New Faculty

Dr. Narayan is embarking on a new venture and joining the Stanford team as Professor of Medicine and Director Electrophysiology Research and Atrial Fibrillation Program. He is trained in software engineering, cardiology and heart rhythm medicine. His clinical care research has led to unique ablation therapies for atrial fibrillation (AF) and ventricular arrhythmias.

Dr. McElhinney, a pediatric/congenital interventional cardiologist, recently returned to the Bay Area to assume his current role of Professor of Cardiothoracic Surgery and Director of Clinical Outcomes and Translational Research in the Lucille Packard Children’s Hospital Heart Center. His interests are in outcomes research, transcatheter device therapy for congenital heart disease, and collaborative translational investigation related to the pathophysiology, evaluation, and management of pediatric and adult congenital heart disease. He is currently an Associate Editor of the journal Circulation: Cardiovascular Interventions, and is the Chair of the Congenital Heart Disease Council of the Society for Cardiovascular Angiography and Interventions.

Clinical Biomarker Discovery Training Program

Modern Technologies and Applications in Biomarker Discovery

CVI is organizing a training program for post-doctoral researchers and clinicians that will cover how to utilize modern tools and technologies in biomarker discovery from cell and fluid based assays.

- **Dr. Holden Maecker** Multiplexing Biomarker Discovery, Nanoimmunoassay
- **Dr. Gary Nolan** Mass Cytometry
- **Dr. Shan Wang** GMR Nanosensors in Biomarker Discovery

Dr. Jayakumar Rajadas, Founding Director, Biomaterials and Advanced Drug Delivery Laboratory LC-MS-Based Method for Quantification of Biomarkers from Bio Fluids

CLINICAL HIGHLIGHTS

CVI Clinical Trial Research Manager

Ashima Goel has joined CVI as clinical trial research manager starting September 1, 2014. She comes to us from Pediatrics - Infectious Disease department at Stanford School of Medicine where she was working as a clinical research coordinator managing vaccine related NIH sponsored studies. Prior to that she worked at the Stanford IRB as an IRB associate. She obtained her MS in Molecular Biology from San Jose State University. She has over 10 years of industry and academic experience.

In an Era of Big Data

In a recent article, Dr. Harrington discusses the era of “big data” in cardiovascular medicine. ‘This brings both excitement and challenges to the clinician who is making dozens, if not hundreds, of clinical decisions every day in the care of individual patients.’ Calculating risks and benefits to help guide revascularization decisions: turning all available data into useful information was published in the Journal of the American College of Cardiology (*J Am Coll Cardiol*. 2014 Aug 5).

FEATURED STORY

Digoxin Tied to Increased Risk of Death with Atrial Fibrillation

Becky Bach, Stanford Medicine Office of Communication & Public Affairs

Dr. Mintu Turakhia has a new study showing that patients with a heart condition known as atrial fibrillation (AF) have a higher risk of death from the drug digoxin. Dr. Turakhia is now extending the AF outcomes research work into the Big Data analysis using machine learning.

› Story continued on page 4
Preventing Sudden Cardiac Death: Embracing the Gootter Mission

Each day in the United States, about 1,000 lives are lost to sudden cardiac death (SCD). The Stanford Cardiovascular Institute is embracing the Gootter Foundation mission and with generous support initiating projects aimed at preventing SCD.

The Gootter Foundation was established in memory of Steven M. Gootter to raise awareness and support for SCD research. In an unparalleled move to prevent avoidable deaths from sudden cardiac arrest, the Steven M. Gootter Foundation has provided Automated External Defibrillators (AEDs) to over 40 Southern Arizona schools, places of worship and recreational centers that did not have these life saving devices.

Dr. Curt Scharfe and Dr. Kitch Wilson are developing a molecular diagnostic test that will identify genetic mutations associated with SCD. The goal is to create cost-effective tools for cardiologist here at Stanford and beyond to assess patients at risk for SCD.

