The Stanford Cardiovascular Institute (CVI) is pleased to announce the appointment of Richard Lawn, PhD, as CVI Consulting Professor effective Nov. 1, 2013.

Richard Lawn received a B.A. degree in astronomy from Harvard College and a PhD in molecular, cellular and developmental biology from the University of Colorado. His post-doctoral research under Tom Maniatis at Caltech featured the construction of the first human genomic DNA library and the isolation and cloning of the globin genes.

As a senior scientist for ten years at Genentech, his laboratory cloned and characterized a number of important genes and invasive and Robotic Cardiac Surgery Program and the Cardiac Transplantation and Mechanical Circulatory Support Program.

He has led a successful career in the operating room, classroom and laboratory. As a surgeon who performs 350 to 400 heart surgeries a year, he has built a thriving clinical practice, pioneering multiple, innovative procedures, including minimally invasive techniques for mitral and aortic valve repair and reconstruction.

His research encompasses basic, translational and clinical projects. His laboratory, funded by the National Institutes of Health, investigates new paths to myocardial repair through angiogenesis — the process through which new blood vessels form from pre-existing vessels — stem cells and...
WOO from p. 1

Woo, who was born in Missouri and raised in New Jersey, earned a bachelor’s degree from the Massachusetts Institute of Technology and a medical degree from the University of Pennsylvania, where he conducted his postgraduate surgical training. Woo also completed a postdoctoral research fellowship in novel molecular strategies for attenuating myocardial ischemic injury, for which he won the American Heart Association Vivien Thomas Young Investigator Award.

Woo joined the Penn faculty in 2002 as the director of the Minimally Invasive Cardiac Surgery Program. He has advanced the field of complex valve repair and serves as principal investigator for several clinical device trials and translational scientific clinical trials, such as delivering stem cells during coronary artery bypass grafting and mechanical heart pump implantation.

“I think he epitomizes the rare breed of cardiothoracic surgeon who’s a triple threat.”

“I think he epitomizes the rare breed of cardiothoracic surgeon who’s a triple threat,” said Wu, professor of cardiovascular medicine and of radiology, and director of the Stanford Cardiovascular Institute. “He excels at academic medicine. Clinically, he’s world-renowned in mitral valve repair and the use of mechanical devices. From a research perspective, he’s one of the few CT surgeons I know who has continuous NIH funding. As an educator, he is passionate in training the next generation of thought leaders in CT surgery.”

“I’m looking forward to working closely with him to take the Stanford Cardiovascular Institute and cardiothoracic surgery to the highest level — to be internationally recognized as the best program in the world.”

Woo is married and has two teenage children.

LAWN from p. 1

their recombinant proteins in the fields of hemostasis and atherosclerosis, including clotting factor VIII (now a standard treatment for hemophelia), anti-thrombin III, LCAT, CETP and Lp(a).

Dr. Lawn then served as a Professor of Cardiovascular Medicine at Stanford and Vice President, Discovery Research at CV Therapeutics, where he used the emerging techniques of RNA profiling to identify the defect in Tangier disease to reveal the role of the lipid transporter ABCA1 in the HDL cholesterol pathway.

Dr. Lawn has also worked with biotech companies in the development of novel diagnostics using RNA profiling and proteomics. He continues his interest in joining basic research with biotech commitment to translate biomedical research into drug and diagnostic application.

For more: http://tinyurl.com/kzzcxez.
Exercise as a Better Heart ‘Prescription’

By MOLLY SHARLACH

A recent six-nation survey from the World Heart Organization shows that a majority of adults walk for less than half an hour each day. This year’s World Heart Day’s (Sept. 29) theme was changing lifestyles to prevent and control cardiovascular disease, the number one cause of death in the United States and worldwide.

Both common sense and medical science increasingly point to regular physical activity as a simple and effective way to decrease the risk of cardiovascular disease and a host of other ailments. But what about patients who have already had a stroke or heart failure, or those with coronary heart disease or prediabetes? Can exercise help keep these patients alive? How do the outcomes of exercise interventions compare with those of drug treatments?

Stanford professor John Ioannidis, MD, DSc, addresses these questions in a meta-analysis published in the British Medical Journal. In collaboration with Huseyin Naci, a researcher and fellow at the London School of Economics and Harvard Medical School, Ioannidis culled data from more than 300 clinical trials, representing more than 300,000 individual patients. Ioannidis and Naci compared the effectiveness of exercise with various drug interventions to prevent mortality for patients recovering from stroke or heart failure, as well as those with coronary heart disease or prediabetes.

For patients with coronary heart disease or prediabetes, exercise and drug interventions appeared to have similar effects on mortality. However, for those recovering from a stroke, exercise led to better outcomes than drugs, while for those with previous heart failure, diuretics in particular prevented deaths more effectively than exercise or other drugs.

