Prof. Eran Leitersdorf Named
CVI Consulting Professor

Prof. Eran Leitersdorf, MD, has been named a consulting professor of the Stanford Cardiovascular Institute.

Dr. Leitersdorf was born in Tel-Aviv, Israel, and is a graduate of the Hebrew University-Hadassah Medical School in Jerusalem.

He trained in Internal Medicine, Lipid Metabolism and Molecular Genetics at the Hadassah Hebrew University Medical Center, at the laboratory of MS Brown and JL Goldstein of the Southwestern Medical Center in Dallas and at the laboratory of JC Fruchart of the Pasteur Institute in Lille, France.

He is the recipient of numerous awards including five Hebrew University Faculty of Medicine Prizes, the Fogarty (NIH) International Research Fellowship and the International Atherosclerosis (IAS) Award.
Publications Focus on Cardiology / CVI

The Cardiovascular Institute, Department Medicine Division of Cardiovascular of Medicine, and Department of Cardiothoracic Surgery, have all been prominently featured in two recent publications.

The Stanford Medicine Magazine heart issue, with stories ranging from a discussion with Vice President Dick Cheney to high-cholesterol genes and a new style of aortic-valve replacement, was released in February.

The CVI has also recently distributed its 2013-2014 Report highlighting the accomplishments, science, and faculty members of the Cardiovascular Institute. For more on both, follow the internet links on the covers below.

LEITERSDORF from p. 1

His main research interests are in Lipid Metabolism, Atherosclerosis, Molecular Genetics and Drugs Affecting Lipid Metabolism. He has published over 140 original papers, reviews, editorials and commentaries and is a full Professor at the Hebrew University.

He was the founder and first Chairman of the Israeli Atherosclerosis Society and a member of the European and the International Atherosclerosis Societies. He was an Associate Editor of the journals Atherosclerosis and Arteriosclerosis, Thrombosis and Vascular Biology and is a reviewer for other scientific journals and national scientific organizations. His clinical interests are focused on the prevention of atherosclerosis through lipid modification.

Prof. Leitersdorf moved to Palo Alto for two years sabbatical as a Visiting Professor at Stanford, at which time he became a member of the CVI community.
Gene Variant Increases Heart-disease Risk

By TRACIE WHITE

Think of it like a garbage strike.

Due to a genetic defect, the body’s ability to dispose of its daily tonnage of dead cells gets damaged, and as a result the body’s garbage — in the form of old cells and debris — starts to build up in the walls of its blood vessels.

This is how Nicholas Leeper, MD, Assistant Professor of Vascular Surgery and Department of Medicine - Cardiovascular Medicine, describes the findings of a recent study of which he was senior author.

The study was published Feb. 17 in the Journal of Clinical Investigation. Yoko Kojima, MD, PhD, senior research associate, was the lead author.

Normally, the body is extremely efficient at taking out the garbage. Two hundred billion cells die every day in our bodies, and most get cleared out within a matter of seconds. But when this process breaks down and garbage, in the form of necrotic cells, starts building up in the walls of blood vessels, it’s not a good thing.

Leeper and his colleagues set out to discover why genetic variation at the chromosome 9p21 location has been repeatedly identified as the most important commonly inherited DNA sequence for a wide range of cardiovascular diseases, including stroke, heart attacks and aneurysms.

Conducting studies in mice with atherosclerosis, the researchers showed that loss of a candidate gene at this locus leads to impaired “efferocytosis” — from the Latin for “take to the grave” — the process by which dead or necrotic cells are removed. Mice with this genetic variation showed an increase in buildup of these dead cells, further advancing their atherosclerosis, as opposed to those that did not have the genetic variation.

In other words, a commonly inherited genetic variant, which is found in 20 percent of the population, contributes to the development of coronary artery disease (also known as coronary atherosclerosis) by stimulating the accumulation of necrotic debris within the evolving plaque.

“If you were born with genetic variation at the 9p21 locus, your risk of heart disease is elevated, though we haven’t understood why,” Leeper said. “This research gets at that hidden risk. You can be a nonsmoker, be thin, have low blood pressure, and still be at risk for a heart attack if you were born with this variant. This work may help explain that inherited risk factor, and more importantly help develop a new therapy to prevent the heritable component of cardiovascular disease.”

Other Stanford co-authors of the study were Ramen Kundu, PhD, senior research associate; postdoctoral scholars Clint Miller, PhD, Uwe Raaz, MD, and Frederick Dewey, MD; and Tom Quertermous, MD, professor of cardiovascular medicine.

For more: http://goo.gl/58V3JJ.