A seed grant award from the Gootter Foundation will also support Dr. Marco Perez, Director of the Stanford Inherited Cardiac Arrhythmia Clinic. Hypertrophic cardiomyopathy (HCM), in which a portion of the myocardium is thickened, is the most common cause of sudden death in athletes in the United States. Dr. Perez is working on improving the diagnostic accuracy for HCM and standardizing preventative measures for athletes. By comparing electrocardiogram (ECG) readings of 450 HCM patients treated at Stanford against 1,200 Stanford athletes, Dr. Perez will identify the ECG criteria that best distinguish normal athletes from athletes at risk for HCM and sudden death.

Visit the Gootter Foundation at website: www.stevenmgootterfoundation.org

About the Stanford Cardiovascular Institute (CVI)

CVI, currently consists of 110 faculty members representing, engineers, physicians, surgeons, basic and clinical researchers. At the core of CVI is integrating fundamental research across disciplines and applying technology to prevent and treat cardiovascular disease. To support cardiovascular research and education at CVI please contact Cathy Hutton, Senior Associate Director, Medical Center Development (cathy.hutton@stanford.edu) or Dr. Ingrid Ibarra (jibarra@stanford.edu).
A mechanical pump supported a failing heart, but did the job so well it eventually was no longer needed. Turning it off safely was the challenge. Donna Jackson spent nearly three years with an implanted device to boost her heart, but recovered well enough that she no longer needed it.

Donna Jackson’s heart, on the verge of failing two years earlier, had made a strong recovery. By spring 2013, she no longer needed the left ventricular assist device, or LVAD, that had been implanted in her chest almost three years earlier. It got in the way of things she wanted to do, like swim with her grandchildren. But her doctors at Stanford Hospital & Clinics believed the 70-year-old resident of the Central Valley would have trouble surviving the surgery to remove the mechanical heart pump. So they decided to find another way.

Jackson’s doctors threaded a slim plastic tube through a small incision to her femoral artery in the groin and up to her aorta, allowed them to plug the flow of blood to the LVAD. Then, they cut, cleaned and capped the wiring powering the LVAD so it no longer emerged from an opening in her abdomen. (The LVAD remains inside Jackson’s chest.) Jackson returned home from Stanford Hospital five days after the procedure. Their solution - is described in a paper published in the August issue of the Annals of Thoracic Surgery.

She has inspired the Stanford team to begin research on how to predict which LVAD patients might be like her. “If we can find out which patients are going to recover sooner, we can be more aggressive with them so they can be liberated from the LVAD,” said co-author Dipanjan Banerjee, MD, clinical assistant professor of cardiovascular medicine and medical director of Mechanical Circulatory Support Program. “And many of these patients will not want nor be able to tolerate a complete removal of the LVAD.”

The LVAD’s history of clinical performance and evolving technology puts it in a special category of devices whose usefulness continues to develop over time. The U.S. Food and Drug Administration in 1984 approved it as a “bridge” for patients on a path toward needing a heart transplant. Physicians eventually realized that some of their patients did so well with LVAD support that they no longer needed a transplant, and the FDA approved the device for permanent use in 2010. But an estimated 1 to 2 percent of LVAD patients’ hearts recover enough to do fine without that mechanical support. Younger patients are able to tolerate the major surgery required to remove the LVAD completely, but the surgery poses major risks for older patients.

To plan the new procedure, Ha and Banerjee consulted with two of the paper’s other authors: Philip Oyer, MD, PhD, associate chair of cardiothoracic surgery, and the first person to successfully use the LVAD as a bridge to transplant; and interventional radiologist Michael Dake, MD, professor of cardiothoracic surgery and medical director of Stanford’s Catheterization and Angiography Laboratories.

Other Stanford authors are Ahmad Sheikh, MD, clinical assistant professor of cardiothoracic surgery at Stanford; Peter H.U. Lee, MD, a former clinical instructor; and former resident Jay Desai, MD.