Still, Ioannidis and Naci emphasize that not enough trials have been done on the mortality benefits of exercise – only 57 of the 305 trials they analyzed included exercise interventions – and that in future trials, exercise should be directly compared to drug treatments.

While Centers for Disease Control and Prevention statistics show that about one-third of primary care physicians prescribe an “exercise pill” to their patients, these prescriptions may be more effective when supervised by a rehabilitation program. “Exercise has been quite neglected to-date,” Ioannidis told me. “There is plenty of room to reap more benefits from something that is both effective and enjoyable. The pendulum may need to swing back [from drug treatments to lifestyle interventions] for many reasons, including the intolerable cost of many medications and their potential toxicities.”

For more: http://tinyurl.com/mlcut7r.

Cancer Drug Appears Helpful for Diabetes

By MICHELLE BRANDT

Two recently-published studies provide new insight on diabetes and show how a cancer drug was used to treat the disorder in animal models.

The studies, done in mice, identify a previously unexpected link between a low-oxygen condition called hypoxia and the ability of cells in the liver to respond to insulin. The drug, aflibercept (marketed as Eylea or Zaltrap), is used to treat metastatic colorectal cancer and a form of macular degeneration. Aflibercept is a member of a family of proteins that inhibit the vascular endothelial growth factor, or VEGF, pathway. It works by blocking the growth of the blood vessels into tumors and starving them of oxygen.

The lab of Calvin Kuo, MD, PhD, professor of medicine, identified a series of protein interactions that link VEGF inhibitors and blood glucose levels. “We were surprised to find that this drug currently used in patients for cancer treatment had beneficial effects on diabetes in laboratory mice and could, potentially, in humans,” said Kuo, senior author of one of the Nature Medicine papers.

Together, the studies explain an observation made several years ago by Kuo and his lab members that VEGF inhibitors, such as aflibercept, could lower blood glucose levels in mice. There have been intriguing hints that these inhibitors could function in a similar way in humans, but human studies have not been formally conducted.

For more: http://tinyurl.com/n4hxvtc.

Link to full articles in Nature Medicine:
http://tinyurl.com/ougcsu8 and http://tinyurl.com/ooih74og
Cardinal Athlete Dives Back in After Surgery

By SARA WYKES

Thoracic outlet syndrome (TOS) would make Taylor Sishc’s left arm feel numb and weak. He underwent surgery at Stanford to treat the condition.

Sishc, an All-American high school diver recruited to Stanford University’s elite team, had received prompt attention from the team’s trainers and sports medicine doctors, but until he was referred to Stanford Hospital & Clinics’ vascular surgeon Jason Lee, MD, he didn’t really know what was going on with his arm.

Lee, an associate professor of surgery at the School of Medicine, had his suspicions about what the problem was: Sishc might have thoracic outlet syndrome (TOS), a condition often seen in athletes but also found in people who use their arms in a repetitive motion, which can lead to the compression of nerves or blood vessels, or both, in the thoracic outlet — an area bounded by the base of the neck and the first rib.

Sishc had been a gymnast since childhood and a serious competitive diver since he was 13. By the time he reached Stanford, he had been lifting his arms over his head in a similar motion for years — exactly the kind of long-term overuse that creates thoracic outlet syndrome.

The tricky part about TOS, Lee said, is not just making the diagnosis. Trainers, therapists and surgeons have worked on TOS treatment for decades with results that were not always consistent. In a 2010 paper published in the Journal of Vascular Surgery, Lee and his colleagues presented a review of nine years of Stanford TOS patients that showed that a specific set of steps for work-up and surgical intervention increased successful outcomes for TOS operations from 50 percent to nearly 90 percent.

Lee asked Sishc to begin a six- to eight-week course of physical therapy of what’s called the Edgelow protocol. It’s a series of movements and breathing and posture adjustments designed to alter the compressed space of muscles and bones that causes TOS.

What his research had shown was that patients who improved completely with the therapy obviously wouldn’t need the surgery and that those who didn’t respond at all probably wouldn’t be helped by further anatomical reconfiguration. Those who were helped initially and then plateaued would be the best candidates for what Lee calls “the ultimate decompression of the nerve, the ultimate space clearing.”

Lee wanted to determine, before making a decision about surgery, to what extent such exercises would help Sishc. Surgery would mean the permanent removal of his first rib to reduce pressure on the compressed nerves. Sishc had never heard of TOS before his diagnosis; he was surprised at the possible surgical solution. Sishc began diligently doing the Edgelow exercises.

