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THURSDAY, NOVEMBER 29, 2018

INTRODUCTORY REMARKS

Welcome 
Joseph C. Wu, MD, PhD               
Director, Stanford Cardiovascular Institute
Simon H. Stertzer, MD, Professor, and Professor of Medicine & Radiology
Stanford University 
 
Howard Rockman, MD               
Edward S. Orgain Professor of Cardiology
Professor of Medicine, Cell Biology, and Molecular Genetics
Duke University
 
Sean M. Wu, MD, PhD              
Associate Professor of Medicine and, by courtesy, Pediatrics
Stanford University

Introduction
Lloyd Minor, MD              
The Carl and Elizabeth Naumann Professorship for the Dean of the School of Medicine
Professor of Otolaryngology - Head and Neck Surgery, and, by courtesy, of Neurobiology 
and Bioengineering
Stanford University

OPENING KEYNOTE

Heart & Brain Sciences, Health Equity and the AHA
Ivor Benjamin, MD
President, American Heart Association 
Director, Cardiovascular Center
Professor, Department of Medicine, Division of Cardiology
Medical College of Wisconsin  

SCHEDULE

 1:00 pm

 1:05 pm

 1:10 pm



SCHEDULE

 2:05 pm

 1:45 pm

 2:25 pm

 3:05 pm

 3:30 pm

 2:45 pm

GOOGLE BASELINE PROJECT: A STANFORD DUKE COLLABORATION
Session Chair: Francois Haddad, MD, Clinical Associate Professor, Cardiovascular 
Medicine, Stanford University

Project Baseline: Convergence of Data & Healthcare
David Maron, MD 
Director of Preventive Cardiology
Clinical Professor, Cardiovascular Medicine
Stanford University 

Project Baseline: Return of Results - Seek and Ye Shall Find 
Svati Shah, MD, MHS   
Vice-Chair of Translational Research
Associate Professor of Medicine
Duke University

Project Baseline: Participants as Partners - Engage, Educate, Empower 
Ken Mahaffey, MD 
Director of Stanford Center for Clinical Research
Vice Chair Clinical Research, Department of Medicine 
Stanford University

Coffee Break

G PROTEIN-COUPLED RECEPTOR BIOLOGY ACROSS THE CONTINENT

Session Chair: Helen Blau, PhD, Donald E. and Delia B. Baxter Foundation Professor, 
Director, Baxter Laboratory for Stem Cell Biology, Stanford University

Ubiquitin-dependent regulation of ꞵ-adrenergic receptor trafficking and signaling 
Sudha Shenoy, PhD 
Associate Professor in Medicine and in Cell Biology
Duke University 

New Paradigms for Arrestin-Mediated Signaling at GPCRs and Other Receptors 
Sudar Rajagopal, MD, PhD 
Assistant Professor in Cardiology
Co-Director of Duke Pulmonary Vascular Disease Center
Duke University



SCHEDULE

 7:30 am

 8:00 am

 8:05 am

 4:10 pm

ꞵ-receptor Subtype Regulation of Cardiotoxicity/Cardioprotection: Just When You Thought 
it was Safe to go Back in the Water 
Daniel Bernstein, MD 
Alfred Woodley Salter and Mabel G. Salter Endowed Professor of Pediatrics
Stanford University

Biased GPCR Signaling 
Howard Rockman, MD
Edward S. Orgain Professor of Cardiology
Professor of Medicine, Cell Biology, and Molecular Genetics
Duke University

Conclusion of First Day and Departure

FRIDAY, NOVEMBER 30, 2018

Arrival and Breakfast

Welcome
Robert Harrington, MD 
Chair, Department of Medicine 
Arthur L. Bloomfield Professor of Medicine
Stanford University

KEYNOTE LECTURE
Chair: Howard Rockman, MD, Edward S. Orgain Professor of Cardiology, Professor of 
Medicine, Cell Biology, and Molecular Genetics, Duke University

Structure-aided Drug Discovery for G Protein Coupled Receptors
Brian Kobilka, MD 
Professor of Molecular and Cellular Physiology
2012 Nobel Laureate
Stanford University

 4:30 pm

 3:50 pm



BASIC & TRANSLATIONAL APPROACHES TO VASCULAR & MYOCARDIAL BIOLOGY
Session Chair: Marlene Rabinovitch, MD, Dwight and Vera Dunlevie Professor in Pediatric 
Cardiology, Stanford University