Information about the Department of Cardiothoracic Surgery, which helped to support the work, is available at http://ctsurgery.stanford.edu.

An inexpensive, portable, microchip-based test for diagnosing type-1 diabetes could improve patient care worldwide and help researchers better understand the disease, according to the device’s inventors at the Stanford University School of Medicine.

Described in a paper published online July 13 in Nature Medicine, the test employs nanotechnology to detect type-1 diabetes outside hospital settings. The handheld microchips distinguish between the two main forms of diabetes mellitus, which are both characterized by high blood-sugar levels but have different causes and treatments. Until now, making the distinction has required a slow, expensive test available only in sophisticated health-care settings. The researchers are seeking Food and Drug Administration approval of the device.

“With the new test, not only do we anticipate being able to diagnose diabetes more efficiently and more broadly, we will also understand diabetes better — both the natural history and how new therapies impact the body,” said Brian Feldman, MD, PhD, assistant professor of pediatric endocrinology and the Bechtel Endowed Faculty Scholar in Pediatric Translational Medicine. Better testing is needed because recent changes in who gets each form of the disease have made it risky to categorize patients based on their age, ethnicity or weight, as was common in the past, and also because of growing evidence that early, aggressive treatment of type-1 diabetes improves patients’ long-term prognoses. Decades ago, type-1 diabetes was diagnosed almost exclusively in children, and type-2 diabetes almost always in middle-aged, overweight adults. Full story: http://goo.gl/rm2Qyc.

Other Stanford co-authors are Wolfgang Winkelmayer, MD, ScD, associate professor of nephrology; Susan Frayne, MD, professor of medicine; Ciaran Phibbs, PhD, associate professor of pediatrics; and Paul Heidenreich, MD, professor of cardiovascular medicine. (J Am Coll Cardiol. 2014 Aug 19)
Cardiovascular disease is the leading cause of death in American women affecting more than 1 in 3 female adults.

Marcia Stefanick, Professor of Medicine, is co-director of Stanford’s Women and Sex Differences in Medicine (WSDM) center. The center focuses on women’s health and promotes the study of gender differences in basic and clinical research. Dr. Stefanick was Stanford’s leader, as Principal Investigator and chair of the executive committee of the Women’s Health Initiative (WHI), a nation-wide endeavor, and one of the largest U.S. prevention studies of its kind. Established by the National Institute of Health (NIH) in 1991 WHI sought to address the most common cause of death, disability and impaired quality of life in postmenopausal women.

The hormone therapy component of the WHI trial aimed to examine the risks and benefits of menopausal hormone therapy on the prevention of heart disease and osteoporosis, and any associated risk for breast cancer. Women participating in this part of the trail were given active estrogen, alone or combined with a progestin, pills or placebo (inactive pill). The trial, which ultimately enrolled 27,347 postmenopausal women age 50 to 79 years across 40 US centers led to a series of publications showing that the associated health risks of combination hormone therapy outweighed the benefits. The series of publications that stemmed from this work related to cardiovascular disease are accessible at http://www.nhlbi.nih.gov/whi/references.htm#cvd.

Dr. Stefanick’s next mission is to develop strategies for healthy behavior. WHISH (Women’s Health Initiative Strong and Healthy) anticipated to begin in December 2014 aims to address the impact of physical activity in postmenopausal women 65 and older and will enroll greater than 50,000 women.

Source for statistics

Women’s Heart

- 42.9 million women currently living with some form of cardiovascular disease
- 6.6 million women alive today with coronary heart disease and of these
- 2.6 million women have a family history of myocardial infarction
- 4.1 million women will suffer from angina

Girl’s Health

- An estimated 30.4% of girls age 2 to 19 are overweight or obese
- An estimated 63.7% of females age 20 and older are overweight or obese
- only 17.1% of adult women met the 2008 Federal Physical Activity Guidelines in 2012

Sex Differences

- More women than men die of cardiovascular disease each year
- 64% of women and 50% of men who die suddenly from CHD had no previous symptoms of this disease
- For women 35–44 years of age, the rate of death attributable to CHD has been increasing by an average of 1.3% annually while comparable rates among men have been falling
- Following a heart attack, 18% of women 45–64 years of age and 8% of men 45–64 will be diagnosed with heart failure within five years
- After a heart attack, women are 55% less likely than men to participate in cardiac rehabilitation

It would be simplistic to say we’re only studying men vs. women. We are studying the differences between women and men throughout the continuum of life’s many complex stages.