The therapy did help — until it didn’t. That was exactly what Lee was expecting in the high-performing athlete. Lee went in and removed Sishc’s first rib. The surgery was followed by months of rest for Sishc’s arm, physical therapy and a gradual return to his sport. “It was a lot easier than I expected it to be,” Sishc said. By the time he was given the go-ahead to dive again, he’d been out of the water for six months.

Finally, he was allowed to train again. “We took it very slow,” Sishc said, “and my first meets were a little rough. For a year, I struggled with getting strong and getting everything back to where it was. I didn’t expect to make the NCAA championships.” But his old form came back. In January 2012, as a Stanford senior, he helped his team win the annual Stanford Diving Invitational — taking the top spot in five of six dives he made from the competition’s highest platform, the 10-meter.

Last March Sishc qualified for the NCAA national diving championships, winning a chance to compete against the nation’s very best divers. “I honestly did not think I was going to get back up there. So it was a great feeling to say that I did it,” Sishc said. “I also knew that it wouldn’t have been possible without the medical team here at Stanford, especially Dr. Lee.”

Sishc made the top group of finishers in the 3-meter springboard, as well as in the 10-meter platform he once thought he’d never see again, to become a collegiate Division 1 All-American in two events. ✩

Virus Could be Barometer of Immune System

BY EMILY HITE

To keep a patient healthy following an organ transplant, doctors must prescribe the right balance of immune-system-suppressing drugs: The medications need to be strong enough to prevent rejection of the foreign body but not leave the immune system at risk for infection. Now, a study by Stanford scientists has pinpointed a little-known virus that spreads when these immunosuppressant drugs take effect.

The anellovirus, first identified in 1997, could be a barometer of immune system strength, thereby informing more precise and less reactive treatment for transplant recipients. Lead author Stephen Quake, PhD, and collaborators isolated specific DNA fragments floating in the blood plasma of 96 heart and lung transplant patients using a technique of genomics, of which Quake is a pioneer. The team studied how the drugs affected the body’s microbiome, or collection of bacteria, fungi and viruses.

As described in a release, the researchers found that “lower levels of anellovirus suggest a stronger immune system and an elevated risk of organ rejection, while higher levels of anellovirus suggest a weaker immune system with a corresponding shift in risk toward vulnerability to infection.”

Hannah Valentine, MD, professor of cardiovascular medicine and senior associate dean for diversity and leadership at the School of Medicine, remarked, “These findings suggest an effective tool to individualize the monitoring and, ultimately, the treatment of rejection. In the future, this could allow us to safely lower the doses of immunosuppressive drugs patients receive, thereby avoiding devastating side effects.”

Link to full article in Cell: http://tinyurl.com/pl8jmsp

Determining How Proteins Govern Genes

BY KRISTA CONGER

In a recent study published in Cell, by Stanford geneticist Michael Snyder, PhD, he and his colleagues outlined an entirely new way to determine how proteins that govern gene expression interact with DNA and with one another. The technique allows them to track the interactions of hundreds of factors simultaneously and track how a cell responds to complex environmental and developmental cues. Previously researchers have been restricted to following just two or three molecules at a time.

“At a very basic level, we are learning who likes to work with whom to regulate around 20,000 human genes,” said Snyder. “If you had to look through all possible interactions pair-wise, it would be ridiculously impossible. Here we can look at thousands of combinations in an unbiased manner and pull out important and powerful information. It gives us an unprecedented level of understanding.”

Postdoctoral scholars Dan Xie, PhD; Alan Boyle, PhD; and Linfeng Wu, PhD, share first author credits on the paper. Together, they combined information from an international project called ENCODE (Encyclopedia of DNA Elements) with their own experiments to come up with their findings:

They studied 128 proteins, called trans-acting factors, which are known to regulate gene expression by binding to regulatory regions within the genome. Some of the regions control the expression of nearby genes; others affect the expression of genes great distances away.

The researchers used 238 data sets generated by the ENCODE project to study the specific DNA sequences bound by each of the 128 trans-acting factors. But these factors aren’t monogamous; they bind many different sequences in a variety of protein-DNA combinations.

Xie, Boyle and Snyder designed a machine-learning algorithm to analyze all the data and identify which trans-acting factors tend to be seen together and which DNA sequences they prefer.

Their technique allows researchers to track the dynamic interactions in living cells under a variety of conditions and discover new patterns, or new steps to this ongoing molecular dance and get us ever closer to the goal of personalized medicine for all.

“We’d like to understand how these interactions work together to make different cell types and how they gain their unique identities in development,” Snyder said.

For more: http://tinyurl.com/owuu9cb.

Link to full article in Cell: http://tinyurl.com/qg78t7n
Cardiovascular Institute’s Clinical Trial Manager

The CVI welcomes Clinical Trials Manager Edward Finn. He started in this role in March of 2013. Finn provides support to CVI members and their interdisciplinary clinical trials research; this support includes recruitment, screening and consenting of patients, IRB submission, site initiation and monitoring visits, database management, budgeting, billing, and overall study coordination.