A Piece of the Pulmonary-hypertension Puzzle

By BRUCE GOLDMAN

Pulmonary hypertension (PH), a dangerous increase in the pressure of blood vessels in the lung. As many as three times as many women – many of them quite young – as men are diagnosed with the spontaneous form of PH (which can also arise from scleroderma or bad pharmaceuticals). While there are numerous pharmaceutical treatments there is still no cure.

Largely, this is because the molecular mechanisms of pulmonary hypertension is unknown.

Recent work has strongly implicated inflammation in pushing predisposed tissues over the edge into the diseased state. Journal of Experimental Medicine study led by PH specialist Marlene Rabinovitch, MD, and her colleagues at Stanford’s PH-focused Vera Moulton Wall Center plucks a potentially pivotal piece of the puzzle into place. Rabinovitch and her associates showed that levels of a pro-inflammatory growth factor called granulocyte-macrophage colony stimulating factor (GM-CSF) rise substantially when a cell-surface receptor named bone morphogenic protein receptor (BMPR2) isn’t functioning properly. That can be due to mutations in the gene that codes for the receptor, to various environmental causes, or the interaction of the two.

Elevated GM-CSF levels in pulmonary tissue work like a siren to call various hot-tempered inflammatory cells to the vasculature of the lung, resulting in thickened vessel walls and narrowed blood vessels. By finding ways to compensate for BMPR2 under-performance, researchers aim to develop therapeutics that keep GM-CSF levels within safe limits, modifying the course of incipient PH or even arresting it.

For more: http://goo.gl/9EEYB0.
FDA Approves Antiplatelet Drug Vorapaxar

By ELIZABETH MECHCATIE, Cardiology News Digital Network (reprinted with permission)

Vorapaxar has won the backing of a Food and Drug Administration advisory panel for secondary prevention of atherothrombotic events.

At a meeting on Jan. 15, 2014, the FDA’s Cardiovascular and Renal Drugs Advisory Committee voted 10-1 to recommend approval of the novel antiplatelet drug for reducing atherothrombotic events in patients with a history of MI – the indication proposed by Merck. The recommended dose is one 2.5-mg tablet per day. The Acting Chairperson of the committee is CVI Consulting Professor Philip Sager, MD.

The indication also includes the statement that treatment with vorapaxar has been shown to reduce the rate of the combined endpoint of cardiovascular death, MI, stroke, and urgent coronary revascularization; it is contraindicated in patients with a history of stroke or transient ischemic attack and a history of intracranial hemorrhage (ICH).

Vorapaxar is an antagonist of protease-activated receptor-1, which inhibits the action of thrombin on the platelet, according to the company. If approved, it will be the first marketed drug of that class.

The company conducted two phase III studies in two different groups of patients. In the TRACER (The Thrombin Receptor Antagonist for Clinical Event Reduction in ACS) study, which compared vorapaxar with placebo, added to standard therapy, as acute therapy (2.5 mg per day after a 40-mg loading dose, or placebo) in almost 13,000 hospitalized patients randomized within 24 hours of presenting with ACS (with non-ST elevation), it reduced the risk of atherothrombotic events (N. Engl. J. Med. 2012;366:20-33).

The study, however, was terminated early after an increased risk of major bleeding, including ICH, was detected and the company stopped the treatment in patients with a history of stroke or new stroke in the other phase III trial, the TRA 2P–TIMI 50 (Thrombin-Receptor Antagonist in Secondary Prevention of Atherothrombotic Events) study. The company dropped plans to pursue the acute ACS indication.

The proposed indication is based on the results of the TRA 2P–TIMI 50 study, which randomized 26,449 patients to placebo or 2.5 mg of vorapaxar a day, added to standard therapy (including other antiplatelet agents) in 26,449 outpatients with a previous MI, previous ischemic stroke, or peripheral arterial disease (N. Engl. J. Med. 2012;366:1404-13). (Almost 80% of the patients in the study who met the criteria in the proposed indication were on dual antiplatelet therapy with aspirin and a thienopyridine.)

For more: http://goo.gl/HG1wJk.
BY WINTER JOHNSON

With 19 heart transplants, 2013 was the busiest year ever for the Children’s Heart Center at Lucile Packard Children’s Hospital, Stanford, home to the only pediatric heart transplant program in Northern California. The success offers hope for those still waiting for this lifesaving gift.

One such patient is 4-year-old Aiden Hansen, who doesn’t let the combination of his rare, hypoplastic left heart syndrome and heterotaxy syndrome stop him from loving planes, cars and going to music classes. When he was only 3 days old, his doctors in Santa Rosa suspected something was very wrong. A series of echocardiograms and ultrasounds revealed that his heart had a missing ventricle, his liver and stomach were in the wrong place, and he had multiple spleens. Parents Jesse and Shifra Hansen then brought Aiden to Lucile Packard Children’s Hospital Stanford.