- Marcia L. Stefanick, PhD

Benchmarking Women’s Health Research
Dr. Paul Yock, Professor of Medicine and Bioengineering, is internationally known for his work in discovering and testing new medical devices, including the Rapid Exchange (tm) balloon angioplasty and stent system, now the primary system in use worldwide. The Stanford Program in BioDesign initiated in 2001 was his creation as well. It’s a program focused on training the future leaders in biomedical technology. It facilitates conception of an idea to fulfill an immediate clinical need.

Thirty-three companies have been launched based on projects synthesized in the Biodesign Program, 275,000 patients have been impacted by their innovations and greater then 500 jobs created as of June 2014. These are just a few measures that begin to describe the effectiveness of the Biodesign Program, where discovery is viewed as a process that if mastered can lead to invention. The ability to calculate risk and disengage upon critical assessment is highly valued.

Stanford has a legacy of pioneering innovations and disrupting markets and the incoming 2015 class in India will tackle a cardiovascular valvular need.

Flies, Worms and Humans – and the modENCODE Project

By Krista Conger, Office of Communication & Public Affairs at the School of Medicine

It’s a big day in comparative biology. Researchers around the country, including Stanford geneticist Michael Snyder, PhD, are publishing the results of a massive collaboration meant to suss out the genomic similarities (and differences) among model organisms like the fruit fly and the laboratory roundworm. A package of four papers, which describe how these organisms control how, when and where they express certain genes to generate the cell types necessary for complex life, appears today in Nature.

The research is an extension of the ENCODE, or Encyclopedia of DNA Elements, project that was initiated in 2003. As part of the large collaborative project, which was sponsored by the National Human Genome Research Institute, researchers published more than 4 million regulatory elements found within the human genome in 2012. Known as binding sites, these regions of DNA serve as landing pads for proteins and other molecules known as regulatory factors that control when and how genes are used to make proteins.

The new effort, known as modENCODE, brings a similar analysis to key model organisms like the fly and the worm. Snyder is the senior author of two of the papers published today describing some aspects of the modENCODE project, which has led to the publication, or upcoming publication, of more than 20 papers in a variety of journals. The Nature papers, and the modENCODE project, are summarized in a News and Views article in the journal (subscription required to access all papers).

As Snyder said, “We’re trying to understand the basic principles that govern how genes are turned on and off. The worm and the fly have been the premier model organisms in biology for decades, and have provided the foundation for much of what we’ve learned about human biology. If we can learn how the rules of gene expression evolved over time, we can apply that knowledge to better understand human biology and disease.”

The researchers found that, although the broad strokes of gene regulation are shared among species, there are also significant differences. These differences may help explain why humans walk, flies fly and worms slither, for example:

The wealth of data from the modENCODE project will fuel research projects for decades to come, according to Snyder.

“We now have one of the most complete pictures ever generated of the regulatory regions and factors in several genomes,” said Snyder. “This knowledge will be invaluable to researchers in the field.”

Bioengineering and Chemical Engineering Building at Stanford Named for Gifts from Ram and Vijay Shriram
By Lisa Lapin, University Communications

Stanford University will name a new home for bioengineering and chemical engineering in recognition of gifts from university trustee Kavitark “Ram” Shriram and his wife, Vidjealatchoumy “Vijay” Shriram. The couple have provided $57 million in support for the new Shriram Center for Bioengineering & Chemical Engineering, the fourth and final building in the university’s new Science and Engineering Quad. The Shrirams also will endow the departmental chair in the Department of Bioengineering, CVI member, Dr. Norbert Pelc, bringing their total philanthropic support in this area to $61 million.

