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ABSTRACT

Family-based tests of association between a candidate locus and a disease evaluate how often a

variant allele at the locus is transmitted from parents to offspring. These tests assume that in the

absence of association, an affected offspring is equally likely to have inherited either one of the two

homologous alleles carried by a parent. However transmission distortion has been documented in

families in which the offspring are unselected for phenotype. Moreover if offspring genotypes are

associated with a risk factor for the disease, transmission distortion to affected offspring can occur

in the absense of a causal relation between gene and disease risk. We discuss the appropriateness of

adjusting for established risk factors when evaluating association in family-based studies. We present

methods for adjusting the transmission/disequilibrium test (TDT) for risk factors when warranted,

and we apply them to data on CYP19 (aromatase) genotypes in nuclear families with multiple cases of

breast cancer. Simulations show that when genotypes are correlated with risk factors the unadjusted

test statistics have inflated size, while the adjusted ones do not. The covariate-adjusted tests are

less powerful than the unadjusted ones, suggesting the need to check the relation between genotypes

and known risk factors to verify that adjustment is needed. The adjusted tests are most useful for

data containing a large proportion of families that lack disease-discordant sibships, i.e., data for which

multiple logistic regression of matched sibships would have little power. Software for performing the

covariate-adjusted tests is available at http://www.stanford.edu/dept/HRP/epidemiology/COVTDT.
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INTRODUCTION

Two decades ago, geneticists noted that genetic association with disease can be detected by eval-

uating excess transmission of particular alleles from parents to affected offspring. This strategy has

been formalized in the haplotype relative risk test and the transmission/disequilibrium test (TDT) and

their extensions [Field et al., 1986; Falk and Rubinstein, 1987; Terwilliger and Ott, 1992; Spielman,

et al. 1993]. These tests are not biased by population stratification, a problem that can be serious for

large case-control studies of small genetic effects [Marchini et al., 2004]. A fundamental assumption of

the family-based tests is that, under the null hypothesis of no association between disease and variant

allele, a parent is equally likely to have transmitted either of his two homologous alleles to an affected

offspring (hereafter called Mendelian transmission). Large deviations from Mendelian transmission

are interpreted as evidence that disease risk varies with alleles of the polymorphism or of a neighboring

locus.

However deviations from Mendelian transmission can occur for other reasons. These include mei-

otic drive (biased segregation during meiosis), gametic selection (differential success of gametes in

achieving fertilization) and postzygotic viability selection for or against certain genotypes. Zollner et

al. (2004) studied 148 nuclear families ascertained without reference to phenotype, and found evidence

for tranmission distortion spread broadly throughout the genome. At some loci, the distortion can be

appreciable [Eaves et al., 1999]. We shall use the term neutral distortion for departures from Mendelian

transmission that are unrelated to phenotypes for the disease of interest. As noted by Spielman et al.

(1993), such distortion can cause spurious disease-genotype association in transmission/disequilibrium

tests based only on affected offspring.

More problematic to transmission-based association tests is nonneutral distortion, wherein tran-

mission distortion differs by disease status of offspring. Such differential distortion might occur if

genotypes are associated with a risk factor for the disease. For example, the CYP17 gene encodes an
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enzyme that functions at key branch points in human steroidogenesis. Carriers of the variant A2 allele

of a polymorphism in this gene appear less likely than noncarriers to use estrogen therapy (ET) for

menopausal symptoms [Feigelson, 1999]. Since ET is a risk factor for breast cancer [Writing Group

for Women’s Health Initiative, 2002], women with breast cancer are likely to have used the therapy

and thus may be less apt to carry the A2 allele than expected according to their parental genotypes.

Failure to adjust for ET use could induce a spurious negative association between A2 carrier status

and breast cancer, if carrier status has no effect on breast cancer risk. Such failure also could mask a

true, causal association between A2 status and risk that is independent of ET use (see Figure 1A).

Nonneutral distortion also can occur if genotypes are associated with one or more co-morbid

conditions [Smoller et al., 2000; Robins et al., 2001]. Such conditions are particularly likely to occur

in clinic based data, because individuals with multiple disorders are more apt to seek medical care

and receive diagnostic evaluation. Bias can occur when the candidate gene is unrelated to the disease

of interest but is in linkage disequilibrium with a gene that affects the co-morbid condition.

