the Debugger dialog box, you can modify values in the JavaScript engine.</td>
</tr>
<tr>
<td>5</td>
<td>The software applies the relevant task parameters from the JavaScript engine to the scheduler. If you changed task parameter values in the Debugger dialog box, the task will use the updated values when you continue the run.</td>
</tr>
<tr>
<td>6</td>
<td>You can continue running the selected task and the rest of the protocol or abort the run.</td>
</tr>
</tbody>
</table>
Using breakpoints to monitor and troubleshoot tasks

Note: If the breakpoint is on a task within a loop or if the protocol is run multiple times in one session, the protocol will pause each time it reaches that task.

Figure A breakpoint in a protocol and the corresponding Debugger dialog box

Adding breakpoints

You can add as many breakpoints as you want in a protocol. In addition, you can add breakpoints while a protocol or simulation is running.

To add a breakpoint:

1 In the Protocol area, right-click the task at which you want the breakpoint.
2 In the shortcut menu that appears, click **Set breakpoint.** A red dot appears on the task icon.

![Set breakpoint icon](image)

Using a breakpoint during a simulation or a dry run

To use a breakpoint in a protocol:

1 Start a simulation or dry run of the protocol that contains the breakpoint. When the software reaches the task that has the breakpoint, the Debugger dialog box opens.

2 Under **Current JS Objects** in the Debugger dialog box, look in the **Name** column for the object that you want to view. Click the + symbol next to the object name to view the corresponding properties. For example, the following figure shows the task object properties for an aspirate task at which a breakpoint was set.

![Current JS Objects](image)

Note: To show the functions (methods) as well as the properties associated with the JavaScript object, select **Show Functions**, and then expand the object in the **Name** column.

3 In the **Value** column, change a property value, if required. For example, you might change the `task.Volume` value from 2 to 3.

4 To apply any changed values without closing the Debugger dialog box, click **Apply changed values.**

5 If you want to run a script from the Debugger dialog box:
 a Type the script in the **Run Script Now** area.
 b Click **Execute JavaScript.**

The status of the script appears in the bottom left of the Debugger dialog box.
For example, you could type the script `runset.clear()` to clear all the entries in the runset manager, except for currently running protocol.

6 Click the button in the Debugger dialog box that corresponds to the command you want to use next:

<table>
<thead>
<tr>
<th>Button</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clear all breakpoints</td>
<td>Removes all breakpoints in the protocol and continues the run.</td>
</tr>
<tr>
<td>Single step</td>
<td>Permits the protocol to perform one task at a time, pausing before each task.</td>
</tr>
<tr>
<td>Continue</td>
<td>Resumes the protocol run until the next breakpoint is reached.</td>
</tr>
<tr>
<td>Abort</td>
<td>Aborts the protocol run.</td>
</tr>
</tbody>
</table>

Removing breakpoints from an open protocol

You can remove breakpoints individually or you can remove all breakpoints with one command.

To remove a specific breakpoint:
1 Right-click the task that has a breakpoint.
2 In the menu that appears, click Remove breakpoint.

To remove all breakpoints in a protocol:
1 Right-click any task in the protocol.
2 In the menu that appears, click Clear all breakpoints.
Resolving barcode reader error messages

About this topic

The information in this topic applies only to the following barcode readers:

- Robot barcode readers
- Barcode readers that are installed on a device such as a platepad

The information in this topic does not apply to the Microplate Labeler.

Causes of barcode reader errors

Errors generated by robot barcode readers and barcode readers that are installed on devices are generally caused by:

- Poor printing or label placement such that the barcodes are not perpendicular to the barcode laser read line
- Poor label placement such that the barcode cannot be fully read
- Missing or damaged barcode labels
- Wrong barcode labels

Note: The system does not attempt to read a barcode unless you specified that the labware has a barcode label. See “Setting plate parameters” on page 44 for instructions.

Recovering from barcode reader errors

Your ability to resolve the barcode reader errors depends on whether the Halt on bar code misreads option is selected in the Options (Tools > Options) dialog box.

If the Halt on bar code misreads option is selected:

- The protocol pauses.
The error message is recorded in the Main Log.

The error message dialog box opens and allows you to type the correct barcode. With the correct barcode, the software continues the run.

If the **Halt on bar code misreads** option is not selected:

- The error message is recorded in the Main Log.
- The protocol continues without pausing, so you cannot correct from the error.

A quarantine response is set up in the Error Library for a default set of barcode reader error messages. The quarantine response allows the system to continue running the protocol even though it is unable to resolve problems with the labware. For a description of the quarantine response, see “Setting up automated responses” on page 538.

Related information

<table>
<thead>
<tr>
<th>For information about...</th>
<th>See...</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Halt on bar code misreads option in the Options dialog box</td>
<td>“Setting general and view options” on page 193</td>
</tr>
<tr>
<td>Viewing logs</td>
<td>“Viewing logs” on page 516</td>
</tr>
<tr>
<td>Contacting Agilent Technologies and reporting problems</td>
<td>“Reporting problems” on page 545</td>
</tr>
</tbody>
</table>

Recovering from deadlocks

About deadlocks

A deadlock is an error that occurs when the number of locations available in the system is less than the number of microplates in the system. Because the microplates cannot move to the expected locations, the protocol either aborts or pauses, depending on the **Deadlock behavior** selection in the Tools > Options dialog box.

About the System State Editor

In the Tools > Options dialog box, if the **Deadlock behavior** is **Show the System State Editor**, the run will pause when a deadlock error occurs.
During the pause, the System State Editor dialog box opens and you can:

1. View the status of the devices and locations to assess and correct the causes of the errors. For example, if the device status indicates that a labware at a particular location is causing device problems, you can physically remove that labware from the system and restore the device to its operational state.

2. Specify in the software that a labware has been removed from certain locations or from the system. For example, after you physically remove the labware that is causing problems, you need to indicate in the software that the labware is removed and its location is now ready to accept new labware.

3. Edit or reset the status of devices and locations. If you fixed a device problem, you can indicate that the device is now operational and ready to accept labware.

4. Continue the protocol run.

If you determine that the causes of the deadlock error cannot be fixed, you can choose to abort the run or allow the existing labware to finish processing but not introduce new labware. For more information about these options, see “Pausing the run” on page 229.

Note: You can also open the System State Editor if you pause a run. If you clicked Pause all during a protocol run, you can select Tools > System State Editor to open the System State Editor dialog box. Alternatively, click System State Editor in the Gantt Chart dialog box.

Viewing the device and location status

To view the device and location status:

1. In the System State Editor dialog box, click the Paused Status tab.

2. Review the information in the Paused Status tab.
The Paused Status tab contains the following information:

- Causes of the deadlock error
- Current locations of the labware in the system and the expected locations when the deadlock error occurred
- The current status of all the devices and locations in the system

Note: The information in the Paused Status tab can be appended to the Main Log file. To do this, select **Tools > Get Status.**

Moving or removing labware from locations

The Plate Location Editor tab lists:

- All active process plates in all running protocols
- The current locations of the process plates

IMPORTANT The list does not include finished process plates. To see the finished process plates, click the Location Status Editor tab.

IMPORTANT You can move labware to any location except into a Labware Stacker.

To indicate that labware is moved or removed from locations:

1. In the *System State Editor* dialog box, click the *Plate Location Editor* tab.
2. To change the location of a process plate, select the new location from the list. If you want to indicate that a process plate was removed from the system, select **REMOVE FROM SYSTEM.**

Note: The software prevents you from selecting one location for two different process plates. If you select a location that is already occupied by another process plate, the software will exchange the two locations.
13 Maintenance and troubleshooting
Recovering from deadlocks

Editing the status of the devices and locations

CAUTION Do not change the status of device locations without fully knowing the state of all process plates and device locations. An arbitrary change can cause crashes when you resume the run. If you are uncertain of the state of the process plates and device locations, contact Automation Solutions Technical Support.

The Location Status Editor tab displays all labware in running protocols in:
- The list of every device and associated locations
- The status of the locations

Finished process plates appear in this tab. You can use the selections in this tab to remove finished process plates.

CAUTION Make sure finished process plates will not be used by downstream processes before removing them.

Except to remove finished process plates, you do not need to change the status of device locations. The changes you made in the Plate Location Editor tab are automatically reflected in the Location Status Editor tab. For example, if you removed a process plate from a location in the Plate Location Editor tab, the status of that location will change from Plate available for pickup (location is occupied) to Ready for use (location is available for use).