Stanford has raised $78 million toward the total cost of the Shriram Center, including significant gifts from several other donors. The first occupants of the Shriram Center are scheduled to move in later this month.

“The Shriram Center will unite innovators in science, engineering and medicine, enabling them to work together more closely and more quickly,” said John L. Hennessy, Stanford’s president. “We have also put teaching spaces at the very heart of the research facility, ensuring that future generations will be ready to realize the full potential of these fields. We are deeply grateful to Ram and Vijay for sharing our vision, and for the extraordinary generosity that is making the center a reality.”

NIH Issues Finalized Policy on Genomic Data Sharing

NIH Office of Communications

The National Institutes of Health has issued a final NIH Genomic Data Sharing (GDS) policy to promote data sharing as a way to speed the translation of data into knowledge, products and procedures that improve health while protecting the privacy of research participants. The final policy was posted in the Federal Register Aug. 26, 2014 and published in the NIH Guide for Grants and Contracts Aug. 27, 2014.

Genomic Data Sharing Policy

Starting with funding applications submitted for a Jan. 25, 2015, receipt date, the policy will apply to all NIH-funded, large-scale human and non-human projects that generate genomic data. This includes research conducted with the support of NIH grants and contracts and within the NIH Intramural Research Program. NIH officials finalized the policy after reviewing public comments on a draft released in September 2013.

The GDS policy can be traced to the Human Genome Project, completed in 2003, which required rapid and broad data release during its mapping and sequencing of the human genome. The GDS policy is an extension of and replaces the Genome-Wide Association Studies (GWAS) data sharing policy.

For complete information about genomic data sharing and a link to the GDS policy, see http://www.nih.gov/news/health/aug2014/od-27.htm

2014 ARR Distinguished Investigators Award by Amy N. Thomas, Stanford Radiology

The Academy of Radiology Research announced Distinguished Investigators for 2014. This prestigious honor recognizes individuals for their accomplishments in the field of imaging research. Over the past few decades, the radiology research community has been responsible for many important advances that have had a profound impact on healthcare.

The Academy Induction Ceremony will take place at this year’s RSNA (Radiology Society of North America) annual meeting in November. Congratulations to Stanford Radiology Faculty who are among those named as 2014 Distinguished Investigators.

Gary Glover, PhD Brian Hargreaves, PhD Norbert Pelc, ScD Joseph Wu, MD, PhD
Stanford Partnering with Google [X] and Duke to Better Understand the Human Body

By Ruthann Richter, Office of Communication & Public Affairs at the School of Medicine

Most biomedical research is focused on disease and specific treatments for illness, rather than on understanding what it means to be healthy. Now researchers at Stanford, in collaboration with Duke University and Google [x], are planning a comprehensive initiative to understand the molecular markers that are key to health and the changes in those biomarkers that may lead to disease. The project was featured in a Wall Street Journal article.

The study is at the very early stages, with researchers planning to enroll 175 healthy participants in a pilot trial later this year. The participants will undergo a physical exam and provide samples of blood, saliva and other body fluids that can be examined using new molecular testing tools, such as genome sequencing. The pilot study will help the researchers design and conduct a much larger trial in the future.

“The study being planned will allow us to better understand the variation of many biomarkers in the normal population and what parameters are predictive of illness and may eventually change as a given individual transitions from a healthy to a diseased state. This will be a critical study that will likely help the field of health care for decades to come,” said Gambhir, who also directs the Canary Center at Stanford for Cancer Early Detection.

The work is sponsored by Google [x] and will be led by Andrew Conrad, PhD, a cell biologist and project manager at the company.

“We continue as a global community to think about health primarily only after becoming ill...To understand health and illness effectively, we have to have a better understanding of what ‘normal’ or ‘healthy’ really means at the biochemical level.”