Finn has a Master’s degree from San Francisco State University in Sport Science; his thesis work focused on diabetes and cardiovascular disease. He has been working as a data analyst and research coordinator since 2005, having formerly worked at the VA, PAMF, Stanford University, and TempusClinic.

Finn is working with Dr. Ronald Dalman on a Medtronic PAN registry that is recruiting patients with Cardiac Rhythmic disorders and recently opened a new arm to Cardiovascular therapy (heart valves).

Finn is also working on 3 stem cell trials: 1) Dr. Phillip Yang and Dr. Nicholas Leeper’s PACE trial (associated with the CCTRN), which is recruiting PAD patients with intermittent claudication pain for treatment with ALDH bright cells; 2) Dr. Joseph Wu’s phase II Amorcyte Neostem trial, investigating the preservation of cardiac function with autologous CD34+ stem cells for the treatment of acute MI; and 3) Dr. Joseph Wu’s phase IIb Aastrom trial, which is recruiting patients to investigate a treatment of chronic heart failure with ixmyelocel-T stem cells.

Edward Finn can be contacted at efinn@stanford.edu or (650) 724-6167.

Stanford Recruiting for ixCell DCM Trial

The Stanford University School of Medicine was recently activated as a site for ixCell DCM trial and is currently recruiting patients.

This national randomized placebo-controlled, double-blinded Phase II study aims to evaluate the bone marrow stem cell derivative, ixmyelocel-T, in subjects with ischemic cardiomyopathy. Ixmyelocel-T has been shown to improve cardiac function in animals by promoting new blood vessel formation and reducing inflammation in the heart. Ixmyelocel-T has been shown to be safe in Phase I and IIa studies.

This study is sponsored by Aastrom Biosciences, Inc and has over 36 national sites with over 10 subjects randomized in the trial. Joseph Wu, MD, PhD, is the principle investigator for the Stanford site, and Drs. Patricia Nguyen and Karim Sallam are co-investigators. They are all excited to bring state-of-the-art stem cell therapy to Stanford patients.

For additional information about the trial, please contact the study coordinator, Edward Finn at efinn@stanford.edu or (650) 724-6167.

Stanford/CCTRN Recruiting for PACE Trial

The Cardiovascular Cell Therapy Research Network (CCTRN) is conducting an NIH-funded multi-center clinical trial to assess the benefits and risks of cell therapy in patients with peripheral arterial disease and claudication: The PACE trial (Patients with Intermittent Claudication Injected with ALDH Bright Cells).

PACE is a vascular stem cell clinical trial that will assess the potential physiologic effect, clinical efficacy, and safety of autologous bone marrow derived aldehyde dehydrogenase bright (ALDHBR) cells delivered by direct intramuscular injections to patients with atherosclerotic peripheral arterial disease (PAD) and symptomatic-limited intermittent claudication pain.

This trial involves an active treatment group and a placebo group (1:1 randomization ratio). All patients will undergo bilateral iliac crest bone marrow harvest and have 10 intramuscular injections (of cells or placebo solution) in the calf muscle and lower thigh. All patients will be followed for one year.

For more information regarding the PACE study, at Stanford University, and for details about patient criteria, please contact the Study Coordinator Fouzia Khan at (650) 736-1410 or at fouziak@stanford.edu.

If you or your colleagues would like to discuss this trial or the therapy in further detail, please call or email the study investigators listed below:

Nicholas Leeper, MD: (650) 724-8475 or nleeper@stanford.edu.
Phillip Yang, MD: (650) 498-8008 or philip@stanford.edu.

For additional information on CCTRN visit: www.cctrn.org.
Euan A. Ashley, MRCP, DPhil, has been promoted to Associate Professor of Medicine as of Sept. 1. Ashley also directs the Clinical Genome Service, the Center for Inherited Cardiovascular Disease and the Hypertrophic Cardiomyopathy Center. For more: http://ashleylab.stanford.edu/.

Venita Chandra, MD, has been appointed to Clinical Assistant Professor effective Aug. 12. She will serve as Co-Medical Director of the Stanford Wound Care Center, opening May 2014 at the Stanford Medicine Outpatient Center in Redwood City. For more: http://tinyurl.com/la72kau.

Christopher Gardner, PhD, has been promoted to Professor (research) of Medicine, as of Nov. 1. He conducts research on nutrition and preventive medicine, with a particular focus on plant-based diets; cardiovascular disease; cancer; and obesity. For more: http://tinyurl.com/kf4ym33.