To remove a finished process plate:
1. In the *System State Editor* dialog box, click the *Location Status Editor* tab.
2. Locate the location of the finished process plate, and then select the new status from the list.
Continuing the protocol run

After you specify the labware movement or removal and the new device and location status:

1. In the System State Editor dialog box, click Accept all changes.
2. In the Scheduler Paused dialog box, click Continue to resume the run.

The Scheduler Paused dialog box also provides other options. For details, see “Pausing the run” on page 229.

Related information

<table>
<thead>
<tr>
<th>For information about...</th>
<th>See...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pausing a run</td>
<td>“Pausing the run” on page 229</td>
</tr>
<tr>
<td>Monitoring a run</td>
<td>“Tracking the run progress of instances or devices” on page 223</td>
</tr>
<tr>
<td>Viewing logs</td>
<td>“Viewing logs” on page 516</td>
</tr>
</tbody>
</table>
Setting up automated error responses

About the Error Library

You can use the Error Library to:

- Display or hide certain error messages during a protocol run. Hiding minor errors reduces the number of interruptions in the protocol run.
- Automate error recovery responses for selected errors to reduce the number of manual interventions in a protocol run.
- Track the frequency of certain errors for troubleshooting, establishing standard automated recovery responses, or quality-control reporting.

For example, you can set up a quarantine response for barcode reading, incorrect labware orientation, and wrong labware type errors. The quarantine response allows the system to continue running the protocol even though it is unable to resolve problems with the labware.

Adding errors to the library

You can add error messages to the Error Library to set up display options and automated responses. When you run a protocol and an error dialog box opens, click **Add to Error Library** to add the displayed error message to the Error Library.

To set up quarantine responses, you can perform dry runs to generate the desired error messages for the Error Library. For example, you can use labware that have poorly printed or missing barcode labels, load labware backwards in stackers, or load the wrong labware type in stackers.

Note: The software automatically records the frequency of the error in the Error Library.
Setting up automated responses

To set up error responses:

1. In the VWorks window, select Tools > Error Library. The Error Library dialog box opens.
 Note: The software opens the last saved error library file shown in the Error Library File area. To open a different file, click the [...] button.

2. In the Error Handlers tab, set the following parameters to identify the error handlers. An error handler is a set of conditions that define a specific recovery response to an error.
Setting up automated error responses

3 Set the following to determine the error response:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
</table>
| Name | The name of the error handler. Type a name that can help you to identify it quickly in the log.
 Note: The Default error handler is used to define the default error response. It can be edited, but it cannot be deleted from the Error Library. |
| Match Text | The text of the error message that must be matched to activate the error handler.
 You can modify the text to set it up for match-text filtering. |
| Match Type | The match-text filtering to use:
 - Error text exactly matches Match Text
 - Error text contains Match Text |

![Error Library](image-url)
13 Maintenance and troubleshooting
Setting up automated error responses

4 Type the **Priority** value in case the text from two errors matches the conditions in two handlers. The larger the value, the lower the priority.

The software sets the overall priority as follows:

a	Exact error text match
b	Partial error text match (longer text matches are preferred over shorter text matches)
c	Larger Priority value (for example, 1 has higher priority than 2)

5 Type additional notes about the error in the **Error Annotation** box. The text in this box is displayed with the original error text. You can use this field to explain how to fix the error.

6 Set up additional filters for the error message. You can select the desired value for each of the parameters in the following table. If you do not want to set up a filter for one or more of the parameters, select the empty value from the parameter list.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
</table>
| Action Type | The automated error response to use whenever the text-matching conditions are met:
• *Abort protocol*. Aborts the protocol. The run is not recoverable.
• *Always ignore error*. Ignores the current command or task and continues to the next command or task in the protocol sequence.
• *Try n times*. Attempts to restart the current command or task in the run. The number of attempts is specified by the Action Value.
• *Rotate plate*. Places the labware at a device that can rotate it to correct its orientation.
• *Show error dialog*. Displays the error dialog box to allow the operator to determine the error response.
• *Quarantine plate*. Moves the labware that caused the error to a quarantine location and continues the run. |
| Action Value | The number of times to restart the current command or task. |
Creating a new error handler

To create a new error handler:

1. In the Error Library dialog box, click New. A new row appears in the error handler table with a default name, Error - n.
2 Follow the instructions in “Setting up automated responses” on page 538 to set up the new error handler.

Note: In a newly created handler, the Match Text field is empty. Type the error text that you want to use to set up the handler.

Deleting an error handler

To delete an error handler:
1 In the Error Library dialog box, select the error handler you want to delete.
2 Click Delete. The error handler is removed from the table.

Saving the error library file

To save the error library file:
1 In the Error Library File area, click Save As. The Save As dialog box opens.
2 Locate the folder in which you want to save the file, type a name for the error library file, and then click Save.

Viewing and tracking error occurrences

You can view all the errors that have occurred during the protocol run that have not yet been assigned an error handler. The Error Library records the frequency of their occurrences and other information to help you determine whether you want to add them to the library and what automated response to specify.

To view errors that are not yet set up with error handlers:
1 In the Error Library dialog box, click the Error History tab.
2 Review the list of errors in the table:
Viewing the status of the UPS

Parameter	**Description**
Error Message | The text of the error message.
Device Type | The type of device on which the error occurred. For example, Bravo Pipettor.
Device Name | The name of the device on which the error occurred. The name distinguishes two devices of the same type. For example, Bravo-1 and Bravo-2.
Task Type | The category of the task in which the error occurred. For example, Plate Handling tasks.
Task Name | The task in which the error occurred. For example, Aspirate.
Error Times | The number of times the error occurred within the protocol.
File Name | The name of the device file containing the device.

To add an error message to the error library file:
1. Select the error message in the table.
2. Click **Add to Error Library**.
3. Follow the instructions in “Setting up automated responses” on page 538.

To clear the history table:
Click **Clear All**.

Related information

<table>
<thead>
<tr>
<th>For information about...</th>
<th>See...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Viewing logs</td>
<td>“Viewing logs” on page 516</td>
</tr>
<tr>
<td>Tracking the run progress of instances, processes, or devices</td>
<td>“Tracking the run progress of instances or devices” on page 223</td>
</tr>
<tr>
<td>Contacting Agilent Technologies and reporting problems</td>
<td>“Reporting problems” on page 545</td>
</tr>
</tbody>
</table>

Viewing the status of the UPS

About the UPS and the APCUPS device

An uninterrupted power supply (UPS) is provided with the BioCel 1800 System and the BioCel 1200 System, and is optional in the BioCel 900 System. The UPS is powered by a battery and supplies backup power to the system in case of a power outage.
You can check the battery level and power load of the UPS using the APCUPS Diagnostics. If you set up an alarm for the UPS, an error message would display when the battery level drops below the specified level.

Before you start

To check the status of the UPS, you must add the APCUPS device in the device file.

Note: The APCUPS device does not have associated tasks that you can add in a protocol.

Procedure

If you have a UPS in the system, you can check the battery level and power load of the UPS at any time.

To check the status of the UPS:

1. In the **VWorks** window, open the device file that contains the UPS device.
2. In the **Device File** area, select **APCUPS**, and then click **Device diagnostics**.

The APCUPS dialog box opens.
3 Check the following:

<table>
<thead>
<tr>
<th>Indicator</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Batter level</td>
<td>The amount of battery power remaining, in percent of the full level.</td>
</tr>
<tr>
<td>Power load</td>
<td>The amount of power drawn by the devices, in percent of the maximum load.</td>
</tr>
<tr>
<td>Internal temperature</td>
<td>The temperature, in degrees Celsius, of the internal battery.</td>
</tr>
</tbody>
</table>

Related information

For information about...	See...
Adding an alarm for the UPS | “Adding an alarm” on page 35
Contacting Agilent Technologies and reporting problems | “Reporting problems” on page 545

Reporting problems

Contacting Automation Solutions Technical Support

If you find a problem with the VWorks software, contact Automation Solutions Technical Support at one of the following:

Europe

Phone: +44 (0)1763850230
email: euroservice.automation@agilent.com

US and rest of world

Phone: 1.800.979.4811 (US only) or +1.408.345.8011
email: service.automation@agilent.com

Note: You can also send a software bug report from within the VWorks software.