Here we extend family-based tests to evaluate such departures from Mendelian transmission while

accomodating the effects of covariates such as age and ET use. In applying these methods, we must

avoid controlling for unmodifiable covariates that lie in a causal pathway between genotype and disease.

For example, endogenous estrogen levels may vary with genotype of the CYP19 gene, which encodes

the enzyme aromatase that converts androgens to estrogen. Since estrogens are involved in both onset

of menarche and development of breast cancer, certain CYP19 genotypes may increase breast cancer

risk by increasing estrogen levels (which also may cause early age at menarche, an established risk

factor for breast cancer). Thus age at menarche is a marker for estrogen levels, which may lie on the

causal pathway between CYP19 genotypes and breast cancer (Figure 1B). If so, then controlling for

age at menarche when examining association between CYP19 genotypes and breast cancer risk would

be counterproductive, unless interest focused on a possible association between genotype and risk that

is independent of the estrogen pathway marked by age at menarche.
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In the next section we establish notation and introduce the test statistics as efficient score statistics

of likelihood functions that include covariates. We then apply a covariate-adjusted TDT to CYP19

genotype data from nuclear families with multiple cases of breast cancer. We use simulations to ex-

amine the tradeoffs between bias and power loss when considering covariate adjustment. We conclude

with general recommendations for dealing with covariates and potential confounding in family-based

association studies.

NOTATION AND ASSUMPTIONS

We wish to evaluate whether an offspring’s genotype influences his disease risk, while allowing the

possibility that his genotype also influences his risk factors for the disease (hereafter called covariates).

These possibilities are illustrated in Figure 2. The likelihood-based framework for covariate-adjusted

tests of genotype-disease association is similar to that developed for those without covariates (hereafter

called ”no-covariate” TDT’s) [Schaid and Rowland, 1998; Clayton, 1999; Whittemore and Tu, 2000;

Shih and Whittemore, 2002]. We illustrate the theory by applying it to a binary disease outcome

and a diallelic polymorphism with a variant and normal allele, using nuclear family data with known

parental genotypes. Extension to data involving multiple markers and missing parental genotypes is

similar to that described elsewhere for the no-covariate TDT.

Suppose that for N unrelated nuclear families we have gathered data on the genotypes, covariates

and binary disease statuses of the offspring, and the genotypes of their parents. Let h = 0, 1 or 2

denote the number of variant alleles in an offspring’s genotype. We begin by considering the possibility

of neutral distortion, without consideration of covariates. Specifically, we assume that the probability

of offspring genotype h, given his parental genotypes g, is

Pr(h|g) =
PM (h|g)eλh

∑2
h′=0 PM (h′|g)eλh′

, λ0 = 0. (1)

Here PM (h|g) denotes Mendelian transmission probability and λh is a scalar parameter, with λ0
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equated to 0 to insure identifiability. In this notation,

Pr(h|g)

Pr(0|g)
=

PM (h|g)

PM (0|g)
eλh , h = 1, 2,

which states that the likelihood ratio of genotype h for an offspring with parental genotype g is

distorted from the Mendelian ratio by the factor eλh . Thus λ1 = λ2 = 0 corresponds to Mendelian

transmission.

To address the possibility that genotypes may influence covariates (upper arrow in Figure 2), we

assume an exponential family model [Hogg and Craig, 1971] for the distribution of an offspring’s

covariates, given his genotype:

Pr (z|h) = exp [ξhz + S (z) + ξh0] . (2)

Here z = (z1, ..., zp)
T denotes a p-dimensional column vector of covariates, ξh = (ξh1, ξh2, ..., ξhp) is a

row vector of parameters, and

ξh0 = ln

[∫
exp [ξhz + S (z)] dz

]
−1

, h = 0, 1, 2,

is determined to insure that the probabilities (??) sum or integrate to one over the covariate space.

The components of the vectors ξh − ξ0 have interpretions as log-odds-ratios, since for two covariate

vectors z and z′,

Pr(h|z)

Pr(0|z)
÷

Pr(h|z′)

Pr(0|z′)
=

Pr(z|h)

Pr(z|0)
÷

Pr(z′|h)

Pr(z′|0)
= e(ξh−ξ0)(z−z′).

