
Noninvasive cellular imaging in live skin makes histopathology accessible for AI innovation.  

Topic 1: AI to improve accuracy of diagnosis and health risk assessment. 

Topic 5: Innovation in AI methods that increase AI’s capacity to improve healthcare.  

Background 

Image classification with deep learning and convolutional neural networks (CNN) is a powerful computer 

vision technique with the potential to enhance medical imaging. The FDA has already cleared multiple 

technologies leveraging AI techniques, and more technologies are in development. While many of these 

technologies are intended for applications in radiology, there is substantial motivation to apply AI tools to 

enhance the interpretation of histopathology. Histopathology is the inspection of cellular images for 

atypical features of disease and is the diagnostic gold standard for many conditions. Unfortunately, for the 

last 150 years, cellular imaging has only been possible in tissues removed by surgical biopsies that are 

mounted and stained on glass slides for microscope inspection. Digitizing these slides for pairing with AI 

techniques adds an additional step to this already inefficient, invasive, and irreversible process1. This 

inefficiency presents a substantial challenge for clinical AI as deep learning requires large curated data 

sets to achieve meaningful performance2. AI enhanced digital pathology would benefit tremendously if 

there were a way to image cellular anatomy directly in the tissue without the need for surgical biopsy. 

We created such a technology that images histopathology in live skin with no cuts or stains. Utilizing a 

custom designed portable multiphoton microscope, we generate noninvasive cellular images in vivo by 

simply touching the skin at the site of interest. Skin cancer is the most common form of human 

malignancy, and earlier detection is a compelling application that can benefit from AI enhanced 

diagnosis3. Our approach compresses a process that normally takes several days into a real time, point of 

care inspection where images stream at up to four frames per second. The result is an abundance of digital 

images containing diagnostic features that are ideal for training a CNN. The speed and ease of capturing 

these images enables the creation of novel, robust data sets to further improve diagnostic accuracy and 

expand AI access to patients normally underrepresented in biopsy-based histology such as children and 

people of color.    

Methods 

We designed a portable, battery powered, multiphoton microscope that illuminates tissue with ultrafast 

pulsed near infrared light that excites two-photon autofluorescence and second harmonic generation 

(SHG) signals in live skin. The handheld microscope makes direct contact with the skin, stabilizing the 

tissue and dramatically mitigating motion artifacts. SHG signals arise only in collagen fibers and the two-

photon signal arises primarily in the cells4. By splitting these signals based on the emitted wavelengths, 

we create a two-color image with a “photonic stain” that closely matches the contrast generated by 

traditional hematoxylin and eosin staining (H&E). Our microscope images in cross section through the 

skin layers down to the reticular dermis in an orientation that is familiar to dermatopathologists.  

We conducted ex vivo and in vivo investigations with our prototype on both healthy skin and basal cell 

carcinoma (BCC), which is the most prevalent form of skin cancer5. Our ex vivo investigation explored 

the possibility of training a CNN for identification of BCC. Our microscope can also image slides, so we 

ordered unstained mounted slides of BCC and healthy tissue from a specimen lab. We collected 624 

images from 42 ex vivo samples of basal cell carcinoma and 960 images from 65 samples of healthy 

tissue as a preliminary training set. We further partitioned the images into 32 non-overlapping sub-

regions, creating approximately 20,000 and 30,000 regions in BCC and Healthy samples, respectively. 



Images were divided into the two classes for training by a practicing dermatopathologist. We reserved 8% 

of our images from both categories for validation. Training and testing were performed in collaboration 

with a software consulting firm.  

Our in vivo imaging explored whether we could collect images in skin from diverse subjects and patients 

with BCC. We imaged healthy volunteers ranging in age from 5 to 85 years old with skin types II – VI in 

various locations on the body. We also took images in a local dermatology clinic from patients who had 

suspected BCC before they received a biopsy. We compared our in vivo images with histopathology from 

the biopsies to determine if we could visualize BCC non-invasively in real time. All human imaging was 

conducted under IRB oversight (Salus IRB) with informed patient consent.  

Results 

In ex vivo skin sections imaged with our portable microscope, the AI algorithm achieved 99% accuracy in 

training and 98% accuracy in validation when classifying normal and cancerous regions of samples.  

In vivo images of skin displayed features of skin cancer discernable by human pathologists. In vivo 

imaging was successful in all patients, regardless of age, body location, or skin color.  

 

 

 

   

       

Implications for improving the value of care 

In vivo histopathology yields multiple opportunities to improve AI diagnostics. We observed very strong 

performance in our ex vivo training set. Notably, we suspect the performance was bolstered by including 

images of health tissue in the training. Typically, dermatologists only biopsy lesions that they suspect are 

concerning. This in an inherent bias in the data and it is reasonable to hypothesize that including healthy 

skin histology in the training will boost diagnostic accuracy by exposing the algorithm to a broader range 

of what is considered normal histology. While it would be impractical to widely biopsy healthy 

individuals solely to create a sizeable training set, we can generate these data rapidly and non-invasively 

by imaging healthy volunteers.  Moreover, we can be more inclusive in our imaging and recruit subjects 

with darker skin who less frequently visit the dermatologist and for which there is a dearth of 

representation in current histology specimen banks. With our rapid streaming (240 images/minute) and 

ability to scan across the skin, we generate a multitude of similar though non-identical images of the 

underlying histology that creates natural data augmentation for more robust training. Finally, as a 

completely non-invasive technique, our approach could enable longitudinal monitoring of suspected 

cancer for the first time. It may be possible guide the dosage and location of application of emerging 

topical cancer treatments which would elevate histology into the realm of therapy.   
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Figure 1. (a) In vivo cross section of live skin cells (green) and connective tissue (magenta). Cellular nuclei are visible 

within individual cells (yellow arrow). Scale bar: 50µm. (b) A lesion suspicious for BCC in a subject. (c) Real time in 

vivo image of suspicious lesion shows basaloid invasion indicative of BCC. (d) H&E stained image of suspicious 

lesion following biopsy confirms the presence of BCC. Yellow asterisks indicate correspondence between in vivo and 

ex vivo images. (e) Investigator carrying portable multiphoton system.  

B C D E 



References 

 

1. Madabhushi, A. & Lee, G. Image analysis and machine learning in digital pathology: Challenges 

and opportunities. Med. Image Anal. 33, 170–175 (2016). 

2. Tizhoosh, H. R. & Pantanowitz, L. Artificial Intelligence and Digital Pathology: Challenges and 

Opportunities. J. Pathol. Inform. 9, 38 (2018). 

3. Rogers, H. W., Weinstock, M. A., Feldman, S. R. & Coldiron, B. M. Incidence Estimate of 

Nonmelanoma Skin Cancer (Keratinocyte Carcinomas) in the US Population, 2012. JAMA 

Dermatol (2015). doi:10.1001/jamadermatol.2015.1187 

4. Balu, M. et al. In Vivo Multiphoton Microscopy of Basal Cell Carcinoma. JAMA Dermatology 1–

7 (2015). doi:10.1001/jamadermatol.2015.0453 

5. Bichakjian, C. et al. Guidelines of care for the management of basal cell carcinoma. J. Am. Acad. 

Dermatol. 1–20 (2018). doi:10.1016/j.jaad.2017.10.006 

 

 

  


