
Summary: ​Venous thromboembolisms (VTEs) - blood clots that form within patients’ veins and can 
subsequently travel through the circulatory system to critical organs like the heart, lungs, and brain - are 
one of the most common causes of hospital mortality in America. In this work we demonstrate the use of 
contextual multi-armed bandits, a machine learning algorithm, to learn from a dataset of 7,433 patients 
and identify treatment strategies which can increase the effectiveness of prophylactic anticoagulation 
therapy for patients in the intensive care unit (ICU). 

Context: ​More than half of hospitalized patients in the US are at risk for VTEs such as deep vein 
thromboses (DVTs) or pulmonary embolisms (PEs) [1]. PEs alone are estimated to cause between 5% and 
10% of all hospitalized patient deaths in the US and UK [2,3]. Fortunately, prophylactic anticoagulation 
therapy with pharmacologics like UFH has been shown to effectively reduce patients’ risk of VTEs [4]. 
Prior research suggests that two laboratory tests, the activated partial thromboplastin time (aPTT) and 
anti-factor Xa chromogenic assay (anti-Xa), provide useful metrics for titrating patient heparin dosages 
[5-7]. Specifically, patients who fall outside of “therapeutic ranges” for these laboratory values are at 
higher risk of bleeding or developing a VTE. Finding the right heparin dose to achieve these therapeutic 
ranges can be difficult, however, when the patient’s state is complex, multidimensional, and dynamic, and 
when the patient responses to medical interventions are heterogeneous. This is frequently the case for 
hospitalized patients  [8,9]. While previous work has employed reinforcement learning algorithms to find 
strategies which optimize time spent in the therapeutic range for aPTT [10], no work to date has 
developed such a strategy for anti-Xa therapeutic range targeting. Additionally, as aPTT and anti-Xa test 
results are often discordant, it is unclear the degree to which targeting the therapeutic range for aPTT also 
achieves therapeutic range targeting for anti-Xa values and vice versa [11,12]; our work aims to shed light 
on this question. 

Objective: ​To (1) learn treatment strategies that effectively increase the time a patient spends in the 
therapeutic range for aPTT and anti-Xa values by analyzing historical patient data, and (2) evaluate the 
degree to which treatment strategies designed to target the aPTT therapeutic range agree or disagree with 
treatment strategies designed to target the anti-Xa therapeutic range.  

Data: ​We extracted and analyzed the Electronic Health Records (EHRs) of 9,026 patients collected 
between 2012 and 2018 (5,428 (60.1%) were male and the mean (SD) age was 60.2 (17.8) years) 
corresponding to 42,360 simultaneous observations of aPTT and anti-Xa test results in the Stanford 
Translational Research Integrated Database Environment (STRIDE) [13]. In addition to aPTT and anti-Xa 
test results, demographic information and other available lab tests relevant to the heparin dosing problem 
were included in our analysis.  

Methods: ​We used contextual multi-armed bandits [14] to learn treatment strategies that increase the 
overall expected time a patient spends in the therapeutic range for the aPTT and anti-Xa tests. In the 
training phase, the contextual multi-armed bandit algorithm learns to map from the patient’s context 
vector (e.g. demographics and relevant lab test results) to a predicted reward for each action. We assigned 
a reward of +1 to actions that led to the patient’s anti-Xa and/or aPTT lab test results being within the 
therapeutic range in the subsequent observation and discretized actions to be one of increasing, 
decreasing, or maintaining the current heparin dose. We used ridge regression [15] to estimate the 
function mapping from patient context to predicted reward. After training, the learned treatment strategy, 
or policy, was extracted by taking the action that had the highest predicted reward according to our bandit 
model for the given patient context vector. We evaluated our policy on a held-out test set of 1,048 patients 
using off-policy policy evaluation (OPPE) with a weighted doubly robust estimator [16]. 



Results: ​We learned three treatment strategies from the STRIDE data. The first strategy, the 
aPTT-optimizing treatment policy, learned to predict and optimize actions which increase the expected 
fraction of time a patient spends in the therapeutic range for aPTT. The second, anti-Xa-optimizing 
strategy learned to predict and optimize actions which increase expected time spent in the therapeutic 
range for anti-Xa. The third learned policy was rewarded for and subsequently optimized time spent in the 
therapeutic range for either anti-Xa ​or​ aPTT (both counted equally toward the model’s rewards). These 
policies were compared against the treatment strategy employed by clinicians in the ICU. Under the 
aPTT-optimizing policy and with common assumptions of nonconfounding and coverage, our OPPE 
results show that, on average (SD), 59% (34%) of the patient’s observations would be in the therapeutic 
range for aPTT, and 32% (40%) would be in the therapeutic range for anti-Xa, and 75% (33%) would be 
in the therapeutic range for either. Under our anti-Xa-optimizing policy, 55% (55%) of patient 
observations would be in the therapeutic range for aPTT, 36% (53%) would be in the therapeutic range 
for anti-Xa, and 75% (47%) would be in the therapeutic range for either. By comparison, under the 
observed clinician strategy, 55% (50%) of a patient’s observations would be in the therapeutic range for 
aPTT, 37% (48%) would be in the therapeutic range for anti-Xa, and 76% (43%) would be in the 
therapeutic range for either. Of the 5,750 observations in the test set, our aPTT-optimizing policy’s 
suggested action aligned with clinician on 3,829 (66%); our anti-Xa-optimizing policy actions aligned 
with the clinician on 1,246 (22%); and our aPTT-optimizing policy and anti-Xa-optimizing policy agreed 
with each other 1,795 (31%) observations.  

Conclusions and Relevance: ​To our knowledge, our work is the first demonstration of using artificial 
intelligence methods to learn a heparin dosing strategy that optimizes for the proportion of time a patient 
spends in the therapeutic range of the anti-Xa laboratory test. Our results demonstrate that our learned 
policy performs comparably to clinicians in terms of expected proportion of time a patient spends in the 
anti-Xa therapeutic range. Our findings also suggest that targeting the anti-Xa therapeutic range is a more 
challenging task than targeting the therapeutic range for aPTT. Furthermore, the relatively small overlap 
between suggested actions for our aPTT-optimizing and anti-Xa-optimizing strategies suggest that 
optimizing for the aPTT therapeutic range does not necessarily lead to optimal performance for anti-Xa 
therapeutic range compliance. Further work is needed to evaluate which of these strategies lead to 
reduced risk of mortality and thrombotic events in a sequential decision making context.  

Figure: ​Illustration of our model’s predicted rewards associated with each action for all patient 
observations in the test set. 
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