Aiden had his first open-heart surgery when he was 10 days old under the hands of Mohan Reddy, MD, a professor of cardiothoracic surgery and of pediatrics at the School of Medicine. Over the years, Aiden has had three open-heart surgeries and a pacemaker implanted. Now he and his family are eagerly waiting for a donor heart.

Providing hope for kids like Aiden are the 19 heart transplant patients from 2013. Athlete and sports nut Gavin Jack of Soquel, Calif., is in that club. Last October, the 18-year-old received a donor heart in a transplant surgery led by Kat-suhide Maeda, MD, clinical assistant professor of cardiothoracic surgery. “Gavin’s recovery since his transplant has been amazing,” said his mother, Michele Parker, who expressed her extraordinary gratitude for the gift of organ donation.

Patient families know that it takes a village to provide world-class, nurturing care before, during and after a heart transplant. “We have extraordinary experience,” said CVI member David Rosenthal, MD, director of the hospital’s pediatric heart failure program and professor of pediatric cardiology. Rosenthal noted that the hospital’s busiest year before 2013 was 2009, with 17 transplants.

Success rates for pediatric heart transplants nationwide have risen over time. In general, there is a 90 percent survival rate for transplanted patients at the one-year point. At three years, there is an 80 to 85 percent survival rate. At five years, 75 to 80 percent. After that, survival rates become increasingly hard to trace because the treatments and protocols are constantly evolving.

For more: http://goo.gl/52SIOI.

GENOMICS from p. 4

Merker, MD, PhD, assistant professor of pathology, the service’s other co-director. “We involved physicians, other health-care providers, bioethicists, bioinformatics and other researchers, inviting everyone to voice their thoughts for the broadest, deepest discussions possible on how to apply these new methods and knowledge to clinical care.”

Lloyd Minor, MD, dean of the School of Medicine, said the Clinical Genomics Service exemplifies the bench-to-bedside philosophy at the heart of Stanford Medicine. “It will serve as a bridge to better connect the groundbreaking genetic science of our laboratories with the patient care of our hospitals and clinics,” Minor said. “The efforts of Drs. Ashley and Merker and their team are helping to shape a medical future in which disease risk can be more accurately predicted and treatments better tailored to individual patients.”

Stanford’s Clinical Genomics Service joins a small group of other medical centers — about 15 — that offer a variety of sequencing options.

In 2010, Ashley and Stephen Quake, PhD, the Lee Otterson Professor of Bioengineering, were the first in the world to use a healthy person’s complete genome sequence to predict risk for disease and anticipate reaction to several common medications. These new genomic services are the first wave to test this new knowledge. “As people who are in the trenches, I hope we can temper appropriate optimism with realism,” said Ashley.

The Clinical Genomics Service is the product of two years of discussion among the hospitals’ and School of Medicine’s departments of genetics, medicine, pathology and pediatrics and the Stanford Center for Genomics and Personalized Medicine.

For more: http://goo.gl/kp83UF.
New Collaborative Center for Stem Cell Genomics

BY KRISTA CONGER

The California Institute for Regenerative Medicine today awarded $40 million to Stanford University for the creation of a stem cell genomics center of excellence.

Co-directed by researchers at Stanford’s School of Medicine and the Salk Institute for Biological Studies in La Jolla, Calif., the center will bring together seven institutions to apply the power of genomic and bioinformatics approaches to solve mysteries of stem cell biology.

Of the total award, $19 million is to be used to support independent and collaborative projects among researchers throughout California.

Five other Stanford researchers also received research grants under the stem cell agency’s fifth round of basic biology grants during a meeting of the agency’s board of directors in Berkeley, bringing the total awarded today to Stanford to about $46 million.

Michael Snyder, PhD, professor and chair of genetics at Stanford, and Joseph Ecker, PhD, a professor in the plant biology laboratory at Salk, will serve as co-principal investigators for the center.

“We are extremely pleased and excited to launch this center, which will greatly elevate stem cell research throughout California and the world by bringing state-of-the-art expertise to researchers thirsty for access to these technologies,” said Snyder, who also directs Stanford’s Center for Genomics and Personalized Medicine and is the Stanford W. Ascherman, MD, FACS, Professor in Genetics.

In addition to outside collaborations, the center will pursue some fundamental questions and goals of its own, including collecting and characterizing induced pluripotent stem cell lines from patients with familial cardiomyopathy; applying single-cell genomic techniques to better understand cellular subpopulations within diseased and healthy brain and pancreatic tissues; and developing novel computational tools to analyze networks underlying stem cell genome function.