Reporting hardware problems

When contacting Agilent Technologies, make sure you have the serial number of the device ready. See the device user guide for the location of the label.

Reporting software problems

When you contact Automation Solutions Technical Support, make sure you provide the following:

- Short description of the problem
13 Maintenance and troubleshooting

Reporting problems

- Software version number
- Error message text (or screen capture of the error message dialog box)
- Screen capture of the About VWorks software dialog box.
- Relevant software files

To find the VWorks software version number:
In the VWorks software, select **Help > About VWorks.**

To find the Diagnostics software version number:
1. Open **Diagnostics.**
2. Read the version number on the title bar of the diagnostics window.

To send compressed protocol and associated files in VZP format:
In the VWorks software, select **File > Export** to export and compress the following files:
- Protocol file
- Device file (includes the device profile and teachpoint file)
- Labware definitions
- Liquid classes
- Pipette techniques
- Hit-picking files
- Plate map files
- Barcode files
- Error library
- Log files
- Form file (*.VWForm)

Reporting user guide problems

If you find a problem with this user guide or have suggestions for improvement, send your comments using one of the following methods:

- Click the feedback button (✉️) in the online help.
- Send an email to documentation.automation@agilent.com.

Related information

<table>
<thead>
<tr>
<th>For information about...</th>
<th>See...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exporting a protocol and associated files</td>
<td>“Exporting and importing protocols and associated components” on page 512</td>
</tr>
<tr>
<td>VWorks software components: protocol, device file, and so on</td>
<td>“Relationship of VWorks components” on page 4</td>
</tr>
<tr>
<td>Viewing logs</td>
<td>“Viewing logs” on page 516</td>
</tr>
</tbody>
</table>
Quick reference

This appendix contains the following topics:

- “Menu commands” on page 548
- “Toolbar buttons” on page 552
Menu commands

File menu

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>New > Runset</td>
<td>Clears the Runset Manager tab so that you can create a new runset. See “Managing runsets” on page 211.</td>
</tr>
<tr>
<td>New > Form</td>
<td>Opens the Form Designer so that you can create a new form to run a protocol or runset. See “Workflow for creating or editing a form” on page 141.</td>
</tr>
<tr>
<td>Open</td>
<td>Allows you to locate and open files, such as protocol, device, runset, and form files.</td>
</tr>
<tr>
<td>Close</td>
<td>Closes the displayed protocol, device, runset, or form file.</td>
</tr>
<tr>
<td>Save</td>
<td>Saves the changes in the protocol, device, or form file.</td>
</tr>
<tr>
<td>Save As</td>
<td>Opens the Save As dialog box and allows you to create a copy of the existing protocol or device file and specify a new name.</td>
</tr>
<tr>
<td>Save All</td>
<td>Saves all protocol, device, and form files currently open in the software.</td>
</tr>
<tr>
<td>Save Runset</td>
<td>Saves a runset in a folder that you specify.</td>
</tr>
<tr>
<td>Save Runset As</td>
<td>Opens the SaveAs dialog box, which enables you to save the runset file using a different file name and storage location.</td>
</tr>
<tr>
<td>Recent .pro files</td>
<td>Opens a recently opened protocol file.</td>
</tr>
<tr>
<td>Recent .dev files</td>
<td>Opens a recently opened device file.</td>
</tr>
<tr>
<td>Recent .rst files</td>
<td>Opens a recently opened runset.</td>
</tr>
<tr>
<td>Recent .VWForm files</td>
<td>Opens a recently opened protocol form.</td>
</tr>
<tr>
<td>Print</td>
<td>Prints the selected protocol, device, or form file.</td>
</tr>
<tr>
<td>Print Setup</td>
<td>Opens the Print Setup dialog box and allows you to specify printing options.</td>
</tr>
<tr>
<td>Print Preview</td>
<td>Allows you to preview the printout.</td>
</tr>
</tbody>
</table>
Menu commands

Import
Imports a .vzp file that contains a protocol, runset, or form file and associated components. See “Exporting and importing protocols and associated components” on page 512.

Export
Exports a protocol, runset, or form file and associated components and stores them in a .vzp file. See “Exporting and importing protocols and associated components” on page 512.

Exit
Quits the VWorks software.

Edit menu

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cut</td>
<td>Removes selected text and stores it in memory.</td>
</tr>
<tr>
<td>Copy</td>
<td>Copies selected text and stores it in memory.</td>
</tr>
<tr>
<td>Paste</td>
<td>Pastes the text that is currently stored in memory.</td>
</tr>
</tbody>
</table>

View menu

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Menubar</td>
<td>Displays or hides the menubar. When it is hidden, press ALT+V, or right-click in the protocol or device file area and select Menubar to display it.</td>
</tr>
<tr>
<td>Standard Toolbar</td>
<td>Displays or hides the standard toolbar.</td>
</tr>
<tr>
<td>Control Toolbar</td>
<td>Displays or hides the control toolbar.</td>
</tr>
<tr>
<td>Workspace</td>
<td>Displays or hides the Workspace area.</td>
</tr>
<tr>
<td>Available Tasks</td>
<td>Displays or hides the Available Tasks area.</td>
</tr>
<tr>
<td>Available Macros</td>
<td>Displays or hides the Available Macros area. For details on macros, see “Using macros to create protocols” on page 119.</td>
</tr>
<tr>
<td>Main Log</td>
<td>Displays or hides the Main Log in the log and progress area.</td>
</tr>
<tr>
<td>Pipette Log</td>
<td>Displays or hides the Pipette Log in the log and progress area.</td>
</tr>
<tr>
<td>Time Constraints Log</td>
<td>Displays or hides the Time Constraint Log in the log and progress area.</td>
</tr>
</tbody>
</table>
Menu commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Status Bar</td>
<td>Displays or hides the status bar below the log and progress area.</td>
</tr>
<tr>
<td>Progress</td>
<td>Displays or hides the Progress table in the log and progress area.</td>
</tr>
<tr>
<td>Runset Manager</td>
<td>Displays or hides the Runset Manager in the log and progress area. For details on managing runsets, see “Managing runsets” on page 211.</td>
</tr>
<tr>
<td>Full Screen Mode</td>
<td>Available only if a form is open in the VWorks window and the form contains a Toggle Full Screen control. The Full Screen Mode command changes the VWorks window to a full screen display of only the form.</td>
</tr>
</tbody>
</table>

Tools menu

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Labware Editor</td>
<td>Opens the Labware Editor. For details, see the VWorks Automation Control Setup Guide.</td>
</tr>
<tr>
<td>Liquid Library Editor</td>
<td>Opens the Liquid Library Editor. For details, see the VWorks Automation Control Setup Guide.</td>
</tr>
<tr>
<td>Pipette Technique Editor</td>
<td>Opens the Pipette Technique Editor. For details, see the VWorks Automation Control Setup Guide.</td>
</tr>
<tr>
<td>System State Editor</td>
<td>Opens the System State Editor.</td>
</tr>
<tr>
<td>Automatic Tip State Editor</td>
<td>Opens the Tip State Editor.</td>
</tr>
<tr>
<td>Configure Labware</td>
<td>Allows you to assign labware to device locations.</td>
</tr>
<tr>
<td>Backup Manager > Back up</td>
<td>Allows you back up system files.</td>
</tr>
<tr>
<td>Backup Manager > Restore</td>
<td>Allows you to restore system files.</td>
</tr>
<tr>
<td>Log Management</td>
<td>Allows you to back up or validate a selected log file.</td>
</tr>
<tr>
<td>Hit Pick Format Wizard</td>
<td>Allows you to set up the fluid transfer from a source microplate to a destination microplate.</td>
</tr>
<tr>
<td>Migrate All Files in a Folder</td>
<td>Allows you to migrate all files that are stored in a folder. For details, see the VWorks Automation Control Setup Guide.</td>
</tr>
<tr>
<td>Command</td>
<td>Description</td>
</tr>
<tr>
<td>--------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Reload Plugins</td>
<td>Scans the Plugins folder and reloads the device plugins. The command is only available if all device files and protocol files are closed. Use the command if you have added a new device plugin in the Plugins folder and you want to reload all the plugins without restarting the software.</td>
</tr>
<tr>
<td>Open Hooks Plugin for</td>
<td>Allows you to open any VWorks plugins that are installed on the computer. For details on the Twitter plugin, see “Setting up automatic online notification” on page 203.</td>
</tr>
<tr>
<td>User Management</td>
<td>Allows you to manage users and privileges. For details, see the VWorks Automation Control Setup Guide.</td>
</tr>
<tr>
<td>Error Library</td>
<td>Opens the Error Library. For details, see “Setting up automated error responses” on page 537.</td>
</tr>
<tr>
<td>Gantt Charts</td>
<td>Allows you to visually monitor the real-time status of processes, plate instances, and devices. For details, see “Tracking the run progress of instances or devices” on page 223.</td>
</tr>
<tr>
<td>Get Status</td>
<td>Appends the current status to the Main Log. You can use this command at any time, including during a run.</td>
</tr>
<tr>
<td>Inventory Editor</td>
<td>Opens the Inventory Editor. For details, see the VWorks Automation Control Setup Guide.</td>
</tr>
<tr>
<td>Manage IO</td>
<td>Allows you to manage and set options for input and output signals.</td>
</tr>
<tr>
<td>Watcher is ON/OFF</td>
<td>Available only if you have a current license for the Watcher feature and the Watcher feature is configured. For details, see “Setting up and using the Watcher tool” on page 565.</td>
</tr>
<tr>
<td>Edit Form</td>
<td>Available only if a form is open in the VWorks window. Displays the Form Editor window that enables you to edit the form. For details, see “Workflow for creating or editing a form” on page 141.</td>
</tr>
<tr>
<td>Options</td>
<td>Allows you to specify global options in the software, including paths to various logs, e-mail setup, robot speed, database setup, and error handling. For details, see “Running a protocol” on page 187.</td>
</tr>
</tbody>
</table>
Window menu