Mingxia Gu, PhD, postdoc in Joseph Wu’s lab, won a “Best Manuscript Award” by the journal Circulation Research during the AHA Scientific Sessions 2013 held in Dallas, Texas. The article was “Microfluidic Single-Cell Analysis Shows That Porcine Induced Pluripotent Stem Cell-Derived Endothelial Cells Improve Myocardial Function by Paracrine Activation”. For more: http://tinyurl.com/oqe2w5d.

Geoffrey C. Gurtner, MD, Associate Professor of Surgery (Plastic and Reconstructive Surgery) will receive about $3 million to work with a consortium to develop new treatments for wounded soldiers. The 5-year, $75 million federally funded project focuses on applying regenerative medicine to battlefield injuries. For more: http://tinyurl.com/m2n8hvt.

George K. Lee, MD, has been appointed to Clinical Assistant Professor (Affiliated) effective Sept. He will join the Vascular Surgery team at the Palo Alto Veterans Affairs Medical Center. For more: http://tinyurl.com/la72kau.

Nicholas Leeper, MD, recently received two awards: The 2013 Jeremiah Stamler Distinguished Young Investigator Research Award (given at the Northwestern Cardiovascular Young Investigators’ Forum); and a Stanford Translational Research and Applied Medicine (TRAM) pilot grant. For more: and http://tinyurl.com/m7ubqfl.

Patricia Nguyen, MD, has been appointed Assistant Professor of Medicine (Cardiovascular Medicine) at the Palo Alto Veterans Affairs Health Care System. She was previously an Instructor at VAPAHCS. For more: http://tinyurl.com/jw2ubpd.
CVI NewsBeats

Thomas Rando, MD, PhD, professor of neurology, and Tony Wyss-Coray, PhD, professor of neurology have received a $4.26 million award to explore the basis for physical activity’s robust positive effect on cognitive function. For more: http://tinyurl.com/m28hzuj.

Minang ‘Mintu’ Turakhia, MD, has been promoted to Assistant Professor of Medicine (Cardiovascular Medicine) at the Palo Alto Veterans Affairs Health Care System. He was a previously an Instructor at VAPAHCS. For more: http://tinyurl.com/k8onu2p.

CVI Members at the AHA Scientific Sessions

The 2013 AHA Scientific Sessions meeting took place in Dallas, Texas this November. During the meeting CVI members presented 36 abstracts, 35 invited talks, 30 oral presentations, and moderated 15 sessions. Five CVI members were also invited as discussants in panels and four poster professors.

Special thanks to Bob Harrington, MD, for his role as this year’s AHA program chair, and his opening remarks which kicked off the conference.

Selected CVI members that were honored during the AHA included: Vinicio de Jesus Perez, MD, who was recognized as Fellow of the American Heart Association in 2013 by the 3CPR Committee; Marie-Helene Dziesietnik, PhD, Sr. Research Scientist in Daria Mochly-Rosen’s lab, whose poster was selected to be part of Late-Breaking Basic Sciences poster session; Marco Perez, MD, was a finalist for the FGTB Young Investigator Award; and Mingxia Gu, PhD, postdoc in Joseph Wu’s lab, won a “Best Manuscript Award” from the journal Circulation Research, presented during an event held at the AHA.

For a complete listing of CVI AHA participants please visit: http://tinyurl.com/q2ed8wl.

October’s CVI Postdoctoral Travel Award Recipients

Peter Chang (Nicholas Leeper Lab)
Abstract: Socioeconomic Barriers to the Diagnosis of Peripheral Arterial Disease
Meeting: American Heart Association (AHA) Scientific Sessions 2013

Elizabeth Choe (James Spudich Lab)
Abstract: S532P mutation in human β-cardiac myosin heavy chain decreases contractile force by decreasing the intrinsic force of the myosin motor.
Meeting: AHA Scientific Sessions 2013

Michael Coronado (Daniel Bernstein Lab)
Abstract: β1 vs β2-AR signaling differentially regulates mitochondrial dynamics through alterations in calcineurin and Drp1
Meeting: Keystone Symposia – Mitochondrial Dynamics and Physiology

Fabian Emrich (Michael Fischbein Lab)
Abstract: Apoptosis Participates in Early Aneurysm Development via ECM Remodeling in Marfan Syndrome
Meeting: AHA Scientific Sessions 2013

Sang-Ging Ong (Joseph Wu Lab)
Abstract: Transfer of Exosome-Enclosed MicroRNAs From Host Myocardial Cells to Transplanted Cardiac Stem Cells Facilitates Improved Survival in the Ischemic Myocardium
Meeting: AHA Scientific Sessions 2013

June-Wha Rhee (Francois Haddad Lab)
Abstract: Elevated Right Ventricular Operant Diastolic Elastance Strongly Predicts Increased Risk of Mortality Following Heart Transplantation
Meeting: AHA Scientific Sessions 2013