The center will also have a data collection and management component, run by UC-Santa Cruz, to facilitate the analysis of the large amounts of data generated via genomics study.

The basic biology grants support research into significant, unresolved issues in human stem cell biology. Researchers applying for the fifth round of these awards were asked to explore fundamental mechanisms and exploratory concepts to test highly novel, potentially transformative hypotheses.

Stanford recipients of the grants, which range from about $970,000 to $1.2 million, include Helen Blau, PhD,

CENTER continues on p. 7

CVI Hosts Regenerative Medicine Symposium

On Friday, February 28, Stanford’s Cardiovascular Institute hosted a Cardiovascular regenerative Medicine Symposium at the Li Ka Shing Center for Learning and Knowledge, with support from the California Stem Cell Agency (CIRM).

Two-hundred people registered and attended, with 15 speakers/moderators.

Speakers for the day-long conference included Victor Dzau, MD, Chancellor of Duke University Medical Center; Robert Simari, MD, PhD, from the Mayo Clinic; William Pu, MD, from Bostone Children’s Hospital; Jay Schneider, MD, PhD, for the University of Texas Southwestern; Timothy J. Kamp, MD, PhD, from the University of Wisconsin; Antonis K. Hatzopoulous, PhD, from Vanderbilt University, Joseph Metzger, PhD, and Jay Zhang, MD, PhD, both from the University of Minnesota; and Benoit Bruneau, PhD, Sheng Ding, PhD, and Bruce Conklin, MD, all from the Gladstone Institute, University of California - San Francisco.

CVI members who acted as moderators included Director of the CVI, Joseph Wu, MD, PhD; Pilar Ruiz-Lozano, PhD, Phillip C. Yang, MD, and Daniel Bernstein, MD.

Postdoctoral students Ke Yuan and Anthony Sturzu were awarded best poster awards.
Stanford Hospital Performs 500th Lung Transplant

BY SARA WYKES

Patsy Nix underwent a double-lung transplant at Stanford Hospital last October.

From the moment she took a breath in the Stanford Hospital & Clinics recovery room, 65-year-old Patsy Nix knew that her newly transplanted lungs were working. That first breath, she said, “was a miracle.”

What she didn’t know was that her transplant was far more than a personal landmark. Hers was the 500th lung transplant at Stanford, where a team lead by cardiothoracic surgeon Bruce Reitz, MD, completed the world’s first successful heart-lung transplant in 1981.

Before Nix’s transplant, every breath was an effort, hampered by lungs stiffened and scarred by idiopathic pulmonary fibrosis. “It was like an elephant sitting on my chest,” Nix said. Even with the aid of oxygen, the simple act of walking from one room to another was impossible.

When her local doctors told her that a transplant was the only option left to her, she was shocked. “Transplants happen to other people. I always thought they would be able to give me a pill that would make me better,” she said.

By September, Nix was so sick that Stanford moved her quickly to the top of the waiting list. In October, the phone call came. “It was hard knowing that someone had to have passed away to give me the lungs,” Nix said.

As soon as she woke up after the six-hour surgery, she could feel the difference. “I had never smelled air that clean.” Now back home in Lompoc, in Southern California, Nix is walking every day, rebuilding her physical strength.

Only a handful of the 80 lung transplant centers in the United States and Canada have performed as many lung transplants as Stanford, which has averaged about 50 annually, putting it in the top 10 percent of centers by volume. Its team also perform more heart-lung transplants than any other center in the nation each year.

“An milestone like this gives you the chance to look back on the efforts that have gone on here for a long time,” said David Weill, MD, medical director of Stanford’s lung and heart-lung transplant program since 2006. “I think about all the people we’ve helped and about the level of commitment shown by our team to get that done.”

Fewer than 2,000 lung transplants are performed on average each year.

For more: http://goo.gl/e5Q7qy.

CIRCLE from p. 6

professor of microbiology and immunology; Thomas Rando, MD, PhD, professor of neurology; Gary Steinberg, MD, PhD, professor of neurosurgery and of neurology; Xinnan Wang, PhD, assistant professor of neurosurgery; and Marius Wernig, MD, assistant professor of pathology.

Topics include investigating how human muscle stem cells establish a hierarchy and become dysfunctional during aging, how stem cell potency is regulated on a molecular level, how neural stem cells mediate recovery from stroke, how mitochondrial turnover is misregulated in Parkinson’s disease and what mechanisms underlie human-induced neuronal cell reprogramming.

With these awards, Stanford has received about $336 million from the stem cell agency. CIRM was established in November 2004 with the passage of a statewide ballot measure that provided $3 billion in funding for stem cell research at California universities and research institutions.