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cascade</td>
<td>Arranges the protocols and device files in the cascade style.</td>
</tr>
<tr>
<td>Tile</td>
<td>Arranges the protocols and device files in the tile style.</td>
</tr>
<tr>
<td>Arrange Icons</td>
<td>Aligns the icons in a sequential order.</td>
</tr>
<tr>
<td>Close All</td>
<td>Closes all open protocols and device files. If changes were made to the</td>
</tr>
<tr>
<td></td>
<td>protocols and device files, a message will prompt you to save the changes.</td>
</tr>
<tr>
<td>Manage Windows</td>
<td>Opens the Window dialog box and allows you to arrange, minimize, or close</td>
</tr>
<tr>
<td></td>
<td>the selected protocol and device files.</td>
</tr>
</tbody>
</table>

Help menu

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>VWorks Help</td>
<td>Opens the default browser window and displays the Knowledge Base.</td>
</tr>
<tr>
<td>Report a Bug</td>
<td>Allows you to send a software bug report to Agilent Technologies.</td>
</tr>
<tr>
<td>About VWorks</td>
<td>Displays the following:</td>
</tr>
<tr>
<td></td>
<td>• VWorks software installer number</td>
</tr>
<tr>
<td></td>
<td>• Copyright dates</td>
</tr>
<tr>
<td></td>
<td>• License information</td>
</tr>
<tr>
<td></td>
<td>• Product key</td>
</tr>
<tr>
<td></td>
<td>• List of plugins installed</td>
</tr>
</tbody>
</table>

Toolbar buttons

Standard toolbar

<table>
<thead>
<tr>
<th>Button</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Creates a new device file or protocol.</td>
</tr>
<tr>
<td></td>
<td>Opens the file you select.</td>
</tr>
</tbody>
</table>
A Quick reference

Toolbar buttons

<table>
<thead>
<tr>
<th>Button</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Saves the changes in the protocol or device file.</td>
</tr>
<tr>
<td></td>
<td>Saves all protocol and device files currently open in the software.</td>
</tr>
<tr>
<td></td>
<td>Removes selected text and stores it in memory.</td>
</tr>
<tr>
<td></td>
<td>Copies selected text and stores it in memory.</td>
</tr>
<tr>
<td></td>
<td>Pastes the text that is currently stored in memory.</td>
</tr>
<tr>
<td></td>
<td>Prints the selected protocol, device, or form file.</td>
</tr>
</tbody>
</table>
| ![Context Help](image) | Displays the following:
 - VWOrks software installer number
 - Copyright dates
 - License information
 - Product key
 - List of plugins installed |
| ![Log In/Out](image) | Allows you to display a help topic in context of where you are in the software.
Click the Context Help button, and then click a user-interface item, such as a task icon, to display information about that item. |

Control toolbar

<table>
<thead>
<tr>
<th>Button</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Allows you to log in or log out of the software.</td>
</tr>
<tr>
<td></td>
<td>Compiles the selected protocol.</td>
</tr>
<tr>
<td></td>
<td>Starts the protocol run.</td>
</tr>
<tr>
<td></td>
<td>Pauses the protocol run.</td>
</tr>
<tr>
<td></td>
<td>Turns on or turns off the simulation mode.</td>
</tr>
<tr>
<td></td>
<td>Opens the selected device diagnostics.</td>
</tr>
</tbody>
</table>
B

Managing digital signals

This appendix contains the following topics:

- “About the IO Manager” on page 556
- “Setting up signals” on page 556
About the IO Manager

Description

The IO Manager allows you to assign digital output signals from the BioCel I/O Interface (or equivalent I/O device) to lights and sound, specify when to bypass the safety interlock, and select the signals that you can use to automate the opening and closing of doors.

Related information

<table>
<thead>
<tr>
<th>For information about...</th>
<th>See...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Location of the BioCel I/O Interface console</td>
<td>BioCel System User Guide</td>
</tr>
<tr>
<td>Setting up the BioCel I/O Interface</td>
<td>BioCel System User Guide</td>
</tr>
<tr>
<td>Location and instructions of your I/O device</td>
<td>I/O device user documentation</td>
</tr>
<tr>
<td>Status light description</td>
<td>BioCel System User Guide</td>
</tr>
<tr>
<td>Writing protocols</td>
<td>“Creating a protocol: basic procedure” on page 13</td>
</tr>
<tr>
<td>Adding I/O-handling tasks</td>
<td>“Setting parameters for I/O-handling tasks” on page 233</td>
</tr>
</tbody>
</table>

Setting up signals

Procedure

IMPORTANT Make sure you have correctly configured the I/O device before setting up signals in the IO Manager. To configure the BioCel I/O Interface, see the *BioCel System User Guide* for instructions. To configure a different I/O device, see the user documentation for that device.

You use the IO Manager for:

- Managing signals for lights and sound
- Managing signals to monitor the safety interlock status
- Managing signals for automated doors

Note: The IO Manager is for digital signals only.
Managing signals for lights and sound

To specify the signals for turning on lights or creating sound:

1. In the VWorks window, select the I/O device, and then click Initialize selected devices.

2. Select Tools > Manage IO. The Manage IO dialog box opens.

3. Click the Light and Alarm tab. Notice the following:
 - The Outputs list contains the digital output channels.
 - The Inputs list contains the digital input channels.
In the Outputs area, specify the output signals that will turn on lights or create sounds:

a Drag names of channels that should turn on lights into the Lights box. Select the type of light you want to use: Blue or X’Mas (red, green, and yellow).

If your system does not use lights to indicate output signals, select None under Flash Pattern.

Note: To use the Blue light, you must have eight channels, one for each of the eight blue status lights at the top corners of the system. To use the X’mas lights, you need three channels, one for each of the colored lights: red, green, and yellow.
b Drag names of channels that should create sounds into the **Sound** box.

Managing signals to monitor the safety interlock status

In the Manage IO dialog box, you can specify the signals to use to monitor the status of the safety interlock and enclosure windows.

To specify the safety interlock and enclosure window signals:

1. In the **Inputs** area, drag the safety interlock channel or channels into the **Bypass Keys** box.

 If the system consists of multiple connecting systems, make sure you drag the interlock channel from each system into the Bypass Keys area. In the following example, Zone A - Input 1 and Zone B - Input 1 are the interlock signals for systems A and B, respectively.

2. In the **Bypass Active When** area, select when the interlock state should be ignored: when **ANY input is** (any one signal) or when **ALL inputs are** (all signals) in a designated state.

3. In the **Bypass Active When** area, select the state that indicates the safety interlock should be bypassed: **High** (high-voltage signal) or **Low** (low-voltage signal).

