
Predicting Blood Pressure Response to Fluid Bolus Therapy Using Attention-Based Neural Networks
for Clinical Interpretability

Background Excessive positive fluid balance in critically ill patients in intensive care units (ICUs)
has been proposed as a risk factor for severe organ dysfunctions, prolonged mechanical ventilation,
longer length of stay in ICU, and increased mortality [10, 12, 15]. Fluid bolus therapy (FBT), the
rapid infusion of fluid, has been recommended as the primary-line treatment for acute hypotensive
episode (AHE) that occurs in about 41% of patients in ICU [13]. However, previous studies have
reported that approximately one-third of AHE cases are not successfully resolved by FBT treatment [5,
9, 11].Considering that FBT accounts for about 30-50% of the total fluid volume administrated for
ICU patients [2], identifying patients for whom FBT would not likely resolve AHE may prevent an
inappropriate increase of the total fluid volume. [9]. Previous studies have focused on predicting
cardiac output (CO) as patients’ response to FBT since fluid infusion increases CO by increasing
the venous return to heart [14]. A 15% increase in CO after FBT has been used as the success
benchmark [6]. However, in clinical settings, only 11% of ICU clinicians use the increased CO as
the patient’s positive response to FBT. 67% of them judged the patient’s response as positive when
the patient’s blood pressure (BP) increases [3]. Of course CO is a gold-standard measure to evaluate
patient’s physiological response to FBT, but the increased BP might be used as a practical alternative
to evaluate the patient’s response to FBT in the ICU.

A previous study had constructed the non-machine learning models to predict BP response to FBT, yet
the performance of the area under the curve (AUC) ranged from 0.5 to 0.6, which was not acceptable
to be implemented in the clinical setting [11]. Therefore, we investigated both time-aggregated and
time-series structured data for modeling. In this study, we applied regularized logistic regression,
as well as the stacked long short term memory network (LSTM) and gated recurrent units network
(GRU) models with and without the attention mechanism to identify hypotensive critically ill patients
in the ICU who would obtain sufficient BP recovery after the FBT [1, 4, 7].

The goal of this study is to achieve high model performance and clinical interpretability for real-world
implementation. Particularly, the contributions of this study include the following:

1. This is the first study that utilizes machine learning algorithms to develop models for
predicting successful blood pressure response to FBT in critically ill patients in the ICU

2. The regularized regression model and LSTM/GRU models with the attention mechanism
provide us with certain important features for clinical interpretability.

Methods

Dataset and Cohort Study data was collected from the MIMIC-III database [8], which contains
58,976 ICU patients admitted to the Beth Israel Deaconess Medical Center (BIDMC). For the cohort
selection, we considered only (1) the first ICU stay during the hospital stay, (2) patients who were
more than 18 years old on the first day of admission, (3) patients with a length of ICU stay more
than 12 hours in order to include only true ICU patients, (4) patients who received their first FBT
during their first 24 hours in the ICU, where FBT is defined as the crystalloid fluid infusion rate >248
ml/hr and volume >248 ml , and (5) patients who are hypotensive (mean atrial pressure (MAP) =<
65 mmHg) when the first FBT started. 17,977 patients were selected for the final patient cohort.