For more: http://goo.gl/62dYBS.
Daniel Bernstein, MD, the Alfred Woodley Salter and Mabel Smith Salter Endowed Professor in Pediatrics, will be a special section editor in the journal Circulation over the next 18 months. The section will focus on pediatric heart failure and transplantation. For more: http://goo.gl/aGbT6h or http://goo.gl/0UR5uP.

Helen Blau, PhD, and her colleagues identified for the first time a process by which the older muscle stem cell populations can be rejuvenated to function like younger cells. The paper was published in Nature Medicine in March. For more: http://goo.gl/T4Yxzf and http://goo.gl/FEb4TW.

Sharon Hunt, MD, transplant cardiologist, to receive 2013 Hewlett Award. The award is a recurring tribute to Hewlett, a professor and executive head of the Department of Medicine from 1916 to 1925. Past awardees include Marcus Krupp, Edward Rubenstein, Norman Shumway, and others. For more: http://goo.gl/FBm87f, http://goo.gl/wq2Uow and http://goo.gl/NltCQA.

Michael T. Longaker, MD, MBA, is the senior author on a clinical trial which shows a device, invented by Stanford researchers, used after scar-revision surgery can reduce the appearance of old scars. The articles was published in Plastic Reconstructive Surgery in February. For more: http://goo.gl/D080Zq and http://goo.gl/dlqnMS.

Hannah Valantine, MD, who has overseen the School of Medicine’s diversity efforts for the past eight years, will now be moving to the National Institutes of Health as the organization’s first chief officer for scientific workforce diversity. She will begin her new role this spring, after having been at Stanford for more than 28 years. For more: http://goo.gl/o50eLw.

Thu Vu, RN. CVI has hired a Thu Vu as clinical research nurse for the institute. Thu will be the nurse coordinator for the CIRM genetic cardiomyopathy grant as well as the biomarker research projects of the cardiovascular institute. She completed a BS in biology at UCLA and a MS in nursing at UC-San Francisco. For more: http://goo.gl/Ugj3CI.

Sean Wu, MD, PhD, was awarded a Grant-in-Aid award from the American Heart Association. It will be used to support his research into the key molecular mechanism regulating the earliest heart-forming cells in utero. It provides $70K per year for two years. For more: http://seanwulab.stanford.edu.

Phillip C. Yang, MD. The Stanford Center for Clinical and Translational Research and Education (Spectrum) awarded innovation grants (23 total) this February. Dr. Yang was awarded one of these grants for a “First in-human clinical trial of manganese-enhanced MRI (MeMRI) to assess peri-infarct injury” study. For more: http://goo.gl/ySUsur.
Hossein Bahrami (Paul Heidenreich/Michael McConnell Labs)
Abstract: High left ventricular ejection fraction is associated with worse outcomes in patients with and without heart failure
Meeting: American College of Cardiology (ACC)

Paul Burridge (Joseph Wu Lab)
Abstract: Chemically defined and small molecule-based generation of human cardiomyocytes
Meeting: Fourth International Conference on Stem Cell Engineering (ICSCE)

Pin-I Chen (Marlene Rabinovitch Lab)
Abstract: Amphetamine enhances the susceptibility of pulmonary arterial endothelial cells (PAEC) to apoptosis and DNA damage
Meeting: Keystone Symposia – Metabolism and Angiogenesis

Ayal Hendel (Matthew Porteus Lab)
Abstract: Quantifying genome editing outcomes at endogenous loci using SMRT sequencing
Meeting: Therapeutics Discovery Symposia USA 2014, Genome Engineering & Genome Editing

Luqia Hou (Ngan Huang Lab)
Abstract: Extracellular matrix-mediated endothelial differentiation of human induced pluripotent stem cells
Meeting: Experimental Biology 2014

Gina Jung (Dan Bernstein Lab)
Abstract: Maturation of ß-adrenergic receptor (ß-AR) signaling in human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs)
Meeting: Keystone Symposia - Stem Cells and Reprogramming

Daniel Kaiser (Paul Wang Lab)
Abstract: Source mapping and differential entrainment: a potential guide for ablation of complex arrhythmia
Meeting: Heart Rhythm 2014

Uwe Raaz (Phil Tsao Lab)
Abstract: Cbfa1 (Runx2) is a mediator of aortic stiffness and hypertension in a murine model of diabetes mellitus type 2
Meeting: Arteriosclerosis, Thrombosis and Vascular Biology (ATVB) 2014 Scientific Sessions

Ranjan Ray (Kiran Khush Lab)
Abstract: Treatment of left ventricular assist device associated arteriovenous malformations with thalidomide
Meeting: International Society for Heart and Lung Transplantation

Sharla Powell White (Wei Zhou Lab)
Abstract: Modulation of the PKC epsilon pathway affects macrophage expression
Meeting: Keystone Symposia - Molecular Cell Biology of Macrophages in Human Diseases

Congratulations!