Anthony Sturzu (Sean Wu Lab)
Abstract: A Novel Cell Ablation Strategy Defines the Regenerative Potential of the Embryonic Mouse Heart
Meeting: AHA Scientific Sessions 2013

Raiyan Zaman (Michael McConnell Lab)
Abstract: Fiber-Optic Catheter System for Dual Optical Imaging of Glucose Probes (18F-FDG and 6-NBDG) in Atherosclerotic Plaques
Meeting: World Molecular Imaging Congress
Recipients of the 2013 (FY14) CVI Seed Grants:
The Stanford Cardiovascular Institute (CVI) and Child Health Research Institute (CHRI) are pleased to announce the Recipients of the 2013 (FY14) CVI Seed Grants:

Co-Principal Investigators: Gerald Berry, MD; Curt Scharfe, MD, PhD
Co-Investigators: Kitchener Wilson, MD, PhD; Justin Odegaard, MD, PhD

A clinical-grade next generation sequencing assay for targeting DNA mutations in inherited non-syndromic cardiomyopathies

Principle Investigator: Alex Dunn, PhD
Co-Principal Investigators: Gerald Fuller, PhD; Lorelei Shoemaker, PhD; Steven Chang, MD

Endothelial cell fate specification in response to fluid flow

Principle Investigator: Susan Fernandes, LP.D., PA-C
Co-Investigator: George Lui, MD

Risk factors for acquired cardiovascular disease in adults with congenital heart disease

Co-Principal Investigators: Jason Lee, MD; Apurva Mehta, PhD; Drew Nelson, PhD

A Novel Approach for Studying the Mechanical Behavior of Atherosclerotic Plaque

Principle Investigator: Nicholas Leeper, MD
Co-Investigator: Andrew Connolly, MD, PhD

The paradoxical role of Cdkn2b in vessel sprouting and vessel maturation in atherosclerosis

Principle Investigator: Daria Mochly-Rosen, PhD
Co-Principal Investigators: Daniel Bernstein, MD; Tobias Meyer, PhD

Identifying the master integrator of cardiac cell-fate decision

Principle Investigator: Beth Pruitt, PhD
Co-Principal Investigator: Sean Wu, MD, PhD
Co-Investigators: Euan Ashley, Dsc, PhD; Daniel Bernstein, MD; Alex Dunn, PhD; Kathy Ruppel, MD, PhD; James Spudich, PhD

Genetic tracking and functional assessment of atrial- and ventricular-specific cardiomyocytes from induced pluripotent stem cells

Principle Investigator: Sandra Tsai, MD
Co-Investigators: Jennifer Tremmel, MD; Wes Alles, PhD; Katharine Sears, MD

Randomized control trial to improve cardiovascular health in postpartum women diagnosed with pre-eclampsia

For more: http://tinyurl.com/outcu6h.
CVI Frontiers Seminars

12 noon to 1 p.m., Tuesdays
Li Ka Shing Center
Stanford School of Medicine
291 Campus Drive, Stanford, CA

11/26/2013
Luiz Belardinelli, MD
Senior Vice President of Cardiovascular Therapeutics at Gilead Sciences, Inc.

12/03/2013
Norman Stockbridge, MD, PhD
Director, Office of Drug Evaluation I: Division of Cardiovascular and Renal Products, U.S. FDA

12/10/2013
John M. Morton, MD, MPH, FACS
Associate Professor, General Surgery, Section Chief of Minimally Invasive Surgery, Stanford

12/17/2013
Ali J. Marian, MD
Professor of Medicine, Texas Heart Institute

1/7/2014
Judith S. Hochman, MD
Harold Snyder Family Professor of Cardiology, Sr. Assoc Dean for Clinical and Translational Med, Director Cardiovascular Clinical Research, New York University

1/14/2014
Mark Hlatky, MD
Professor of Health Research and Policy and of Medicine (Cardiovascular), Stanford

1/21/2014
Tony Muslin, MD
Executive Director, Head of Research, Cardiovascular and Metabolic Diseases (CVM), Novartis Institutes for BioMedical Research, Inc.