Managing signals to monitor the enclosure-window status

To set the enclosure window state:

1. In the **Inputs** area, drag the enclosure-window channel or channels into the **Enclosure Window Sensors** box.

 If the system consists of multiple connecting systems, make sure you drag the enclosure-window channel from each system into the Enclosure Window Sensors area. In the example shown, Zone A - Input 2 and Zone B - Input 2 are the enclosure-window signals for systems A and B, respectively.
2 In the **Enclosure Window Open When** area, select one of the following: when **ANY input is** (any enclosure window) or when **ALL inputs are** (all enclosure windows) in a designated state.
Managing digital signals
Setting up signals

3 In the Enclosure Window Open When area, select the state that indicates the enclosure window is open: High (high-voltage signal) or Low (low-voltage signal).

Managing signals for automated doors
Some systems have an environmental-control option that creates fully contained environments within the system chamber. Automated doors can be used to permit labware to move between the system and separated devices while maintaining the enclosed environment. Separated devices include an incubator below the system table or next to the system, the waste bin below the system table, and so on.

For each separated device that sits just beyond an automated door, make sure you:
- Set up the signals for the automated door in the I/O device. For each door, two input signals and one output signal are required. One input signal is used to detect whether the door is open. Another input signal is used to detect whether the door is closed. The output signal is used to open or close the door, depending on the control signal received.
- Select the signals that will be used to automate the door actions.
- Associate the door to a device.
- Specify the signals to use to automatically open or close doors during a run.

To select signals to automate door actions:
1 In the Manage IO dialog box, click the Doors tab.
2 Click New to add a door.
3 Specify the following:

![Image of Manage IO dialog box]

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Door Name</td>
<td>The name of the door. Double-click in the field to type the name.</td>
</tr>
<tr>
<td>BioIO Input(open)</td>
<td>The I/O signal that detects whether the door is open. Click the field to display the list of named signals and select one. If you do not see the signals in the list, initialize the I/O device.</td>
</tr>
<tr>
<td>BioIO Input(close)</td>
<td>The I/O signal that detects whether the door is closed. Click the field to display the list of named signals and select one. If you do not see the signals in the list, initialize the I/O device.</td>
</tr>
<tr>
<td>BioIO Output</td>
<td>The I/O signal that changes to open or close the door. Click the field to display the list of named signals and select one. If you do not see the signals in the list, initialize the I/O device.</td>
</tr>
<tr>
<td>Door Close Delay (sec)</td>
<td>The length of time, in seconds, between when the robot moves labware through the doorway and when the door closes. Double-click in the field to type an integer.</td>
</tr>
</tbody>
</table>

4 When you are finished, click OK to save the changes and return to the VWorks window.

To associate the door to a device:

1 In the device file, select the device.

2 In the device properties area, select the door associated with the device.

Note: You can open the IO Manager from the device properties area to edit or add doors. From the Door list, click <Edit...>.
In the following example, an automated door was set up in the I/O device and IO Manager for the Cytomat incubator device. The door that was defined for the incubator in the IO Manager must be selected in the Cytomat device properties area.

Related information

<table>
<thead>
<tr>
<th>For information about...</th>
<th>See...</th>
</tr>
</thead>
<tbody>
<tr>
<td>IO Manager</td>
<td>“About the IO Manager” on page 556</td>
</tr>
<tr>
<td>Location of the BioCel I/O Interface console</td>
<td>BioCel System User Guide</td>
</tr>
<tr>
<td>Setting up the BioCel I/O Interface</td>
<td>BioCel System User Guide</td>
</tr>
<tr>
<td>Location and instructions of your I/O device</td>
<td>I/O device user documentation</td>
</tr>
<tr>
<td>Status light description</td>
<td>BioCel System User Guide</td>
</tr>
<tr>
<td>Writing protocols</td>
<td>“Creating a protocol: basic procedure” on page 13</td>
</tr>
<tr>
<td>Adding I/O-handling tasks</td>
<td>“Setting parameters for I/O-handling tasks” on page 233</td>
</tr>
</tbody>
</table>
Setting up and using the Watcher tool

This appendix assumes that you know how to write programs in JavaScript or have basic programming knowledge. You also must have VWorks administrator or technician privileges.

The topics in this appendix section are:

- “Watcher overview” on page 566
- “Creating the script that Watcher will run” on page 567
- “Setting up the Watcher configuration file” on page 571
- “Turning on Watcher” on page 575
About this topic

Watcher is a tool that is available in the VWorks software only if you purchased the VWorks Watcher license. To purchase the license, contact Automation Solutions Customer Service.

Watcher overview

Watcher automates the processing of designated files using JavaScript. Watcher monitors a designated folder for new file activity, and when a new file appears, Watcher runs a specified JavaScript to process the file. A couple of scenarios are described below, but your script might process files in a variety of other ways.

Scenario 1—Asynchronous post-processing of instrument-generated files

In this scenario, Watcher automates the post-processing of instrument-generated files as follows:

- A protocol includes a reader task that generates an output file and stores the file in a folder that is designated for monitoring by Watcher.
- When the new file appears in the folder, Watcher validates the file and then runs a script.
- The script parses out the relevant information from the instrument-generated file and performs additional tasks, such as aggregating the information across multiple files or saving the information in a database.

Scenario 2—Creating data-driven working protocols from a template protocol

In this scenario, the VWorks software is integrated with a LIMS. Watcher runs a script that automates the creation of a working protocol based on a template protocol and a LIMS-generated input file, where:

- **Input file.** A file that appears in the watched folder. In this scenario, the file specifies attributes of a single protocol run.
- **Template protocol.** A protocol that is used as the basis for creating a working protocol.
- **Working protocol.** The protocol that is created by JavaScript based on the template protocol and the input file.

When an input file appears in the Watcher monitored folder, Watcher runs a script. The script that has to parse the input file must be developed to recognize the file format. The script uses the information from the input file to modify the template protocol into a working protocol, and then schedules the newly created working protocol as part of a runset.

For an example script of this scenario, see “Creating the script that Watcher will run” on page 567.
Workflow for setting up and using Watcher

<table>
<thead>
<tr>
<th>Step</th>
<th>For this task...</th>
<th>See...</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Create the JavaScript that Watcher will run.</td>
<td>“Creating the script that Watcher will run” on page 567</td>
</tr>
</tbody>
</table>
| 2 | Set up the Watcher configuration file. | • “Creating the configuration file” on page 571
| | | • “Specifying the configuration file location” on page 573 |
| 3 | Turn on the Watcher. | “Turning on Watcher” on page 575 |

Creating the script that Watcher will run

About this topic

This topic assumes that you know how to write programs in JavaScript or have basic programming knowledge.

For a full description of the JavaScript language, see the Mozilla Developer Center at http://www.mozilla.org/js/.

Guidelines for creating your script

In addition to using good script-writing practices, follow these guidelines when creating a script for Watcher to run:

- **Define the JavaScript function correctly.** The function that Watcher will run, for example WatcherMain, must take one parameter:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>input_file</td>
<td>string</td>
<td>The file path to the input file.</td>
</tr>
</tbody>
</table>

The name of the function in the script must match the function name in the Watcher configuration file (.ini).
• Identify or create any other scripts that your script will call. Automation Solutions has JavaScript files with predefined objects and functions that you may use, including:

<table>
<thead>
<tr>
<th>Script file name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DeviceArbitration.js</td>
<td>Enables device pooling in JavaScript.</td>
</tr>
<tr>
<td>FileUtilities.js</td>
<td>Provides the following functions:</td>
</tr>
<tr>
<td></td>
<td>isFileExist(filename)</td>
</tr>
<tr>
<td></td>
<td>DeleteFile(filename)</td>
</tr>
<tr>
<td></td>
<td>StripPath(full_path) //for example, changes "c:/mydir/mysubdir/myfile.ext" to "myfile.ext"</td>
</tr>
<tr>
<td></td>
<td>ForwardToBackSlashes(full_path) //for example, changes "c:/mydir/mysubdir/myfile.ext" to "c:\mydir\mysubdir\myfile.ext"</td>
</tr>
<tr>
<td>ProtocolEditor.js</td>
<td>Provides various functions for editing a protocol.</td>
</tr>
<tr>
<td>StopGo.js</td>
<td>Provides a way to create stop and go tasks using JavaScript, which is useful when stop and go should be scripted based on instance number.</td>
</tr>
<tr>
<td>VIN_handling.js</td>
<td>Provides a way to assign virtual instance numbers (VIN) to plates. This is useful if instance numbers:</td>
</tr>
<tr>
<td></td>
<td>• Must be passed from process to spawned process.</td>
</tr>
<tr>
<td></td>
<td>• Require an out-of-order assignment, for example, if rejecting some plates, sequential [virtual] instance numbers can be assigned to the plates that remain.</td>
</tr>
<tr>
<td>(XMLKeyValueLookup.js)</td>
<td>Script and sample data for mapping one string to another string, where the definition is in XML format. For example, you might use this script to translate an alias into a final file name.</td>
</tr>
<tr>
<td>SampleData.xml</td>
<td>Provides script for opening XML files, validation against schemas, and saving. Uses MSXMLDOM ActiveX, which requires Msxml2.DOMDocument.6.0 and Msxml2/XMLSchemaCache.6.0.</td>
</tr>
<tr>
<td>XML_files.js and Formatter.xml</td>
<td>Provides functions for various file operations, such as creating, reading, writing to, and debugging files.</td>
</tr>
<tr>
<td>plateDB_HowTOUse.js</td>
<td>Provides examples on how to use the VWorks plateDB object, which can be accessed by a script. For a description of the plateDB object, see "plateDB object" on page 104.</td>
</tr>
</tbody>
</table>