From Bayes’ Rule, the probability that an offspring has genotype h, given his parents’ genotype g

and his covariates z, is

Pr(h|g, z) =
P (h|g) Pr(z|h)

∑2
h′=0 P (h′|g) Pr(z|h′)

, (3)
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where P (h|g) is given by (??). Here we have assumed that, given his own genotype, an offspring’s

covariates are independent of the genotypes of his parents. Substituting (??) and (??) into (??) gives

Pr(h|g, z) =
PM (h|g) exp(λh + ξh0 + ξhz)

∑2
h′=0 PM (h′|g) exp(λh′ + ξh′0 + ξh′z)

≡
PM (h|g) exp(νhz∗)∑2

h′=0 PM (h′|g) exp(νh′z∗)
, ν0 = 0. (4)

Here zT
∗

= (1, zT ), and νh = (νh0, ..., νhp), with νh0 = λh + ξh0 − ξ00 and νhj = ξhj − ξ0j, j = 1, ..., p.

The vectors ν1 and ν2 measure association between offspring genotype and covariates.

Some special cases of model (??) warrant comment. First, when there is no genotype-covariate

association (i.e., when ξh ≡ ξ in (??)), then, since the intercepts νh0 equal λh and the regression

coefficients νhj are 0, j = 1, ..., p, (??) reduces to the neutral distortion probabilities (??). Second,

when there is neither genotype-covariate association nor neutral distortion (i.e., ξh ≡ ξ in (??) and

λ1 = λ2 = 0 in (??)), then ν1 = ν2 = 0 and the probabilities (??) reduce to the Mendelian probabilities

PM (h|g). Third, when genotypes and covariates are associated, the intercepts ν10 and ν20 are generally

nonzero, even without neutral distortion. Specification that the intercepts ν10 and ν20 are 0 (with

arbitrary regression coefficients νhj, j = 1, ..., p) corresponds not only to the assumption of no neutral

distortion, but also to the additional assumption that Mendelian transmission holds at the ”baseline”

covariate levels zj = 0, j = 1, ..., p. Since our primary concern here is with confounding by covariates

rather than neutral distortion, we shall assume hereafter that λ1 = λ2 = 0.

Model (??) requires estimating the 2 (p + 1) parameters in ν1 and ν2, and more parsimonious

submodels may be desirable. For example, setting ν1 = ν2 (equivalently, setting ξ1 = ξ2 in (??))

indicates that the covariate distribution among carriers of one variant allele is similar to that among

carriers of two variants (a dominant model for the effect of genotype on covariates). Alternatively,

setting ν1 = 0 (equivalently, setting ξ1 = ξ0 in (??)) indicates that the covariate distribution among

carriers of one variant allele equals that among those with a normal genotype (a recessive genotype-
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covariate model).

We illustrate these models by considering a single binary exposure having prevalence 20% among

normal homozygotes and 30% among all carriers of a variant allele A (a dominant genotype-covariate

model). We let z denote an indicator for exposure, with z = 1 for exposed and z = 0 for unexposed,

and write Pr(z = 1|h) = eξh1z/
(
1 + eξh1

)
. This corresponds to model (??) with S (z) = 0 and

ξh0 = − ln
(
1 + eξh1

)
. Equating Pr(z = 1|h = 0) to .2 and Pr(z = 1|h = 1) = Pr(z = 1|h = 2) to .3 in

equation (??) and solving for the ξ’s yields

(ξ00, ξ01) = (−.223,−1.386) and (ξ10, ξ11) = (ξ20, ξ21) = (−.357,−.847).

Table I gives the offspring genotype probabilities Pr(h|g, z), conditional on parental genotype and off-

spring exposure. Column 3 of the table gives the usual Mendelian transmission probabilities. Columns

4 and 5 show the probabilities Pr(h|g, z) for exposed (z = 1) and unexposed (z = 0) offspring, based on

(??) with ν1 = ν2 = (−.357,−.847) − (−.223,−1.386) = (−.134, .539). Comparison of columns 4 and

5 with column 3 illustrates two points. First, offspring genotypes that are inconsistent with parental

genotypes under Mendel’s laws remain so according to (??). Second, offspring of parental mating type

AA × AB have a 50:50 chance of carrying two variants rather than one, regardless of their exposure

level, in agreement with Mendelian inheritance. This agreement occurs because we have assumed the

same exposure prevalence among carriers of one variant and two variants (a dominant model for the

effects of genotype on exposure).