2/4/2014
Howard A. Rockman, MD
Professor of Medicine (Cardiology), Cell Biology, Molecular Genetics and Microbiology, Duke University Cardiology

2/25/2014
Roger Hajjar, MD
Professor Medicine, Cardiology, Mount Sinai School of Medicine

3/4/2014
Mukesh Jain, MD
Director of the Case Cardiovascular Research Institute at Case Western Reserve University and the Ellery Sedgwick Jr. Chair & Distinguished Scientist University Hospitals-Case Medical Center

3/18/2014
Jill Tardiff, MD, PhD
Professor of Medicine and Cellular and Molecular Medicine, Steven M. Gootter Endowed Chair for the Prevention of Sudden Cardiac Death, University of Arizona

Now Recruiting: Assistant/Associate/Full Professor in Cardiovascular Imaging
Stanford University

The Cardiovascular Medicine Division and Cardiovascular Institute at Stanford University School of Medicine are seeking a faculty member at the Assistant, Associate, or Full Professor level to join the Cardiovascular Imaging Section. The individual must have advanced clinical and/or research experience, preferably in cardiovascular CT and multi-modality cardiovascular imaging, with a strong interest in advancing clinical research of new imaging methods, multi-center clinical trials, and comparative effectiveness/outcomes research.

The position is for a full-time Medical Center Line (MCL) or University Tenure Line (UTL) faculty member. The major criteria for appointment for faculty in the MCL shall be excellence in the overall mix of clinical care, clinical teaching, scholarly activity that advances clinical medicine and institutional service appropriate to the programmatic needs the individual is expected to fulfill. Faculty rank will be determined by the qualifications and experience of the successful candidate. Individuals appointed as Assistant Professors will have completed their house staff training and postdoctoral fellowship training.

The successful candidate is expected to develop an independently funded clinical/translational research program centered on cardiovascular imaging, and help with teaching activities in the Division and the Department of Medicine. Appropriate resources will be made available to help the applicant develop his/her research program.

It is highly desirable that applicants have an MD degree and are board certified in Cardiovascular Disease (or eligible), and advanced certification or training in cardiovascular imaging is highly desirable. However, exceptional PhD applicants will also be considered.

Applicants should submit a curriculum vitae, a detailed letter of interest and the names of three referees to:

Michael V. McConnell, MD, MSEE
Professor of Medicine (Cardiovascular) and Search Committee Chair, c/o Marisha Smith
marisha.smith@stanford.edu

Stanford University is an equal opportunity employer and is committed to increasing the diversity of its faculty. It welcomes nominations off and applications from women and members of minority groups, as well as others who would bring additional dimensions to the University’s research, teaching, and clinical missions.

Discovery and refinement of loci associated with lipid levels. Global Lipids Genetics Consortium, Willer CJ, Schmidt EM, [+149 authors], Assimes TL, [+68 authors], Quertermous T, [+38 authors], Abecasis GR. Nat Genet. 2013; 45(11): 1274-83.

Menopausal hormone therapy and health outcomes during the intervention and extended postphasing phases of the Women’s Health Initiative randomized trials. Manson JE, Chlebowski RT, Stefanick ML, [+29 authors], Wallace RB. JAMA. 2013; 310(13): 1353-68.

Ischaemic cardiac outcomes in patients with atrial fibrillation treated with vitamin K antagonism or factor Xa inhibition: results from the ROCKET AF trial. Mahaffey KW, Stevens SR, White HD, [+10 authors], Fox KA, Breithardt G; for the ROCK-ET AF Investigators. Eur Heart J. 2013 Oct 15.

Upcoming Grants

DECEMBER
Muscular Dystrophy Association Research Grants & Development Grants
$60,000/year
LOI: December 15, 2013

The International Society for Heart & Lung Transplantation
Norman E. Shumway Career Development Award
$160,000 over 2 years
January 15, 2014

American Heart Association
Beginning-Grant-in-Aid
$140,000 over 2 years
January 16, 2014

Grant-in-Aid
$140,000 over 2 years
January 16, 2014

Donald E. and Delia B. Baxter Foundation
2014 Faculty Scholar Program
January 27, 2014

National Institute of Health
Director’s Early Independence Award (DPS)
January 31, 2014

JANUARY
California Institute for Regenerative Medicine (CIRM)
RFA 13-05: CIRM Tools and Technologies III Awards
$900-1,200K over 3 years
January 7, 2014

The International Society for Heart & Lung Transplantation
Norman E. Shumway Career Development Award
$160,000 over 2 years
January 15, 2014

American Heart Association
Beginning-Grant-in-Aid
$140,000 over 2 years
January 16, 2014

Grant-in-Aid
$140,000 over 2 years
January 16, 2014

National Institute of Health
Director’s Early Independence Award (DPS)
January 31, 2014

APRIL
Marfan Foundation
Early Investigator Grant Program
$75,000 over 2 years
April 14, 2014

Postdoctoral & Pre-doctoral Awards

DECEMBER
National Institute of Health
Director’s Early Independence Award
$250,000/year for 5 years
December 16, 2013

American Federation for Aging Research
Ellison Medical Foundation / AFAR Postdoctoral Fellows in Aging Research Program
$47,114 to $55,670 for 1 year
LOI: December 16, 2013