• Define any required global variables, such as folder paths. You should define the folder paths where processed files will be stored, such as the VWorks folder, the working folder, and an output folder, if applicable. For example, you might define the following:

```javascript
var VWorksFolder = "C:/VWorks Workspace/"
var WorkingFolder = VWorksFolder + "WorkingFolder/"
```
var OutputFolder = VWorksFolder + "Output/

- **Include code at the end of the script to delete the input file from the monitored folder, if applicable.** To prevent repeated processing of files upon restarting Watcher, the script should delete the input file or move it into a processed folder or output folder after processing the file.

 Example script:

  ```javascript
  print("deleting input file: "] + input_file_name + "]")
  DeleteFile(input_file_name);
  ```

Script example—Creating data-driven working protocols from a template protocol

This section provides example script for scenario 2 in “Watcher overview” on page 566. In this scenario, Watcher monitors a folder for new input files, each of which specifies the attributes of a single protocol run. When a new input file appears in the folder, Watcher runs a script to create a working protocol based on a template protocol and an input file, and then schedules the protocol.

The following script example shows a hypothetical WatcherMain function, which does following:

1. Verifies that the input file exists.
2. Reads the input file.
3. Opens the template protocol.
4. Modifies the template protocol to create a working protocol.
5. Saves the input file and the modified protocol (working protocol) to the working folder.
6. Schedules the working protocol as part of a runset.
7. Deletes the input file from the monitored folder.

To accomplish some of these tasks, the WatcherMain function includes calls to other predefined JavaScript functions, such as inputParser and protocolEditor.
function WatcherMain(input_file_name)
 print("Starting WatcherMain...with input file: " + input_file_name + "]")
 print("OutputFolder : " +OutputFolder+)

 if(!isFileExist(input_file_name))
 Print("input file does not exist");

 var inputParser = new InputParser();
 inputParser.Open(input_file_name);

 var protocol_file_name = inputParser.getOrderAttribute("protocol")
 print("Protocol file: " + protocolKey);

 print("Protocol file: " + protocol_file_name);

 var time_string = getTimeString()

 var protocolEditor = new ProtocolEditor();
 protocolEditor.Open(protocol_file_name);

 var working_input_filename = WorkingFolder + time_string + "_
 StripPath(input_file_name)
 print("saving working input file to: " +working_input_filename")
 inputParser.Save(working_input_filename)
 print("success")

 print(" modifying protocol")
 ModifyProtocol(inputParser, protocolEditor, working_input_filename); print("success")

 var working_protocol_filename= WorkingFolder + time_string + "_
 StripPath(protocol_file_name)
 print("saving working protocol to: "+working_protocol_filename")
 protocolEditor.Save(working_protocol_filename);
 print("success")

 runset.appendProtocolFileToRunset(working_protocol_filename, 1, "this is
 a note: blah", false)

 print("deleting input file: " + input_file_name + "]")
 DeleteFile(input_file_name);
}
Related information

<table>
<thead>
<tr>
<th>For information about...</th>
<th>See...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Getting a license for Watcher</td>
<td>Automation Solutions Customer Service</td>
</tr>
<tr>
<td>Configuring the Watcher feature</td>
<td>“Setting up the Watcher configuration file” on page 571</td>
</tr>
<tr>
<td>Creating the JavaScript</td>
<td>“Creating the script that Watcher will run” on page 567</td>
</tr>
<tr>
<td>Turning on or off the Watcher feature</td>
<td>“Turning on Watcher” on page 575</td>
</tr>
</tbody>
</table>

Setting up the Watcher configuration file

About this topic

This topic assumes that you know how to write programs in JavaScript or have basic programming knowledge. You must also have VWorks administrator or technician privileges.

Creating the configuration file

Watcher requires a single configuration file (.ini) that contains one entry (monitoring condition) per line. Each monitoring condition entry must consist of the following four values separated by commas:

- <folder to monitor>, <file filter>, <JavaScript file location>, <JavaScript function>

Figure Watcher configuration file showing an example of the four comma-separated values

<table>
<thead>
<tr>
<th>Item</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Folder to monitor</td>
<td>The full path to the file folder that Watcher will monitor for new files.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Use forward slashes (/) as a path delimiter.</td>
</tr>
</tbody>
</table>
C Setting up and using the Watcher tool

Setting up the Watcher configuration file

In the following example, Watcher will monitor the Inputs folder for the file type .xml. When an .xml file is added to the folder, Watcher will run myscript.js and call the main function. The function main must be defined to take in one parameter, the full path of the file that has appeared in the folder to be watched.

- Contents of .ini file:
 C:/VWorks Workspace/Inputs,.xml,C:/VWorks Workspace/Scripts/myscript.js, main

- Contents of myscript.js file:
  ```javascript
  function main(input_file){
      print("in main: " + input_file)
  }
  ```

Configuration example—Monitoring one folder for more than one file type

The Watcher configuration file (.ini) can specify multiple monitoring conditions, but each condition must be stated on a single line and consist of the four comma-separated values.

In the following example, Watcher will monitor the Inputs folder for the file types .xml and .rst (runset). When either file is added to the folder, Watcher runs myscript.js and calls the corresponding JavaScript function for the file type. The functions mainXML and mainRST must be defined to take in one parameter, the full path of the file that has appeared in the folder to be watched.

Figure Watcher configuration file example specifying one folder and two file types for monitoring

For this example, the myscript.js file would contain the following code:

```javascript
function mainXML(input_file){
    print("in mainXML: " + input_file)
}
function mainRST(input_file){
```
print("in mainRST: " + input_file)
}

Configuration example—Monitoring more than one folder
You can specify that more than one folder be monitored and run different scripts for different file types that appear in each folder.

Figure Watcher configuration file example specifying two folders and two file types for monitoring

Using the same script from the previous example, this configuration file would do the following:

- Monitor the InputsXML folder for new .xml files, and then call the mainXML function. The mainXML function must be defined to take in one parameter, the full path of the file that has appeared in the folder to be watched.
- Monitor the InputsRST folder for new .rst files, and then call the mainRST function. The mainRST function must be defined to take in one parameter, the full path of the file that has appeared in the folder to be watched.

Specifying the configuration file location

To set the configuration file location:
1 Select Tools > Options. The Options dialog box opens.
2 In the **Watcher Options** area, click the field next to **Path to Watcher configuration file**, and then click the button that appears.

3 In the **Open** dialog box, select the desired location and click **Open**.

4 In the **Options** dialog box, verify the new path, and then click **OK**.

Related information

<table>
<thead>
<tr>
<th>For information about...</th>
<th>See...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Getting a license for Watcher</td>
<td>Automation Solutions Customer Service</td>
</tr>
<tr>
<td>Creating the JavaScript</td>
<td>“Creating the script that Watcher will run” on page 567</td>
</tr>
<tr>
<td>Turning on or off the Watcher feature</td>
<td>“Turning on Watcher” on page 575</td>
</tr>
<tr>
<td>Reporting problems with the software</td>
<td>“Reporting problems” on page 545</td>
</tr>
</tbody>
</table>
Turning on Watcher

About this topic

This topic assumes that you have VWorks administrator or technician privileges.