To address the possibility that both genotypes and covariates affect disease risk, we must specify

a model ϕ(h, z) for the probability of disease given genotype and covariates. We assume that ϕ(h, z)

depends on h only through a term βc(h), where β is an unknown scalar parameter and c(h) indicates

how genotypes affect risk (lower arrow in Figure 2). For example, in the simulations we shall assume
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a logistic regression model of the form

ϕ(h, z) = Pr(y = 1|h, z) =
eα+βc(h)+δz

1 + eα+βc(h)+δz
, (5)

where y is an indicator for disease, and δ = (δ1, ..., δp) is a vector of parameters relating covariates to

disease risk. For a dominant model, c(h) = 1 if h = 1, 2, with c(0) = 0. For a recessive model, c(h) = 1

if h = 2, with c(h) = 0 otherwise, while for an additive model, c(h) = h. The null hypothesis of

interest is that β = 0, i.e., that genotypes are unrelated to disease risk.

We shall base inferences for β on the likelihood L of the offspring genotypes, given their phenotypes,

their covariates and the genotypes of their parents. This likelihood is the product over families of

family-specific contributions

Li =
ni∏

j=1

Pr (hij |yij, gi, zij)

=
ni∏

j=1

{
Pr(hij |gi, zij)ϕ (hij , zij)

yij [1 − ϕ (hij , zij)]
1−yij

∑2
h′=0 Pr(h′|gi, zij)ϕ (h′, zij)

yij [1 − ϕ (h′, zij)]
1−yij

}

. (6)

Here the subscripts i and j denote the jth offspring of the ith family, j = 1, ..., ni, and Pr(h|g, z)

is given by (??). In (??) we have assumed conditional independence of offspring phenotypes, given

their genotypes and their covariates. This is a weaker assumption than that underlying the ”no-

covariate” TDT, which assumes that offspring phenotypes are conditionally independent, given just

their genotypes.

The likelihood contributions (??) are conditioned on offspring phenotypes because families are

ascertained on that basis. They are conditioned on parental genotypes because such conditioning

avoids potential bias due to ethnic stratification of the parental population [Spielman et al., 1993].

The contributions also are conditioned on the offspring covariates, because such conditioning avoids

specifying the joint distribution of the offspring covariates, which typically is complex and poorly
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understood. Note that this conditioning on both the phenotypes and the covariates of the offspring

precludes estimating the parameters that relate covariates to disease risk. Instead this relationship

must be specified a priori. Thus, for example, we must specify the parameters α and δ in the logistic

model (??).

The likelihood function L prompts several hypotheses about the offspring genotype probabilities,

conditional on covariates and parental genotypes. These derive from comparison of the nested models

shown in Figure 3. Model 1, the most general model of the four, allows arbitrary values for β and the

two ν ′s. Model 2, with β = 0 and the ν’s arbtrary, specifies that within each covariate level, allele

transmission is independent of disease phenotype, although it need not follow Mendelian expectation.

Model 3, with β arbitrary and ν1 = ν2 = 0, specifies that in families unselected for disease, alleles

are transmitted according to Mendelian expectation. Model 4 (β = ν1 = ν2 = 0) specifies Mendelian

expectation for allele tranmission, regardless of the offspring phenotypes or covariates. Models 2 and

4 both specify that disease risk ϕ(h, z) = ϕ(z) depends only on covariates. The no-covariate TDT and

its extensions are efficient score statistics evaluating the adequacy of Model 4 relative to Model 3. In

contrast, the covariate-adjusted TDT’s are efficient score statistics evaluating the adequacy of Model

2 relative to Model 1.

The covariate-adjusted TDT is based on the efficient score ∂ log L/∂β evaluated at β = 0 and with

the ν’s equated to their null maximum likelihood estimates. When standardized by an estimate of

its null standard deviation, the test statistic has approximately a standard Gaussian distribution. As

outlined in the Appendix, the efficient score has a form analagous to that for the no-covariate TDT.