Genomic Approaches to Discover Novel Drug Targets for Obesity and Insulin Resistance
Erik Ingelsson, MD, PhD 
Professor of Medicine
Stanford University

TREK-1 Affects the Cardiac Injury Response by Modulating Intercellular Crosstalk
Dennis Abraham, MD 
Assistant Professor of Medicine
Director of Duke Cardiovascular Physiology Core
Duke University  

Coffee Break

Genetic Mechanisms of Coronary Artery Disease: What Can we Learn From GWAS? 
Thomas Quertermous, MD 
William G. Irwin Professor in Cardiovascular Medicine
Stanford University

The Long and the Short of it: Telomere Length as a Hallmark of Cardiac Failure 
Helen Blau, PhD 
Donald E. and Delia B. Baxter Foundation Professor
Director, Baxter Laboratory for Stem Cell Biology
Stanford University

Unfolding the Misfolded: Molecular Insights into Cardiac Amyloidosis 
Ronglih Liao, PhD 
Professor of Medicine
Co-Director, Stanford Cardiac Amyloid Center
Stanford University

Coffee Break

SCHEDULE

 9:10 am

 9:30 am

 10:00 am

 10:20 am

 10:40 am

 9:40 am

 8:50 am



SCHEDULE

HEART FAILURE THERAPIES- PERCUTANEOUS, SURGICAL, AND REGENERATIVE 
APPROACHES
Chair: Sharon Hunt, MD, Professor Emerita of Medicine (Cardiolovascular), Stanford 

Innovative Therapies for Ischemic Cardiomyopathy
Y. Joseph Woo, MD 
Norman E. Shumway Professor
Chair, Department of Cardiothoracic Surgery
Stanford University

Man vs. Machine: Will Mechanically Assisted Circulation Achieve Its Goals?
Joseph Rogers, MD
Professor of Medicine
Chief Medical Officer, Duke University

Personalized Medicine in Heart Transplantation
Kiran Khush, MD, MAS 
Associate Professor of Medicine
Stanford University

Vascular Approaches to Innate Heart Regeneration
Ravi Karra, MD 
Assistant Professor of Medicine
Duke University

Lunch and Poster Viewing / Meet the Professors Lunch

GENOME, TRANSCRIPTOME, AND PRECISION HEALTH
Chair: Nigam Shah, MBBS, PhD, Associate Professor of Medicine (Biomedical Informatics) 
and of Biomedical Data Science, Stanford University

Pharmacogenomics for Precision Cardiovascular Health
Latha Palaniappan, MD, MS 
Professor of Medicine
Stanford University

Unexpected Biology of snoRNAs in the Heart
Chris Holley, MD, PhD 
Assistant Professor of Medicine and Molecular Genetics and Microbiology
Duke University

 11:30 am

 11:50 am

 1:10 pm

 1:30 pm

 12:10 pm

 10:50 am

 11:10 am



SCHEDULE

Population, Medical, and Functional Genomics in the Personal Genome Era
Carlos Bustamante, PhD 
Professor of Biomedical Data Science, of Genetics and, by courtesy, of Biology
Stanford University

Coffee Break

STATE-OF-THE-ART APPROACHES TO THE DETECTION AND TREATMENT OF EP 
DISEASES
Chair: Sanjiv Narayan, MSc, MD, Professor of Medicine (Cardiovascular Medicine), Stanford 
University

Wearables and Arrhythmias: Where are we Headed?
Mintu Turakhia, MD, MAS 
Executive Director, Stanford Center for Digital Health
Associate Professor of Medicine
Palo Alto Veterans Affairs Health Care System

Innovation and the Future of Arrhythmia Therapy
Paul Wang, MD 
Professor of Medicine
Stanford University
Editor of Circulation: Arrhythmia and Electrophysiology

BEST ABSTRACT TRAINEE PRESENTATIONS
Chair: Elan Burton, MD, Clinical Assistant Professor, Cardiothoracic Surgery, Stanford

Molecular Mechanisms of Angiotensin Receptor Activation and Biased Signaling
Laura Wingler 
Duke University - Lefkowitz Lab

Parental Disease and Over-transmission of Genetic Risk for Diabetes are Related to Congenital 
Heart Disease in Offspring
Catherine Tcheandjieu 
Stanford University - Priest Lab