About monitoring new files

The first time you turn on Watcher, the program runs the specified JavaScript for the existing files in the folder that is configured for monitoring. Subsequently, Watcher processes only the new files that appear in the folder. Watcher will not process existing files whose contents were modified. For example, if a new file replaces an existing file with the same file name, Watcher does not reprocess the file. If you rename an existing file, Watcher processes the renamed file as a new file.

Turning on and turning off Watcher

You can turn on Watcher manually or automatically every time you log in to the VWorks software. You can turn off Watcher manually.

To turn on Watcher manually:
1 Select Tools > Watcher is OFF. The menu command changes to Watcher is On.

To turn on Watcher automatically every time you log in:
1 Select Tools > Options. The Options dialog box opens.
2 In the Watcher Options area, select Start watching when user logs in. The next time a user logs into the VWorks software, Watcher will turn on automatically and remain on after the user logs out.

To turn off Watcher:
1 Select Tools > Watcher is On. The menu command changes to Watcher is Off.

To prevent Watcher from turning on automatically when a user logs in:
1 Select Tools > Options. The Options dialog box opens.
2 In the Watcher Options area, clear the Start watching when user logs in check box.
C Setting up and using the Watcher tool

Turning on Watcher

Figure Options dialog box showing the Watcher Options area

Related information

<table>
<thead>
<tr>
<th>For information about...</th>
<th>See...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reporting problems</td>
<td>“Reporting problems” on page 545</td>
</tr>
<tr>
<td>Log file directory settings</td>
<td>“Setting log file directories” on page 191</td>
</tr>
<tr>
<td>General and view options</td>
<td>“Setting general and view options” on page 193</td>
</tr>
<tr>
<td>Error-handling options</td>
<td>“Setting error-handling options” on page 197</td>
</tr>
<tr>
<td>Starting a protocol run</td>
<td>“Starting the protocol run” on page 205</td>
</tr>
</tbody>
</table>
Glossary

clamps (BenchCel) The components inside of the stacker head that close and open the stacker grippers during the loading, unloading, downstacking, and upstacking processes.

controlling computer The lab automation system computer that controls the devices in the system.

cycle See seal cycle.

deadlock An error that occurs when the number of locations available in the system is less than the number of microplates in the system. Because the microplates cannot move to the expected locations, the protocol pauses.

device An item on your lab automation system that can have an entry in the device file. A device can be a robot, an instrument, or a location on the lab automation system that can hold a piece of labware.

device file A file that contains the configuration information for a device. The device file has the .dev file name extension and is stored in the folder that you specify when saving the file.

downstack The process in which a microplate is moved out of the stack.

error handler The set of conditions that define a specific recovery response to an error.

home position The position where all robot axes are at the 0 position (the robot head is approximately at the center of the \(x\)-axis and at 0 of the \(z\)-axis, and the robot arms are perpendicular to the \(x\)-axis).

homing The process in which the robot is sent to the factory-defined home position for each axis of motion.

hot plate (PlateLoc) A heated metal plate inside the sealing chamber that descends and presses the seal onto the plate.

insert A pad placed under the plate to support the bottom of the wells for uniform sealing.

location group A list of labware that can be moved into or out of particular slots in a storage device.

plate group A list of specific labware that can be moved into or out of a storage device without regard for the slot locations.

plate instance A single labware in a labware group that is represented by the process plate icon.

plate stage The removable metal platform on which you load a plate.

plate-stage support The structure on which you load a plate stage. The plate-stage support extends when the door opens.

profile The Microsoft Windows registry entry that contains the communication settings needed for communication between a device and the Velocity11 lab automation software.

process A sequence of tasks that are performed on a particular labware or a group of labware.

protocol A schedule of tasks to be performed by a standalone device, or devices in the lab automation system.

regripping station A location that enables the robot to adjust its grip at the specified gripping height. The location is typically used after a robot picks up a labware higher than the specified gripping height because the labware was sitting in a box.

robot grippers The components that the robot uses to hold labware.

run A process in which one or more microplates are processed. In a standalone device, the run consists of one cycle. In a lab automation system, a run can consist of multiple cycles that are automated.

safe zone The boundary within which the robot is allowed to move without colliding with external devices.

seal cycle The process in which a single plate is sealed on the PlateLoc Sealer.

seal entry slot The narrow entry on the back of the PlateLoc Sealer where the seal is inserted into the device.

seal-loading card A rectangular card that is used to facilitate the seal loading process on the PlateLoc Sealer.

seal-roll support The triangular structures at the top of the PlateLoc Sealer where a roll of seal is mounted.

sealing chamber The area inside of the PlateLoc Sealer where the seal is applied to a plate.
Glossary

shelves (BenchCel) The components inside of the stacker head that provide leveling surfaces for the microplates, thus ensuring accurate robot gripping, during the downstacking process.

stacker grippers The padding at the bottom of the stacker racks that hold microplates when a microplate is loaded, downstacked, or upstacked.

subprocess A sequence of tasks performed as a subroutine within a protocol. Typically the subprocess is performed by a single device type, such as the Bravo device.

task An operation performed on one or more labware.

task parameters The parameters associated with each task in a protocol. For example, in a labeling task, the parameters include the label value.

teachpoint A set of coordinates that define where the robot can pick up or place labware and the location of a known object.

teachpoint file The XML file that contains the settings for one or more device teachpoints.

touch screen The interface on the front of the PlateLoc Sealer where sealing parameters are set, the seal cycle can be started or stopped, and the seal cycle can be monitored.

upstack The process in which a microplate is moved back into the stack.

waypoint A set of coordinates that define a location the robot passes through on its way to a teachpoint.

workspace The boundary within which the robot can move without limitations.
Index

Symbols
.dev file, 4
.gnt file, 228
.pro file, 4
.rst file, 228
.vbk file, 510
.vzp file, 7
.xml file, 4, 5

A
aborting protocol runs, 230
accessories
 planning for use, 19
ActiveX Wrapper utility, 113, 114
Advanced Settings, 63
Advanced Settings area, 11, 81, 472
alarms, 35, 234
array data types, 94
array variables, 460
Aspirate task, 338
Assemble Vacuum task, 346
Available Devices area, 9
Available Tasks area, 10, 51

B
backing up protocols, 510
barcode files, 32, 512
 data, 70, 71
 input, 70
barcode readers, 70
barcodes, 47
 input files, 70
 reading errors, 195, 531
 tracking, 2
BenchCel Workstation, 3
BioCel I/O Interface, 234, 237
BioCel System, 3
bottlenecks, resolving, 49, 50
Bravo Platform, 3
breakpoints
 adding, 528
 described, 527
 removing, 530

C
Centrifuge Process task, 242
Change Instance task, 468
Check First Plate Orientation (Stacker) task, 306
cleanup protocols, 58
Close selected devices command, 9
commands, 8
compiling protocols, 61, 525
components, software, 4
Configure Labware task, 250
configured labware, 20
 converting to process plate, 41
 described, 20, 38
 removing, 40
 using, 42
custom context-sensitive help, xiii
Custom Parameters area, 11

D
data files, 70, 71, 72, 275
deadlocks
 behavior, 199
 described, 532
 preventing, 49, 62
 recovering from, 228, 229, 533
Debug log level, 194
Define Plate Set task, 74, 460
Define Variables task, 74, 464
Delete selected devices command, 9
Delid task, 252
Device diagnostics command, 9
Device file area, 9
device files, 7, 512
 adding devices, 26
 backing up, 512
 creating, 26
 described, 4, 25
 importing, 513
 saving, 29
 selecting for protocols, 31
device profile, 7
Device Properties area, 9, 27
Device Selection area, 11
devices
 adding to device file, 26
 described, 25
 diagnostics, 27
 initializing, 29, 524
 planning for use, 19
 setting up, 2
 supported by software, 3
 terminology, 9
 third-party, 3
 usage during protocol runs, 226
Digital Output task, 234
Dilute to Final Volume task, 349
disabling tasks, 526
Disassemble Vacuum task, 356
Index

Discovered Bionet Devices, 28
disk space error, 198
Dismount task, 256
Dispense task, 358
Downstack task, 307

E
email notification, 200
emergency stop, 231
enabling tasks, 526
Error Library, 195, 512, 537
errors, 517, 520, 525, 537
 automatic responses, 537
 barcode reading, 531
 device initialization, 524
 frequency, 542
 handling, 531, 538
 handling options, 197
 reporting, 545, 546
Evaporate (Bravo) task, 366
event, 517, 518, 520
exporting files, 512