Both are sums over all offspring of terms

[y − ϕ(z)] [c(h) − µ (z)] , (7)

which measure the covariance between null trait residuals and null genotype residuals. Here ϕ(z) is the
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user-specified disease prevalence among individuals with covariates z, and µ (z) is the null expected

value of the offspring’s genotype value c(h), given his parental genotypes and (for the covariate-adjusted

TDT) his covariates. Both ϕ(z) and µ (z) are assumed independent of z in computing the no-covariate

TDT. Expression (??) shows that misspecification of µ (z) induces bias in the test statistic, for then

the null expectation of c(h)−µ (z) is nonzero. In contrast, misspecification of the disease probabilities

ϕ(z) does not affect the null expectation of the standardized test statistic, since w (z) = y − ϕ(z)

serves only as a user-specified weight for the null genotype residual of each offspring. According to

(??), positive residuals c(h) − µ (z) of affected offspring (w (z) > 0) contribute positively to the test

statistic. Moreover affected offspring with low-risk covariates (ϕ(z) << 1 and w (z) ∼ 1) contribute

more than do those with high-risk covariates (ϕ(z) ∼ 1 and w(z) ∼ 0). In addition, positive residuals

c(h) − µ of unaffected offspring (w (z) < 0) contribute negatively, and unaffected offspring with high-

risk covariates (w (z) ∼ −1) contribute larger negative values than do those with low-risk covariates

(w(z) ∼ 0). While misspecification of the weights could decrease power, in our limited simulations

and data analyses we have found that weight specification has negligible impact on either the value of

the test statistic or its power.

APPLICATION TO DATA

The need for covariate adjustement in family-based association tests was brought to our attention

in the analysis of genotypes of a tetra-nucleotide (TTTA) repeat polymorphism in the CYP19 gene

in 278 nuclear families with multiple cases of breast cancer. The polymorphism is characterized by

a variable number of repeats, ranging from 7 to 13. Previous studies have suggested that carriers

of 10 or more repeats have elevated breast cancer risk (see Dunning et al., 1999 for a review). We

genotyped 299 affected and 213 unaffected daughters and 107 of their 2×278 = 556 parents, and found

that carrier status of the allele containing 11 repeats (hereafter called allele A) was associated with

increased breast cancer risk, with a (no-covariate) TDT statistic of 1.83 (one-tailed p = .03) [Ahsan
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et al., 2004].

We were concerned about possible confounding of this association by nongenetic risk factors for

breast cancer. To address this issue, we first performed conditional logistic regression (CLR) of the 183

phenotype-discordant sibships. The regression model included: carrier status of the A allele, age at

risk (defined as age at breast cancer diagnosis for affected sibs and age at interview for unaffected sibs),

age at menarche, parity, oral contraceptive use and ET use. The estimated odds-ratio relating CYP19

genotype to breast cancer risk was 1.9 (95% confidence interval: 0.9 − 3.5, one-tailed p = .09). It is

not clear whether this attenuated statistical significance reflects confounding due to failure to adjust

for the risk factors, or power loss because only 183 of the 278 sibships were phenotype-discordant.

The covariate most strongly correlated with disease was age at risk (p < .001 in the CLR). Indeed,

as seen in the last column of Table II, daughters with breast cancer were, on average, younger than

their unaffected sisters. Confounding by age at risk is possible because it also was related to genotype.

Table II shows that homozygotes for the variant were younger than daughters with fewer than two

variants, regardless of their disease status.

In an attempt to distinguish confounding from power loss, we examined possible departures from

Mendelian transmission to affected and unaffected daughters, adjusted for age at risk. Motivated by the

dominant disease-genotype association found for the no-covariate TDT [Ahsan et al., 2004], we assumed

a dominant model for the effect of genotype on breast cancer. Motivated by the data in Table II, we

assumed a recessive model for the effect of genotype on age at risk (coded as a continuous variable).

We specified the null prevalence of breast cancer by age z years as ϕ (z) = 1−exp [−
∫ z
0 I (s) ds] , where

I (z) is an estimate of the US age-specific breast cancer incidence rate for the period 1973-77 (SEER

1981). This specification corresponds to a weight w (40) = 1−ϕ (40) = .99 for an affected woman aged

40 years and weight w (70) = −ϕ (70) = −.09 for an unaffected woman aged 70 years. The resulting

age-adjusted test statistic was 1.27 (p = .10). This result is consistent with the attenuated findings

obtained by CLR. The consistency suggests either that the phenotype-genotype association seen in

13



the no-covariate TDT is due to confounding by age, or that both the covariate-adjusted TDT and

CLR lack power to detect the association.