Applications for the next round of CVI Postdoctoral Travel Awards ($750 each) are due on July 1st, 2014

APPLICATION REQUIREMENTS:
1. An accepted abstract to a national or international meeting related to cardiovascular research
2. The abstract must list CVI in the author affiliations when first submitted
3. The poster and/or slides used for an oral presentation must include the CVI logo

For more visit: http://cvi.stanford.edu/research/travel_grant_awards.html

To learn more about how you can support the Stanford Cardiovascular Institute please contact Joseph Wu (Director of CVI) or Cathy Hutton (Senior Associate Director, Medical Center Development).
http://medicalgiving.stanford.edu
Recipients of the Inagural CVI Manuscript Award

Yoko Kojima (first author); Nicholas Leeper (senior author)
Manuscript: CDKN2B regulates efferocytosis and atherosclerosis
Journal: J Clin Invest (IF 12.8)

Nigel G. Kooreman and Julia D. Ransohoff (co-first authors); Joseph C. Wu (senior author)
Manuscript: Tracking gene and cell fate for therapeutic gain
Journal: Nat Mater (IF 35.7)

Feng Lan, Andrew Lee, and Ping Liang (co-first authors); Joseph C. Wu (senior author)
Manuscript: Abnormal calcium handling properties underlie familial hypertrophic cardiomyopathy pathology in patient-specific induced pluripotent stem cells
Journal: Cell Stem Cell (IF 25.3)

Edda Spiekerkoetter (first author); Marlene Rabinovitch (senior author)
Manuscript: FK506 activates BMPR2, rescues endothelial dysfunction, and reverses pulmonary hypertension
Journal: J Clin Invest (IF 12.8)

Wen Tian and Xinguo Jiang (co-first authors); Mark R. Nicolls (senior author)
Manuscript: Blocking macrophage leukotriene B4 prevents endothelial injury and reverses pulmonary hypertension
Journal: Sci Transl Med (IF 10.8)

CVI Frontiers Seminars

12 noon to 1 p.m., Tuesdays
Li Ka Shing Center
Stanford School of Medicine
291 Campus Drive, Stanford, CA
Attendance is FREE. Public is Welcome

Jil Tardiff, MD, PhD
3/25/2014
Professor of Medicine and Cellular and Molecular Medicine, Steven M. Gootter Endowed Chair for the Prevention of Sudden Cardiac Death, U. of Arizona

Kiran Khush, MD
4/01/2014
Assistant Professor of Medicine (Cardiovascular Medicine) at the Stanford University Medical Center

Steven R. Houser, PhD
4/8/2014
Chair Department of Physiology, Director Cardiovascular Research Center, Laura H. Carnell Professor of Physiology, Temple University

Deborah Sweet
4/17/2014 (NOTE: Thursday, same time)
Editor of Cell Stem Cell; Publishing Director, Cell Press

Mark Nicolls, MD
4/22/2014
Associate Professor of Medicine (Pulmonary and Critical Care) and (Immunology and Rheumatology), Stanford

Thomas Quertermous, MD
4/29/2014
William G. Irwin Professor in Cardiovascular Medicine, Stanford

Gregory Hundley, MD
5/6/2014
Professor Internal Medicine-Cardiology, Wake Forest, Winston-Salem

Robert Harrington, MD
5/13/2014
Arthur L. Bloomfield Professor of Medicine and Chair, Department of Medicine, Stanford

James Spudich, MD
5/20/2014
Douglass M. and Nola Leishman Professor of Cardiovascular Disease, Stanford

Marlene Rabinovitch, MD
5/27/2014
Dwight and Vera Dunlevie Professor in Pediatric Cardiology, Stanford

Y. Joseph Woo, MD
6/03/2014
Norman E. Shumway Professor and Chair in Cardiothoracic Surgery, Stanford

David Harrison, MD
6/17/2014
Professor of Medicine, Director of Center for Vascular Biology, Vanderbilt University

Harnessing the Stem Cell Potential: A case for neural stem cell therapy. Yang N, Wernig M.

Water access points and hydration pathways in CLC H+/Cl-transporters. Han W, Cheng RC, Maduke MC, Tajkhorshid E.

Proc Natl Acad Sci USA. 2013; Dec 30.

Cancer Therapy-Induced Left Ventricular Dysfunction: Interventions and Prognosis. Thakur A, Witteles RM.

J Card Fail. 2013; Dec 27.