F
File Object utility, 113, 115
finish script, 33, 112
Form Designer, 135
format files
 creating, 382
 described, 381
 location, 383
forms, 135

G
Gantt Chart
 exporting, 228
 filtering information, 227
 importing, 228
 using, 50, 223
 zooming, 226
global variables, 32
Group Begin task, 470
Group End task, 470

H
hardware
 errors, 545
Height to check above teachpoints, 195
Hit Pick Replication task, 349, 368
 format files, 4, 7, 512
 output files, 33, 512
hit picking
 format files, 381, 382
 input files, 370

I
I/O-handling tasks, 52
importing protocol files, 510
Incubate task, 258
incubation time, 49
Initialize all devices command, 9
Initialize selected devices command, 9
input files, 70, 71, 370
instance order, 34
Inventory Editor, 2

J
JavaScript
 array data types, 94
 data types, 93
 described, 80, 566
 finish script, 33, 112
 functions defined in software, 83
 global variables, 32
 plate methods, 87
 plate object, 85
 plate properties, 85, 86
 platesDB object, 104
 runset object, 108, 111
 snippet, 73, 74
 startup script, 33, 112
 task methods, 96
 task object, 91
 task properties, 91
 using in software, 80
 utilities, 113
 variables, 73, 82, 460, 464
 writing, 81
JavaScript task, 74, 76, 81, 472
job roles for readers of this guide, x

K
knowledge base, xii

L
labware
 categories, 20
 configuring, 38
 controlling entry into system, 46, 49
 deadlock recovery, 534
 definitions, 2, 4, 7, 512
 orphaned, 195
 planning for use, 20
 quarantining, 47, 537, 540
 removing from system, 534
 tracking, 2
 type, 45
Labware Editor, 2
Labware Stacker, 3
lids, 45
liquid classes, 4, 7, 512
liquid-handling tasks, 52
Load task, 311
Log area, 8
logging in, 22
logging out, 23
logs, 209, 512
 backing up, 522
 color coding in, 522
 file directory, setting, 191
 Main, 516
 Pipette, 397, 517
 Time Constraint, 519
types of, 191, 516
 validating, 522
Loop End task, 473
Loop task, 473
low disk space error, 198

M
macro library, 120
macros, using for protocol writing, 119
Main, 516, 517, 520
Measurement Manager, 36
menus, 8
 methods, 90
Microplate Barcode Labeler, 3
Microplate Centrifuge, 3
Microplate Labeler, 70
microplate replication
 input files, 370
Microplate Seal Piercer, 3
Mix task, 398
Mount task, 262
Move and Filter Plate (Bravo) task, 406
Move to Location task, 264

N
notification, system status
 email, 200
 online, 203

O
object, 89
online help, xii
online notification, 203
open() function, 83
output file, 397

P
password, changing, 23
pausing protocol runs, 229, 527
PDF guide, xii
Pierce Plate (Seal Piercer) task, 269
Pin Tool task, 413
Pipette Log, 397, 517
Pipette Technique Editor, 500
pipette techniques, 4, 7, 512
pipetting offsets, 502
Place Plate task, 266
plate instances, 16, 224, 468
plate map files, 7, 512
plate methods, 87
plate object, 85
plate parameters, 44
plate properties, 85, 86
plate type, 45
plate-handling tasks, 52
PlateLoc Sealer, 3
platesDB object, 104
plate-storage tasks, 52
plugins
 loading, 26
 storage location, 26
Print and Apply task, 273
Print task, 477
print() function, 84
prioritizing protocol runs, 208
process plates, 20
 adding, 42
 converting from configured labware, 41
 described, 15, 20
processes
 adding, 42
 described, 15
processing order, 34
profiles, 7
 creating, 27
 described, 4
 impact when opening, 6
Progress area, 8
properties, 89
Protocol area, 11
protocol files, 7
 backing up, 512
 described, 4
 exporting, 512
 importing, 510, 513
protocol runs
 aborting, 230
 checking positions before runs, 194
 device view, 226
 instance view, 224
 monitoring overall progress, 222
 pausing, 229, 527
 simulating, 62, 195
 starting, 205
Index

stopping in emergency, 231
tracking in Gantt Chart format, 223
workflow, 188

protocols
aliases, 32
backing up, 510
cleanup, 58
compiling, 61
creating, 2, 18, 30
described, 14
description, adding, 32
displaying multiple, 189
ersors in, 525
exporting, 510
global context for, 32
migrating, 195
monitoring, 2
moving to another system, 7
notes, adding, 32
opening, 189
options, setting, 31
pausing, 2
preparing for writing, 19
printing, 66
rules, setting, 33
run priority, 208, 218
running, 2
running simultaneously, 206
saving, 59
starting, 205
startup, 58
stopping, 2
terminology, 10
warning messages, 525
Pump Reagent task, 422

Q
quadrant well selection, 341, 361, 401, 417
quarantine labware, 47, 537, 540

R
reading tasks, 52
Relid task, 288
Reload Plugins command, 26
Reorder task, 315
Reserve Location task, 292
restoring system files, 511
robot speed, 194
Rotate Stage task, 294, 296
Run Configuration Wizard, 208, 216, 217
run() function, 84
Runset Manager tab, 211
runset object, 108, 111
runsets
adding runs in, 216
creating, 214
deleting runs in, 216
described, 211
filtering list, 218
opening, 218
saving, 214
understanding the run sequence, 212

S
Scan Stack task, 319
Schedule Paused dialog box, 229
scheduler error behavior, 198
scheduling multiple protocol runs, 206
scheduling tasks, 52
Seal (PlateLoc) task, 298
sealed labware, 45
Serial Dilution task, 425
Set Head Mode (Bravo) task, 431
Shake task, 438
Signal task, 485
simulations
described, 62
optimizing, 63
quality selection, 65
quality selections, 195
remembering state between sessions, 196
starting, 65
time used, 62
simultaneous plates, 46, 48
simultaneous protocol runs, 206
software
components, 4
described, 2
errors, 545
logging in, 22
logging out, 23
reporting errors, 545
supported devices, 3
terminology, 8
version number, xi, 546
spawn plates, 469
Spawn Process task, 487
stackers
loading automatically, 34
releasing automatically, 34
starting protocol runs, 205
Startup Protocol, 58, 74, 76
startup script, 33, 112
static labware, 20, 21, 40
status bar, 8
stopping a protocol run in an emergency, 231
Storage Incubate task, 321
storage slots, assigning, 34
Subprocess (Bravo) task, 334
Subprocess (Vertical Pipetting Station) task, 334
subprocesses, described, 16
system files
 backing up, 510
 restoring, 511
System State Editor, 228, 229, 532

T
 task grouping, 470
 task methods, 96
 task object, 91
 task parameters
 displaying and hiding, 196
 variables, 74
 Task Parameters area, 11
 task properties, 91, 93
 task run time, changing, 63
 tasks
 adding, 53
 categories, 51
 deleting, 54
 described, 17
 disabling, 526
 enabling, 526
 filtering, 51
 listing, 51
 teachpoint files
 described, 4
 impact when opening, 6
 using different files, 7
 teachpoints
 setting, 28
 third-party
 devices, 3
 user guides, xi
 throughput, improving, 49
 time constraints
 adding to tasks, 55
 described, 55
 editing, 57
 removing, 57
 Time Constraints Log, 519
 timed release, 46, 49
 Tips Off task, 441
 Tips On task, 444
 title bar, 8
 Toggle Vacuum task, 447
toolbars, 8
 transfer event, 518
 troubleshooting, 526, 537
 Twitter, notification using, 203

U
 Unload task, 324
 UPS, monitoring status of, 35, 543
 Upstack task, 328
 user accounts, 2, 5
 user guide
 described, x
 related guides, xi
 user interface terminology, 8
 User Message task, 74, 78, 491

V
 variables, 82, 460, 464, 474
 defining, 74
 described, 73
 syntax, 74
 task parameter, 74
 Vertical Pipetting Station, 3

W
 Wait for Input task, 237
 Wait For task, 494
 Wait For User (Bravo) task, 496
 warning messages, 517, 520, 525
 Wash Tips task, 452
 Waste task, 301
 Watcher, 108
 well selection, 341, 361, 401, 417
 Work area, 8
 workflows
 protocols, creating, 18
 running protocols, 188
 Workspace tab, 9, 190