We attempted to distinguish the two explanations using simulated data. Specifically, we evaluated

the power and size of the three tests (no covariate TDT, covariate-adjusted TDT, CLR) in samples

with sizes comparable to the CYP19 genotype and breast cancer data. The results, described in the

next section, suggest that the covariate-adjusted TDT forfeits about 25% of the power of the no-

covariate TDT, while CLR based on only half the sibships forfeits about 50% of this power. Thus

while the covariate-adjusted TDT is clearly more powerful than CLR for the CYP19 data, both are

considerably less powerful than the no-covariate TDT. Therefore, although both covariate-adjusted

analyses provided only weak evidence of association between CYP19 and breast cancer, we cannot

exclude the possibility that both analyses lacked the power needed to detect a small increase in risk

associated with carrier status of the A allele, independent of age at risk.

SIMULATIONS

We simulated genotype, phenotype and covariate data for a diallelic polymorphism in a candidate

gene for 300 nuclear families, each with two offspring. We considered two sibship configurations: A)

all 300 sibships were discordant for disease; and B) half the sibships were discordant and the remaining

half consisted of two affected siblings. We assumed that genotypes were missing for both parents in

half the families, and that one parental genotype was missing in the remaining half. We studied a

single binary covariate with values z = 1 (exposed) and z = 0 (unexposed). For each data set of 300

families, we computed test statistics corresponding to the no-covariate TDT, the covariate-adjusted

TDT and conditional logistic regression of both genotypes and covariates of the discordant sibships.

We generated the data for each family in the following four steps:

1) generate parental genotypes assuming random mating and Hardy-Weinberg genotype frequen-

cies, with variant allele frequency equal to 10%;
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2) given the parental genotypes, generate offspring genotypes assuming Mendelian transmission;

3) given the offspring genotypes, generate offspring exposure indicators according to two models: a)

exposure prevalence of 20%, regardless of genotype. This value corresponds in (??) to parameter values

νh = (0, 0) , h = 1, 2, and specifies that exposure is unrelated to genotype; b) exposure prevalence of

40% among carriers of the variant and 20% among noncarriers. These values correspond to a dominant

model for the effects of genotype on exposure, with parameters ν1 = ν2 = (−0.29, 0.98) in equation

(??);

4) given the offspring genotypes and covariates, generate offspring disease phenotypes according to

the logistic regression model (??), with c(h) taken to be an indicator for carrier status of the variant

allele. We took α = −2.75, and considered four models, depending on whether or not disease was

associated with genotype (β = 0 or β = 0.76) and whether or not disease was associated with exposure

(δ = 0orδ = 0.76). These values correspond to risks of 6% in unexposed normal homozygotes, 12% in

unexposed carriers of allele A and exposed normal homozygotes, and 23% in exposed carriers of allele

A. We generated family data until we had obtained 300 families with the desired offspring phenotypes.

In summary, we considered two family configurations (A and B); two models for association between

genotype and covariate, and four models for disease risk in relation to genotype and covariate, a total

of 2 × 2 × 4 = 16 simulations.

The test statistics used to analyze the data assumed that offspring genotypes affect covariates

according to the same dominant model used to generate the data. We evaluated various correct and

incorrect specifications for the relation beween genotypes and disease (i.e., the weights), and found

that the choice of weights had negligible effect on power. Here we report only the results based on the

correct specification. For the CLR analyses, we used the t-test statistic for the coefficient β to test

the relation between genotype and disease risk .

Table III gives results when all sib pairs are disease-discordant (Table IIIA) and when only half the

sib pairs are discordant (Table IIIB). Each half of the table shows test size (β = 0) and power (β > 0)
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in four blocks, depending on whether or not the covariate is correlated with genotype and with disease

risk. Only the fourth block (covariate correlated with both genotype and disease risk) corresponds to

confounding of the genotype-phenotype relationship. Thus, as expected, the nominal and empirical

test sizes in Table III are similar for blocks 1-3, while in the fourth block the sizes of the no-covariate

TDT are inflated.