Small. 2013; Dec 23.

Fast pediatric 3D free-breathing abdominal dynamic contrast enhanced MRI with high spatiotemporal resolution. Zhang T, Cheng JY, Potnick AG, Barth RA, Alley MT, Uecker M, Lustig M, Pauly JM, Vasanawala SS.

Small. 2013; Dec 23.

Coronary artery bypass graft type and outcomes in maintenance dialysis. Silanire D, Hatky MA, Winkelmyer WC, Chang TL.

J Cardiovasc Surg (Torino). 2013; Dec 17.

Characterization of a Fluorescent Probe for Imaging Nitric Oxide. Ghebremariam YT, Huang NF, Kambhampati S, Volz KS, Joshi GG, Anslyn EV, Cooke JP.

Heart. 2013; Dec 10.

The combination of 9p21.3 genotype and biomarker profile improves a peripheral artery disease risk prediction model. Downing KP, Nead KT, Kojima Y, Assimes T, Maegdefessel L, Quertermous T, Cooke JP, Lueer NJ.

Clinical Reminders to Providers of Patients with Reduced Left Ventricular Ejection Fraction Increase Defibrillator Referral: A Randomized Trial. Gupta A, Gholami P, Turakhia MP, Friday K, Heidenreich PA.

Circ Heart Fail. 2013; Dec 6.

Stem Cells Transl Med. 2013; Dec 5.

Echocardiography. 2013; Dec 3.

Upcoming Grants

APRIL

Marfan Foundation
Early Investigator Grant Program
$75,000 over 2 years
April 14, 2014

Faculty Grant Program
$100,000 over 2 years
April 14, 2014

Stanford Cardiovascular Institute
Mechanisms and Innovation in Vascular Disease Training Grant (T32)
April 15, 2014

MAY

Progeria Research Foundation
Innovator Award
$75K per year for 2 years
May 2, 2014

Established Investigator Award
$100K per year for 3 years
May 2, 2014

Established Award

JUNE

National Institute of Health
Research Project Grant (Parent R01)
June 5, 2014

Children’s Heart Foundation
Medical Grant
$10,000 for 2 years
June 6, 2014

Postdoctoral & Pre-doctoral Awards

APRIL

National Institute of Health
Ruth L. Kirschstein National Research Service Awards (NRSA) for Individual Postdoctoral Fellows
Deadline: April 8, 2014

Stanford Cardiovascular Institute
Mechanisms and Innovation in Vascular Disease Training Grant (T32)
April 15, 2014

Multi-Disciplinary Training Program in Cardiovascular Imaging at Stanford (CVIS) (T32)
April 30, 2014

JUNE

National Institute of Health
K01 Mentored Research Scientist Development Awards
Deadline: June 12, 2014

K99/R00 NIH Pathway to Independence Award
Deadline: June 12, 2014

K08 Mentored Clinical Research Career Development Award
Deadline: June 12, 2014

K23 Mentored Patient-Oriented Research Career Development Award
Deadline: June 12, 2014

JULY

American Heart Association
Postdoctoral Fellowship
$10-50,000/year for 2 years
July 23, 2014

Mentored Clinical and Population Research Award
$75,000 max per year for 2 years
July 23, 2014

“Icardiovascular Disease” is now a category in the navigation table in the Research Management Group’s (RMG) Funding Information Resource webpage. This webpage provides links to recent announcements, internal Stanford funding opportunities, NIH, NSF, foundations, postdoctoral fellowships, graduate student funding opportunities, as well as to a searchable funding database. Visit this great resource at http://med.stanford.edu/rmg/funding/ or http://med.stanford.edu/rmg/funding/cardiovascular.html.

To be added to funding opportunity email distribution lists, please contact Jeanne Heschele at RMG at jheschele@stanford.edu.
Upcoming Meetings

APRIL

Keystone Symposia - Stem Cells and Reprogramming (Z4)
April 6 - 11, 2014
Olympic Valley, CA

Cardiovascular Research Foundation -- Annual Echocardiography Conference
April 9 – 11, 2014
New York, NY

American Society Clinical Investigation
April 25-27, 2014
Chicago, IL

SVS-Vascular Research Initiative Conference
April 30, 2014
Toronto, Canada

World Congress of Cardiology
May 4-7, 2014
Melbourne, Australia

Heart Rhythm Society Meeting
May 7-10, 2014
San Francisco, CA

International Society for Heart Research (ISHR)
May 12-15, 2014
Miami Beach, Florida

Big Data in Biomedicine Conference
May 21-23, 2014
Stanford, CA

Weinstein Cardiovascular Development Conference
May, 2014
Madrid, Spain

Peripheral Vascular Surgery Society
June 4, 2014
Boston, MA

Cardiovascular Research Foundation – Transcatheter Valve Therapies (TVT)
June 5-7, 2014
Vancouver, Canada