Clinical Features and Outcome We extracted 29 clinically meaningful features from the MIMIC-
III database, which include time-static features: (1) patient demographics (age, gender, race/ethnicity,
weight, height, and SOFA score at ICU admission) and (2) comorbidity condition using Elixhauser
coding algorithm, and time-varying features: (1) physiological parameters (heart rate, respiratory
rate, temperature, oxygen saturation, systolic blood pressure, diastolic blood pressure, mean arterial
pressure, and urine output), (2) laboratory examination results (pH, PaO2, PaCO2, bicarbonate,
base excess, lactate, sodium, potassium and chloride), and (3) vasopressor dosage measured (nore-
pinephrine, epinephrine, phenylephrine, vasopressin and dopamine). For time-aggregated modeling,
we collected the data at the time interval between 30 minutes before and 30 minutes after 3 important
time points — 6 hours before the first FBT, 2 hours before the first FBT, and right at the start of the
first FBT. All raw values of features were normalized in population level and re-scaled to obtain a
value between zero and one. The missing values were imputed by median values of the features. The
primary outcome of this study is the physiological response, which is reflected by the change of MAP
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as a success or failure. The successful FBT is defined by intensive care experts as the presence of
max(MAPfbt) > 1.15 × average(MAPall) at least once, where max(MAPfbt) is the maximal
MAP from the FBT starting time to two hours after FBT, and average(MAPall) is the average MAP
from 30 minutes before FBT until 10 minutes after FBT.

Experiment Settings We split our cohort into a 75% training and 25% testing set. For both the
time-aggregated and time-series settings, we investigated the normalized raw feature and autoencoder-
constructed distributed representations. For the time aggregated setting, we used LASSO and Ridge
logistic regression models and the multiple layer perceptron (MLP) model. For the time series
setting, we collected data every certain number of minutes based on the number of timesteps specified.
For time-varying covariate variables, data collection started six hours before the first FBT was
administered and ended at the time when the first FBT was administered. We used 12, 36, and 72
timesteps for sequential modeling. We adopted the stacked three layer LSTM and GRU models with
the attention mechanism for prediction.

Evaluation We computed the accuracy and AUC of all models and identified certain features for
human experts to qualitatively evaluate the interpretability of the models. The top five features with
the highest coefficients (absolute value) in LASSO regression, and the most important timesteps
with the highest weights in the neural network models with attention mechanism were extracted for
interpretation.

Results and Discussion The results of the binary classification task of predicting whether the FBT
yielded successful blood pressure improvement using the different machine learning settings are
shown in Table 1. In general, the attention-based neural network models which considered time
sequence with higher temporal granularity yielded higher performance for prediction. The result
indicates that the autoencoder-derived representation is compact but still informative even if it is in a
lower dimension.

Algorithm Timesteps
Accuracy AUC

Raw features Distributed Raw features Distributed

L1-regularized logistic regression - 0.706 0.688 0.680 0.659
L2-regularized logistic regression - 0.699 0.695 0.679 0.664

Multiple layer perceptron - 0.712 0.688 0.690 0.642

LSTM 12 0.751 0.705 0.818 0.718
GRU 12 0.748 0.721 0.813 0.770

LSTM + Attention 12 0.747 0.727 0.822 0.795
GRU + Attention 12 0.747 0.716 0.818 0.786

LSTM 36 0.814 0.827 0.899 0.899
GRU 36 0.820 0.794 0.898 0.869

LSTM + Attention 36 0.819 0.820 0.902 0.895
GRU + Attention 36 0.812 0.777 0.893 0.858

LSTM 72 0.843 0.834 0.926 0.915
GRU 72 0.848 0.836 0.922 0.904

LSTM + Attention 72 0.852 0.831 0.925 0.920
GRU + Attention 72 0.841 0.803 0.917 0.882

Table 1: Model performance in accuracy and AUC between different experimental settings. Boldface
denotes the best performance in each group.

The top features learned from LASSO regression should undergo further investigation to understand
their clinical value. We are also able to identify the key timesteps using the RNN models with the
attention mechanism by extracting the attention weights. The timesteps closer to FBT have higher
impact to the prediction. The result is clinically meaningful since the time points closer to the
time of FBT are the most important, which is explainable from the clinical perspective. For future
work, we will investigate the optimal strategy to determine when and how much fluid bolus a patient
should receive using reinforcement learning. On the clinical side, we will include the parameters
of mechanical ventilation settings as covariates to make the model more robust. The study results
may support intensive care clinicians to identify whether the hypotensive episode in ICU patients will
resolve with FBT.
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