The covariate-adjusted TDT has power comparable to that of CLR in situations when the latter

can use all sibships (Table IIIA). However both suffer appreciable power loss compared to the no-

covariate TDT. When half the sibships are disease concordant and thus are excluded from the CLR

analysies (Table IIIB), the power loss of this method is substantial. In this case the covariate-adjusted

TDT has power intermediate between that of the other two tests.

DISCUSSION

We have extended the TDT to accomodate potential confounding by established risk factors in

tests of genetic assocation using nuclear families. Likelihood-based arguments and simulations show

that when the covariates are associated with both genotype and disease risk, the empirical type-I error

rates for the extended tests are similar to their nominal values, while those for the unadjusted test

statistics are inflated.

The covariate adjusted tests are based on the probability distribution of the offspring genotypes,

given parental genotypes, offspring disease status and offspring covariates. Because of this joint con-

ditioning on both disease status and covariates, the method does not allow evaluation of association

between covariates and disease. Instead, this relationship must be specified a priori. Misspecification

of the relationship does not affect the type I error rate, although it could decrease power. In simula-

tions and in practice, however, we have found little variation in test power with various specifications

of this relation. Although the covariate-adjusted tests presented here handle missing parental data

using likelihood-based methods, the underlying theory also could be applied to extensions based on
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minimal sufficient statistics for the nuisance parameters [Horvath and Laird, 1998; Rabinowitz and

Laird, 2000] or based on projections onto subsets of the parameter space [Rabinowitz, 2002; Allen et

al., 2004].

The robustness of the covariate-adjusted statistics is purchased at the price of decreased power

relative to that of the unadjusted TDT statistics. This tradeoff between robustness and power raises

fundamental issues for the design of family-based association studies. Gathering and typing DNA from

parents is costly, and indeed impossible when parents are deceased. An alternative strategy would

genotype only siblings and compare genotypes of affected and unaffected sibs. Kraft and Thomas

(2004) recently have reviewed several methods for analyzing age-at-onset data for sibships, covering

a spectrum of levels of control for potential population stratification. Conditional logistic regression

of genotypes and risk factors in matched sibship data provides perhaps the most attractive option

for controlling potential confounding by established risk factors. Such analyses are simple to apply

and interpret, and provide a measure of the strength of association in addition to a p-value. However

our simulations have shown that this option can lose substantial power (relative to transmission-

based tests) when a significant proportion of the families lack discordant sibships. Nevertheless,

when designing a family-based genetic association study it may be advantageous (both economically

and logistically) to restrict the analysis to sibships, without parents. An exception is the situation

when genotypes of extended pedigrees have already been collected for other purposes (such as linkage

analysis), and an appreciable fraction of the sibships in these pedigrees lack phenotype-discordant

sibs. In this case the covariate-adjusted statistics provide an alternative strategy. It is important to

examine evidence for correlation between genotypes and risk factors when considering the need for

adjustment, and to adjust for a covariate only when it appears to be correlated with genotype yet

does not lie on a causal pathway between genotype and disease.

Yet another option for dealing with confounding is unconditional logistic regression of all affected

and unaffected family members, whose phenotypes and genotypes are available, and ignoring the
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relationships of family members [Slager and Schaid, 2001, 2003; Whittemore and Halpern, 2003].

For this strategy, robust variance estimators are used to accomodate within-family correlations in

covariates. A weakness of this approach is potential sensitivity to bias from population stratification.

In conclusion, we suggest the following strategy for dealing with potential confounding of ge-

netic association tests by established risk factors when analyzing data from parents and offspring.

First, one should check informally whether the risk factor is associated with the genotype of inter-

est. If not, the no-covariate TDT is the preferred analytic method. If there is evidence for such

association, and if most of the families contain discordant sibships, conditional logistic regression of

matched sibships is simple and yields estimates of the strength of the association. If an appreciable

fraction of the families lack discordant sibships, greater power can be expected with covariate ad-

justment using the methods presented here. Software for using these methods is freely available at

http://www.stanford.edu/dept/HRP/epidemiology/COVTDT.