Vascular Annual Meeting
June 5-7, 2014
Boston, MA

Society for Vascular Medicine (SVM)
June 12-14, 2014
La Jolla, CA

American Society of Echocardiography
June 20-24, 2014
Portland, OR

MAY

AHA-Arteriosclerosis, Thrombosis and Vascular Biology (ATVB)
May 1-3, 2014
Toronto, Ontario

JUNE

AHA Quality of Care and Outcomes Research (QCOR)
June 2-4, 2014
Baltimore, MD

JULY

European Society of Cardiology Frontiers in Cardiovascular Biology
July 4-6, 2014
Barcelona, Spain

Stanford Researchers Attend ACC Scientific Sessions

The American College of Cardiology 63rd Scientific Session and Expo, was held March 29 – 31, 2014, in Washington D.C. with over 13,000 attendees. Over 57 Stanford and CVI researchers (faculty, postdocs and students) attended and participated in panel discussions, presented abstracts, posters, and talks.

Among the Stanford participants were: Marcus Alley; Andrew Patrick Ambrosy; Hossein Bahrami; Sowmya Balasubramanian; Gerald Berry; Charles Chan; Anne S. Chin; Timothy P. Dunn; William Fearon; Susan M Fernandes; Michael Fischbein; Peter Fitzgerald; Dominik Fleischmann; Karen Friday; Shea Gluhm; Francois Haddad; Robert Harrington; Paul Heidenreich; Mark A. Hlatky; Yasuhiro Honda; Wan Xing Hong; Shujin Hu; Sharon Hunt; Fumiaki Ikeno; Kiran Khush; Aya Kino; Alaina Kipps; Hideki Kitahara; Yuhei Kobayashi; William Kuo; David Lee; Won Hee Lee; Grace Liang; Michael T Longaker; George K Lui; Kenneth Mahaffey; David Maron; Michael McConnell; D. Craig Miller; Daniel J Murphy; Kaori Nakagawa; Patricia Nguyen; Kyuhachi Otagiri; Jarrett Rosenberg; David N Rosenthal; Veronica Sanchez-Freire; Ingela Schnittger; Stephanie Siehr; Ajay Srivastava; Shigemitsu Tanaka; Jennifer A Tremmel; Veronica Nguyen; Kyuhachi Otagiri; Jarrett Rosenberg; David N Rosenthal; Veronica Sanchez-Freire; Ingela Schnittger; Stephanie Siehr; Ajay Srivastava; Shigemitsu Tanaka; Jennifer A Tremmel; Mintu Turakhia; Ronald Witteles; Joseph C Wu; Ryotaro Yamada; Alan Yeung; and Paul Yock.

For more: http://accscientificsession.cardiosource.org/ACC.aspx.
Cardiovascular Institute Leadership

Joseph C. Wu, MD, PhD
Director, Stanford Cardiovascular Institute
Professor, Dept. of Medicine (Cardiovascular) and Radiology

Robert A. Harrington, MD
Arthur L. Bloomfield Professor of Medicine
Chair, Dept. of Medicine

Ronald L. Dalman, MD
Walter C. and Elsa R. Chidester Professor of Surgery
Chief, Division of Vascular Surgery

Dominik Fleischmann, MD
Professor, Dept. of Radiology
Chief, Cardiovascular Imaging

Kenneth Mahaffey, MD
Professor, Dept. of Medicine
Vice Chair of Medicine for Clinical Research

Mark Nicolls, MD
Associate Professor, Dept. of Medicine
Chief, Pulmonary and Critical Care Medicine

Tom Quertermous, MD
William G. Irwin Professor of Medicine
Co-Chief (Research), Division of Cardiovascular Medicine

Marlene Rabinovitch, MD
Dwight and Vera Dunlevie Professor in Pediatric Cardiology

Stephen J. Roth MD, MPH
Professor and Chief, Pediatric Cardiology
Director, Children’s Heart Center

Michael Snyder, PhD
Professor and Chair, Dept. of Genetics
Director, Stanford Center for Genomics and Personalized Medicine

Y. Joseph Woo, MD
Norman E. Shumway Professor in Cardiothoracic Surgery
Chair Dept. of Cardiothoracic Surgery

Alan Yeung, MD
Li Ka Shing Professor of Medicine
Co-Chief (Clinical), Division of Cardiovascular Medicine

Paul Yock, MD
Martha Meier Weiland Professor of Bioengineering and Medicine; and Professor, by courtesy, of Mechanical Engineering
Director of Biodesign