
 
Reducing childhood blindness from retinopathy of prematurity using artificial intelligence 

 
Background 
Retinopathy of prematurity (ROP) is the leading cause of childhood blindness worldwide, yet most cases 
of blindness are preventable with appropriate primary, secondary, and tertiary prevention. 1,2 The incidence 
and severity of ROP can be markedly reduced through careful oxygen monitoring in the neonatal intensive 
care unit (NICU), yet many parts of the world have inadequate human and material resources (e.g. nurses 
and oxygen supply equipment) to ensure high-quality modern neonatal care. 3,4  As a result, ROP is epidemic 
in low- and middle-income countries (LMIC). 1 ROP screening, typically performed by ophthalmologists 
at the bedside, is time consuming, inefficient, and of variable quality as ROP diagnosis performed in this 
manner is subjective and many parts of the world, including the US, have too few trained examiners. 
Medical malpractice concerns further restrict the pool of clinicians willing to manage the disease.5-7 Finally, 
it is well recognized that inter-observer diagnostic variability leads to real world differences in treatment 
for babies with ROP. 2,8-11   Previous work has identified that one reason for inter-observer disagreement is 
that severe ROP (plus disease) presents on a continuum and experts disagree, and are systematically biased, 
as to the level of disease that is clinically significant. 8-11 This bias also complicates interpretation of existing 
randomized clinical trial data.   
 
It was this problem that led our team to develop machine learning methods for quantitative evaluation of 
plus disease in ROP. Initially using traditional machine learning methods, and more recently convolutional 
neural networks (CNNs), we have evaluated the performance of an automated classifier for detection of 
severe ROP. This paper reviews our initial attempts to apply this technology for improved secondary 
prevention (AI- assisted ROP screening, diagnosis, and improved risk prediction), and our preliminary 
analysis of AI for evaluation of primary prevention (NICU-level evaluation of ROP severity), and tertiary 
prevention (quantitative evaluation of treatment quality and disease response).   
 
Methods 
Using a dataset of 5511 images, and a reference standard diagnosis (plus disease vs. pre-plus disease vs. 
normal) determined by combining 3 independent image-based and 1 clinical (ophthalmoscopic) diagnosis, 
we trained a CNN for diagnosis of plus disease (severe ROP) using 5-fold cross validation and evaluating 
using area under the receiver operating characteristic curve (AUC).  
 
Using the best-performing CNN, we performed the following experiments: 1) Comparison of DL 
performance to 8 world ROP experts on an independent test set of 100 images against the reference standard 
diagnosis. 2) Evaluation on real-world dataset from an Indian telemedicine program with 742 eye 
examinations. Using the output of the CNN, we developed a quantitative vascular severity score for plus 
disease ranging from 1-9, and performed the following additional experiments: 3) Comparison of the ROP 
quantitative vascular severity score to overall disease severity as determined by multiple experts. 4) Ability 
of the vascular severity score to monitor disease progression (and regression after treatment) over time. 5) 
Development of improved risk model using a quantitative ROP vascular severity score for early detection 
of severe ROP. 6) Evaluation of objective differences in disease severity and response to treatment for 
treatment-requiring ROP. 7) Population level analysis (NICU-level) of ROP severity as a function of 
established NICU quality measures. For this analysis, we used established WHO criteria to develop a 
quality scale from 0-5 with one point each for: nurse: patient ratio >1:5, oxygen blenders for every baby, 
pulse oximeters for every baby, posted oxygen target reminders, and having a neonatology trained 
physician.  
 
 
 
  



Results 
1) Using 5-fold cross validation, we found a mean AUC of 0.98 for the 
diagnosis of plus disease (range 0.973–0.993). On the independent test set of 
100 images, the algorithm outperformed 7/8 ROP experts (weighted kappa 
0.92 compared to reference standard diagnosis, expert range 0.73-0.93). 
2) On the Indian dataset, compared to a single Indian physician telemedicine 
grader, the AUC was 0.88. 
3) The ROP quantitative vascular severity score correlated significantly with 
overall reference standard diagnosis (Figure 1) suggesting that this technology 
may enable objective, quantitative disease classification in ROP.  
Retrospectively applied to the original database (5511 images), the severity 
score had an AUC of 0.96 for detection of TR-ROP.   
4) Figure 2 demonstrates the change in SS over time, demonstrating the ability 
to identify babies progressing to severe treatment-requiring ROP.   
5) Using this technology, we have developed a risk model that can identify 
progression to treatment-requiring ROP with an AUC 0.93.   
6) Among 5 ophthalmologists with over 10 babies diagnosed with treatment-
requiring ROP in our dataset, we found evidence both of intra-observer and 
inter-observer differences in severity. We further found that eyes that failed 
primary treatment had higher baseline severity score values at time of 
diagnosis, suggesting that they were either more aggressive, or treated too late.  
7) Figure 3 demonstrates the vascular severity score as a function of NICU 
quality for 9 hospitals in a telemedicine network in South India. We found that 
overall ROP severity decreased with increasing NICU quality, controlling for 
other underlying demographic risk factors. This suggests that AI may be used 
for evaluation of primary prevention of ROP and may be a surrogate for NICU 
quality in LMIC in the future.  
 
Implications for improving value of care 
AI has been shown to be able to accurately diagnose retinal disease in photographs in multiple diseases, 
most notably diabetic retinopathy (DR). Like DR, blindness from ROP is nearly always preventable with 
optimal primary prevention (glucose/oxygen control), timely and accurate secondary prevention (in person 
or telemedical eye exams), and effective tertiary prevention (laser or intravitreal pharmacologic treatment). 
Unlike DR, in which patients may be asymptomatic until late in the disease stage and not present for 
screening, patients at risk for ROP exist in defined (captive) population in the NICU. Thus, in theory the 
implementation gap to deliver this technology (AI–assisted secondary prevention) to the entire at-risk 
population in the world is a more solvable problem than for DR, and the focus of our current translational 
efforts. Moreover, our data suggests a potential role for AI in the assessment of NICU quality, which may 
improve primary prevention of ROP. Finally, AI-based quantitative diagnosis and monitoring of disease 
may lead to improved tertiary prevention with more consistent anatomic and visual outcomes following 
treatment. We believe that in the next ten years, this technology will:  

1) Become standard of care for ROP screening 
2) Lead to increased utilization of ROP telemedicine in NICUs worldwide.  
3) Improve risk modeling and detection of severe ROP, enabling early diagnosis and treatment. 
4) Encourage malpractice insurance companies to provide objective documentation of disease and 

reduce adverse outcomes from ROP 
5) Be part of an objective assessment of NICU quality in LMIC, where heterogeneity in primary 

prevention is part of an ongoing epidemic of ROP.   
 
Please consider for either Topic 1 or Topic 4.  
 

 
Fig. 2. Severity score 
over time. 
 
 
 

 
Fig.1. Severity score 
compared to RSD. 

 
Fig. 3. Severity score 
by NICU quality from 
0 (low) to 5 (high). 
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