APPENDIX

A family’s contribution to the ”no-covariate” likelihood function [Clayton, 1999; Whittemore and

Tu, 2000] is the joint probability Pr(G,H|Y ) of the parent and offspring genotype data G and H,

respectively, conditional on the offspring phenotypes Y . To include covariates, we take a family’s

likelihood contribution to be the joint probability Pr(G,H|Y,Z) of family genotype data, conditioned

also on offspring covariates Z. The likelihood depends on a parameter θ = (β, ν, γ), where β relates

genotype to trait, ν = (ν1, ν2) relates offspring genotypes to covariates in model (??), and γ denotes

the parameters in the null distribution Pr(G) of parental genotypes.

When parental genotypes are known, the likelihood factors as the probability Pr(G|Y,Z) of the

parental genotypes, given offspring phenotypes and covariates, times the probability Pr(H|G,Y,Z)

of the offspring genotypes, given parental genotypes, offspring phenotypes and offspring covariates.

18



The vector U of efficient scores at β = 0 obtained from the second factor Pr(H|G,Y,Z) is used to

construct the test statistic. Specifically, the test is based on the β-component Uβ = Uβ(ν) of this score

vector, evaluated at ν = ν̂, where , ν̂ maximizes the null probability (??) of the offspring genotypes,

given parental genotypes and offspring covariates. Standard likelihood theory gives the asymptotic

distribution of Uβ as Gaussian with mean zero and variance

V (Uβ) = Jββ − JνβJ−1
νν Jβν . (8)

Here for example, Jνβ is the null expectation of the product UβUT
ν . The test statistic is

T =
Uβ√
V (Uβ)

, (9)

evaluated at ν̂.

When parental genotypes are incomplete, the usual likelihood-based arguments give the score and

information for the incomplete family genotype data in terms of moments of the corresponding func-

tions for the complete data, taken over the distribution of the complete data given the observed data.

A disadvantage of tests based on this score is their dependence on the model for the distribution of

parental genotypes and the resulting possibility of biased inferences for β due to misspecification of this

distribution. To address this problem, we use a ”partial score” [Clayton, 1999], whose γ-components

are the logarithmic derivatives of the parental genotype probabilities, and whose β- and ν-components

are the logarithmic derviates of the offspring genotype probabilities, given their phenotypes, their

covariates, and the parental genotype information available.

The test is based on the β-component of this partial score, which now depends on the parental

genotype parameter γ in addition to ν. The asymptotic variance of this β-component and the form of

the test statistic are similar to (??) and (??), with γ estimated from the null likelihood for the family
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genotype data, given the offspring covariates (see Shih and Whittemore, 2003 for details).
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Figure Captions

1. Possible associations between genotypes of estrogen metabolizing genes and breast cancer risk.

A) carriers of the A1 allele of CYP17 are less likely to use estrogen therapy than noncarriers. Since

estrogen therapy is an established breast cancer risk factor, failure to adjust for its use could produce

a spurious negative CYP17-breast cancer association, or mask a positive association. B) CYP19

genotypes may increase circulating estrogen levels, which could cause both early age at menarche and

increased breast cancer risk. If so, controlling for age at menarche (a surrogate marker on the causal

pathway between CYP19 genotype and breast cancer) would be counter-productive, unless the aim

is to detect a causal relation between CYP19 and breast cancer that is independent of any effect of

CYP19 on age at menarche.

2. Possible causal associations relating genotypes of a candidate gene to risk factors and to disease

risk. The relation between genotype and risk factor may be take any one of several forms (dominant,

recessive, co-dominant, etc), and need not be the same as the relation between genotype and disease

risk.

3. Nested models for the joint effects of genotypes, phenotypes and covariates on parental trans-

mission probabilities. Model 1 allows departures from Mendelian genotype transmission according to

offspring risk factors (association parameter ν arbitrary) and disease phenotypes (association parame-

ter β arbitrary). Model 2 specifies that, within each covariate level, allele transmission is independent

of disease phenotype (β = 0 but ν arbitrary). Model 3 specifies that in families unselected for disease,

alleles are transmitted according to Mendelian expectation (ν = 0 but β arbritrary). Model 4 speci-

fies Mendelian expectation for allele transmission, regardless of the offspring phenotypes or covariates

(β = ν = 0). The no-covariate TDT and its extensions evaluate the adequacy of Model 4 relative

to Model 3. In contrast, the covariate-adjusted TDT’s evaluate the adequacy of Model 2 relative to

Model 1.
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