The Gene Team

By Sara Wykes, Office of Communication & Public Affairs at the School of Medicine

Stanford’s hospitals have launched a new testing service for their patients that deciphers their DNA. The clinical genomic service will help doctors at Stanford Hospital & Clinics and Lucile Packard Children’s Hospital Stanford diagnose and treat genetic conditions. With this, Stanford joins a small group of medical centers—about 15—that provide genome sequencing.

During its pilot phase, testing will be limited to patients with inherited cardiovascular or neurological disease, hereditary cancer risk, unexplained drug reactions or an illness that has defied diagnosis. Its directors are Euan Ashley, MCRP, DPhil, associate professor of medicine and of genetics, and Jason Merker, MD, PhD, assistant professor of pathology.

In 2010, Ashley and bioengineering professor Stephen Quake, PhD, used a healthy person’s genome sequence to predict disease and anticipate reaction to several common medications. These new genomic services are the first wave to test this new knowledge.

Detection Without Radiation

By Erin Digitale, Office of Communication & Public Affairs at the School of Medicine

After learning they have cancer, lymphoma patients usually get scans to locate tumors throughout their bodies. But the standard imaging method, whole-body PET-CT, has a big drawback: One scan exposes the patient to as much ionizing radiation as 700 chest X-rays.

This is especially risky for children and teenagers, who are particularly vulnerable to radiation because they are growing. They are also more likely than adults to live long enough afterward to develop a secondary cancer. That’s why researchers at the School of Medicine and Lucile Packard Children’s Hospital Stanford developed an imaging technique that uses no radiation at all. The method, described in The Lancet Oncology, is a modification of magnetic resonance imaging that employs a novel contrast agent.
Funding Opportunities

FACULTY

- NIH-R01 Improvement of Animal Models for Stem Cell-based Regenerative Medicine
 - Deadline: Oct. 5, 2014
- Research Project Grant (Parent R01)
 - Deadline: Oct. 5, 2014
- Innovator Award- Progeria Research Foundation
 - Amount of funding: $75K for 2 years
 - Deadline: Oct. 27, 2014
- Progeria Research Foundation Established Investigator Award
 - Amount of funding: $100K for 3 years
 - Deadline: Oct. 27, 2014
- Data Science and Applications-Stanford University
 - Deadline: Sept. 30, 2014 (LOI)
- Spectrum Pilot Grant
 - Amount of funding: $15-50K for 1 year
 - Deadline: Sept. 30, 2014 (LOI)

POSTDOCTORAL FELLOWS

- K01 Mentored Research Scientist Development Awards
 - Deadline: Oct. 12, 2014
- K08 Mentored Clinical Research Career Development Award
 - Deadline: Oct. 12, 2014
- K23 Mentored Patient-Oriented Research Career Development Award
 - Deadline: Oct. 12, 2014
- K99/R00 NIH Pathway to Independence Award
 - Deadline: Oct. 12, 2014
- Postdoctoral Research Fellowship- A.P. Giannini Foundation
 - Amount of funding: $46-50K for 3 years
 - Deadline: Nov. 3, 2014
- Prevention Research Center Fellowship - Stanford University
 - Deadline: Nov. 15, 2014

Kirschstein National Research Service Award (F32)
- Deadline: Dec. 8, 2014

ACCF Young Investigator Award-American College of Cardiology
- Amount of funding: $2K
- Deadline: Sept. 15, 2014

ACCF / William F. Keating, Esq. Endowment Career Development Award
- Amount of funding: $70K for 1 year
- Deadline: Sept. 22, 2014

Travel and Exchange Ideas! CVI Award
- cvi.stanford.edu/research/travel_grant_awards.html