Mentored Clinical and Population Research Award
$100,000 over 2 years
January 16, 2014

National Fellow-to-Faculty Transition Award
$132,000 over 5 years
January 17, 2014

National Scientist Development Grant
$308,000 over 4 years
January 17, 2014

FEBRUARY
Marfan Foundation
Victor A. McKusick Fellowship Program
$50-75K over 2 years
February 1, 2014

Stanford Cardiovascular Institute
CVI Postdoctoral Fellow Travel Award
$750 per award
February 1, 2014

Stanford Child Health Research Institute (CHRI)
CHRI Clinical Trainee Support
$100,000
February 1, 2014

MARCH
Thrasher Research Fund
Early Career Awards
$25K over 2 years
March 17, 2014

Stanford Cardiovascular Institute
Myocardial Biology (T32)
March 15, 2014

Mechanisms and Innovation in Vascular Disease (T32)
March 15, 2014
Upcoming Meetings

JANUARY

Conference on Cell Therapy for Cardiovascular Disease
January 22 – 24, 2014
New York, NY

Keystone Symposia - New Frontiers in the Discovery and Treatment of Thrombosis (A6)
January 26 – 30, 2014
Keystone, Colorado, USA

Keystone Symposia -- Growth and Wasting in Heart and Skeletal Muscle
January 26 – 31, 2014
Santa Fe, New Mexico, USA

European Society of Cardiology - Rome Cardiology Forum 2014
January 29 – 31, 2014
Rome, Italy

FEBRUARY

Peripheral Vascular Surgery Society
January 30 – February 2, 2014
Steamboat Springs, CO

International Stoke Conference
February 12 – 14, 2014
San Diego, CA

Annual Stanford CVI Symposium: Cardiovascular Regenerative Medicine
February 28, 2014
Stanford, CA

Society for Clinical Vascular Surgery Annual Symposium
March 18 – 22, 2014
Carlsbad, CA

Cardiovascular Research Foundation - Coronary Physiology and Intravascular Imaging Symposium
March 27 – 28, 2014
Washington, DC

American College of Cardiology (ACC) Meeting
March 29 – 31, 2014
Washington, DC

MARCH

AHA Epidemiology and Prevention & Nutrition, Physical Activity and Metabolism (EPI/NPAM)
March 18 – 21, 2014
San Francisco, CA

American Society of Clinical Vascular Surgery (ASCVS) Annual Symposium
March 18 – 22, 2014
Carlsbad, CA

Cardiovascular Research Foundation -- Annual Echocardiography Conference
April 3 – 5, 2014
New York, NY

APRIL

Cardiovascular Research Foundation -- Annual Echocardiography Conference
April 3 – 5, 2014
New York, NY

SAVE THE DATE

FEBRUARY 28
2014

Cardiovascular Regenerative Medicine Symposium
Li Ka Shing Center for Learning & Knowledge
291 Campus Drive, Stanford, CA 94305

Photo: Linda A. Cicero, Stanford News Service
Cardiovascular Institute Leadership

Joseph C. Wu, MD, PhD
Director, Stanford Cardiovascular Institute
Professor, Dept. of Medicine (Cardiovascular) and Radiology

Robert A. Harrington, MD
Arthur L. Bloomfield Professor of Medicine
Chair, Dept. of Medicine

Joseph Wu

Ronald L. Dalman, MD
Walter C. and Elsa R. Chidester Professor of Surgery
Chief, Division of Vascular Surgery

Dominik Fleischmann, MD
Professor, Dept. of Radiology
Chief, Cardiovascular Imaging

Kenneth Mahaffey, MD
Professor, Dept. of Medicine
Vice Chair of Medicine for Clinical Research

Mark Nicolls, MD
Associate Professor, Dept. of Medicine
Chief, Pulmonary and Critical Care Medicine

Philip E. Oyer, MD, PhD
Roy B. Cohn-Theodore A. Falasco Professor
Interim Chair, Dept. of Cardiothoracic Surgery

Tom Quertermous, MD
William G. Irwin Professor of Medicine
Co-Chief (Research), Division of Cardiovascular Medicine

Marlene Rabinovitch, MD
Dwight and Vera Dunlevie Professor in Pediatric Cardiology

Stephen J. Roth, MD, MPH
Professor and Chief, Pediatric Cardiology
Director, Children's Heart Center

Michael Snyder, PhD
Professor and Chair, Dept. of Genetics
Director, Stanford Center for Genomics and Personalized Medicine

Alan Yeung, MD
Li Ka Shing Professor of Medicine
Co-Chief (Clinical), Division of Cardiovascular Medicine

Paul Yock, MD
Martha Meier Weiland Professor of Bioengineering and Medicine; and Professor, by courtesy, of Mechanical Engineering
Director of Biodesign