On the Intertwined Nature of Endothelium and Muscle: Defining New Signaling Paradigms in 
Peripheral Artery Disease 
Hasan Abbas 
Duke University - Kontos  Lab

 2:20 pm

 2:40 pm

 3:00 pm

 1:50 pm

 2:10 pm

 3:13 pm

 3:26 pm



SCHEDULE

Modeling hypertrophic cardiomyopathy caused by mutations in beta-myosin using human induced 
pluripotent stem cell derived cardiomyocytes (iPSC-CMs)
Alison Schroer 
Stanford University - Bernstein Lab / Pruitt Lab (UCSB)

Coffee Break

POPULATIONS, QUALITY, AND OUTCOMES IN CARDIOVASCULAR CARE
Chair: Paul Heidenreich, MD, Professor of Medicine (Cardiovascular), and, by courtesy, of 
Health Research and Policy, Palo Alto Veterans Affairs Health Care System, Stanford

Evaluating Precision Medicine
Mark Hlatky, MD 
Professor of Health Research and Policy and of Medicine
Stanford University

Closing the Gaps in Care: What’s Next in Implementation Science?
Eric Peterson, MD
Fred Cobb Distinguished Professor of Medicine
Duke University

Controversies in Economics of Precision Medicines
Kevin Schulman, MD 
Professor of Medicine
Associate Chair of Business Development and Strategy
Stanford University

Wine and Cheese Reception and Poster Session with Presentation of Poster Awards

 4:40 pm

 5:00 pm

 4:00 pm

 4:20 pm

 3:50 pm

 3:38 pm



SCHEDULE
KEYNOTE
SPEAKER BIOS

Ivor Benjamin, MD
Ivor Benjamin, MD, is the Director of the Cardiovascular Center (CVC) and a co-leader of 
the CVC program in Precision Cardiovascular Medicine at the Medical College of Wisconsin. 
He received his bachelor’s degree from Hunter College in New York and his MD from Johns 
Hopkins University School of Medicine. Dr. Benjamin is a certified specialist in internal 
medicine and cardiology. His research interests are in cardiology, inheritable heart failure, 
and myocardial infarctions, with a focus on the genes encoding heat shock proteins and 
oxido-reductive stress-response pathways and their relationship to genetic forms of heart 
disease, cardiotoxicological science, and precision medicine. 

Dr. Benjamin is an Established Investigator of the American Heart Association (AHA). He 
has received the AHA Award of Merit, the Daniel Savage Memorial Service Award from the 
Association of Black Cardiologists, and the NIH Director’s Pioneer Award from the National 
Heart, Lung, and Blood Institute. Dr. Benjamin serves as Editor-in-Chief of Cecil Essential 
Medicine 9th Edition. He is also the founding member of the Journal of the American Heart 
Association, and serves on the editorial boards of Circulation and Circulation Research.

Brian Kobilka, MD, received his bachelor’s degree in Biology and Chemistry from the 
University of Minnesota and his MD from Yale University School of Medicine. After internal 
medicine training at Washington University School of Medicine, Dr. Kobilka was a research 
fellow at Duke University, where he later became an Assistant Professor Medicine. He then 
moved to Stanford University School of Medicine, where he is now the Helene Irwin Fagan 
Chair in Cardiology, a Professor in the Department of Molecular and Cellular Physiology, and, 
by courtesy, of Chemical and Systems Biology. In 2012, Dr. Kobilka was awarded the Nobel 
Prize in Chemistry for his seminal work on G protein-coupled receptors. He has authored 
numerous peer-reviewed articles on his work characterizing the structure and mechanism 
of activation of GPCRs. He is a member of the National Academy of Sciences, the National 
Academy of Medicine, and the American Academy of Arts and Sciences.

Brian Kobilka, MD



SPEAKER BIOS

David Maron, MD
David Maron, MD, is the Director of Preventive Cardiology and is board certified in Internal 
Medicine, Cardiovascular Disease, and Clinical Lipidology. He received his undergraduate 
degree at Stanford, his MD from the University of Southern California, and completed his 
residency in internal medicine at UCLA. Dr. Maron then completed a cardiology fellowship 
and a research fellowship in Cardiovascular Disease Epidemiology and Prevention at 
Stanford University. He faculty at Vanderbilt for 20 years before returning to Stanford in 
2014. He is currently the Co-Chair and Principle Investigator of the International Study of 
Comparative Health Effectiveness with Medical and Invasive Approaches (ISCHEMIA) trial, a 
large, international, NIH-funded study.