Faculty Highlights

- Michael V. McConnell, MD
 - ‘Multi-Disciplinary Training Program in Cardiovascular Imaging at Stanford’
- Daria Mochly-Rosen, PhD
 - ‘Mechanisms of Ethanol-Induced Cardiac Protection’
- Jill Helms, PhD
 - “Mechanobiology at Healing Bone-Implant Interfaces”
- Helen M. Blau, PhD
 - “Mass Cytometry to Delineate the Human Muscle Stem Cell Hierarchy and Dysfunction in Aging”
- Seung K. Kim, MD, PhD
 - ‘Induction of PDGF signaling to regenerate human beta cells’

- Joshua W. Knowles, MD
 - has been appointed ASSISTANT PROFESSOR OF MEDICINE Prevention and Stanford Center for Inherited Cardiovascular Disease.
- Christopher Cheng, MD
 - is now the Director of the Vascular Intervention Biomechanics & Engineering Lab
- Alan Yuen Yeung, MD
 - is working to assess the Improvement of Interventional Devices for Cardiovascular Disease - Imaging Evaluation.
- William F. Fearon, MD
 - working with St. Jude Medical Cardiovascular Division on Portico TM Re-sheathable Transcatheter Aortic Valve System US IDE Trial (PORTICO).
2014-2015 CVI Frontiers in Cardiovascular Science

12 noon - 1 p.m., Frontiers Tuesdays, Starting Sept. 9, 2014, Li Ka Shing Center
Public is Welcome. For information please e-mail preston@stanford.edu

2014

Howard Bachner, MD 9/9/2014
Editor in Chief, JAMA and The JAMA Network

Norbert Voelkel, MD 9/16/2014
Professor (Affiliate), School of Pharmacy, Virginia Commonwealth U.

Roy Vagelos, MD 9/23/2014
Former President and CEO of Merck

Kenneth Mahaffey, MD 10/7/2014
Stanford, Vice Chair of Clinical Research

Ronald Dalman, MD 10/14/2014
Stanford, Chief, Division of Vascular Surgery

Jonathan R. Lindner, MD 10/21/2014
Professor of Cardiology, Knight Cardiovascular Institute

John F. Keaney, Jr., MD 10/28/2014

Bernard Gersh, MB, ChB, DPhil 11/11/2014
Mayo Clinic

Mintu Turakhia, MD 11/25/2014
Stanford, Director Cardiac Electrophysiology VA Palo Alto

Joseph Hill, MD, PhD 12/9/2014
Chair in Cardiovascular Diseases, UT Southwestern

Irv Weissman, MD 12/16/2014
Director Stanford Institute for Stem Cell Biology & Regenerative Medicine

2015

Beth Pruitt, PhD 1/13/2015
Stanford, Associate Professor of Mechanical Engineering

Eric Olson, PhD 1/20/2015
Professor and Chair, UT Southwestern

Richard Lawn, PhD 1/27/2015
Stanford, CVI Consulting Professor

Roberto Bolli, MD 2/3/2015
Professor and Chief Division of Cardiology, U. Louisville

Kristine Red-Horse, PhD 2/10/2015
Stanford, Assistant Professor Dept. of Biology

Garrett Fitzgerald, MD 2/17/2015
Professor of Medicine and Pharmacology, U. Penn.

Jeffery D. Molkentin, PhD 2/24/2015
Professor, Children’s Hospital Medical Center, HHMI Investigator

Andrew Plump, MD, PhD 3/3/2015
Deputy to the President Global R&D, Sanofi

James T. Willerson, MD 3/10/2015
President and Medical Director, Texas Heart Institute

Joseph Loscalzo, MD, PhD 3/17/2015
Chair, Dept. of Medicine, Brigham and Women’s Hospital

Leslie Leinwand, PhD 4/21/2015
Prof., Molecular, Cellular & Developmental Biology, U. Colorado-Boulder

Junichi Sadoshima, MD, PhD 4/28/2015
Professor, Cell Biology & Molecular Medicine, Rutgers U.

Cardiovascular Conferences

Western Vascular Society
September 20-23, 2014
Coronado, CA

Vascular Biology (NAVBO – North American Vascular Biology)
October 19-23, 2014
Monterey, CA

AHA ReSuscitation Science Symposium
November 15-16, 2014
Chicago, Illinois

AHA Cardiovascular and Stroke Nursing Symposium
November 18-19, 2014
Chicago, Illinois

AHA Scientific Sessions 2014
November 19-20, 2014
Chicago, Illinois

VEITH-Vascular Endovascular Issues Techniques Horizons
November 18-22, 2014
New York, NY
HEALTHY LIVING STARTS HERE
Community Health Fair / Palo Alto YMCA
Saturday, September 13, 2014
2:00 – 5:00 p.m.
River of Life Christian Church
1177 Laurelwood Road, Santa Clara, CA 95054

You’re welcome to join this special health and wellness event featuring:
• Panels & Workshops with Doctors and Medical Professionals
• Group Exercise demonstrations
• Ask-a-Doctor Booth
• Wellness consultations

For more information contact:
Lorraine Hart at 650.842.2706 or Lorraine.hart@ymcasv.org

Sponsored by the YMCA, River of Life Foundation & Stanford CVI

What is Heart Walk?
The Heart Walk is the American Heart Association’s premiere event for raising funds to save lives from this country’s No. 1 and No. 4 killers - heart disease and stroke. Designed to promote physical activity and heart-healthy living, the Heart Walk creates an environment that’s fun and rewarding for the entire family.

The CVI is walking for healthy hearts.
2014 Silicon Valley Heart & Stroke Walk
October 11, 2014
KLA-Tencor Campus
1 Technology Drive, Milpitas, CA 95035
Join our team or donate!

Presented by
Vera Moulton Wall Center
for Pulmonary Vascular Disease
at Stanford

Trial to Assess Chelation Therapy (TACT) and equipoise: When evidence conflicts with beliefs. Maron DJ, Hlatky MA. Am Heart J. 2014 Jul;168(1):4-5

B-type natriuretic peptide predicts 30-day readmission for heart failure but not readmission for other causes. Flint KM, Allen LA, Pham M, Heidenreich PA. J Am Heart Assoc. 2014 Jun 10;3(3):e000806

Hemocompatibility evaluation of small elastomeric hollow fiber membranes as vascular substitutes. Mercado-Pagán AE, Ker DF, Yang Y. J Biomater Appl. 2014 Jun 9

JULY 85 Publications

Electrocardiographic Repolarization-Related Variables as Predictors of Coronary Heart Disease Death in the Women’s Health Initiative Study. Rautaharju PM, March ZM, Vitolins M, Perez M, Allison MA, Greenland P, Soliman EZ. J Am Heart Assoc. 2014 Jul 28;3(4)

Advances in understanding percutaneous coronary intervention pharmacology: ischemia, bleeding, the ISAR research group, and a commitment to progress. Harrington RA, Popma CJ, Gibson CM. *Coron Artery Dis.* 2014 Sep;25(6):453-5

Aortic Arch Vessel Geometries and Deformations in Patients with Thoracic Aortic Aneurysms and Dissections. Suh GY, Beygui RE, Fleischmann D, Cheng CP. *J Vasc Interv Radiol.* 2014 Jul 22

Genomics in clinical practice. Priest JR, Ashley EA. *Heart.* 2014 Jul 25

Perspective for special Gurdon issue for differentiation: Can cell fusion inform nuclear reprogramming? Burns D, Blau HM. Differentiation. 2014 Aug 20

Acute kidney injury in the pediatric cardiac patient. Axelrod DM, Sutherland SM. *Paediatr Anaesth.* 2014 Sep;24(9):899-901

For the complete list of publications (June-August) visit: http://cvi.stanford.edu/research/memberpubs.html
Keynote Speaker: Douglas L. Mann, MD
Chief, Cardiovascular Division
Washington University School of Medicine
REGISTER: http://goo.gl/yoH7bP