Svati Shah, MD, is a physician scientist and Vice-Chief of Translational Research in the 
Division of Cardiology, Department of Medicine, and a faculty member and Co-Director of 
Translational Research in the Duke Molecular Physiology Institute (DMPI) and Duke Clinical 
Research Institute (DCRI). Her research focuses are metabolic and genetic pathways of 
cardiometabolic diseases, and integrating diverse genomic, metabolomic and proteomic 
techniques for identification of novel mechanisms of disease and biomarkers. Dr. Shah also 
collaborates closely with the DCRI for biomarker discovery in biospecimens from clinical 
trials and she is the Duke Principle Investigator for the Verily Project Baseline study. Dr. Shah 
is also Director of the Duke Adult Cardiovascular Genetics Clinic where she cares for patients 
and their families who have, or at risk for, cardiovascular genetic disorders.  Her training 
includes receiving a MHS in Epidemiology from Johns Hopkins School of Public Health, a 
master’s degree in Medical Genomics from Duke University, and a research fellowship in 
Genetic Epidemiology at the Duke Center for Human Genetics.

Svati Shah, MD, MHS

Ken Mahaffey, MD, is the Vice Chair of Clinical Research in the Department of Medicine at 
Stanford University and the Director of the Stanford Center for Clinical Research (SCCR).  
SCCR is an academic research organization whose goal is to support researchers as they 
design and conduct clinical research studies, and to enroll Stanford patients in clinical trials.  
Dr. Mahaffey’s own research focuses on the design and conduct of multicenter clinical trials 
and analyses of important clinical cardiac issues using large patient databases. He also 
studies the methodology of clinical trials including the standardization of the definition of MI 
used in clinical trials, the adjudication of clinical endpoints, and the evaluation of evidenced-
based operations.  He works with the FDA and chaired the Myocardial Infarction and Death 
Definitions Working Group in the Standardized Data Collection for Cardiovascular Trials 
Initiative. 

Ken Mahaffey, MD



Sudha Shenoy, PhD
Sudha Shenoy, PhD, received her bachelor’s and master’s degrees in India, studying 
Zoology, and her PhD at Oklahoma State University in Biochemistry and Molecular Biology. 
Dr. Shenoy continued at Oklahoma State University for her first postdoctoral fellowship, 
before completing her second fellowship at Duke University in Receptor Biology. She is an 
Associate Professor in Medicine and Cell Biology at Duke University School of Medicine and 
is a member of the Duke Cancer Institute. Dr. Shenoy research focuses on receptor biology, 
the biochemical characterization of ubiquitination, receptor trafficking, and signaling. Her 
research aims to understand how ubiquitination of G protein-coupled receptors (GPCRs) and 
the adaptor proteins ꞵ-arrestins 1 and 2 affect receptor endocytosis, signal transduction, and 
desensitization.

Sudar Rajagopal, MD, PhD, received his bachelor’s degree in Chemistry from the University of 
Chicago. He continued at the University of Chicago for his medical degree and his doctorate 
in Biochemistry and Molecular Biology. He is an Assistant Professor in Cardiology at Duke 
University Medical Center, and is Co-Director of Duke Pulmonary Vascular Disease Center. He 
was named a Mandel Foundation Scholar by the Duke Cardiovascular Research Center and 
received the Jeremiah Stamler Distinguished Young Investigator Research Award from the 
Northwestern Cardiovascular Young Investigator Forum. His research focuses on the role of 
G protein-coupled receptor signaling in pulmonary arterial hypertension (PAH), with the goal 
of  understanding how these receptors contribute to the pathophysiology and development 
of PAH.

Sudar Rajagopal, MD, PhD

Daniel Bernstein, MD, received his bachelor’s degree from MIT in Massachusetts and his 
medical degree from New York University School of Medicine. He is an Alfred Woodley 
Salter and Mabel G. Salter Endowed Professor of Pediatrics at Stanford University and is the 
Associate Dean for Curriculum and Scholarship at Stanford University School of Medicine. 
In addition, Dr. Bernstein received the Best Lecture Award from Stanford School of Medicine 
and the Stanford Stole (fellowship mentorship award) from Stanford University Pediatric 
Cardiology. His research focuses on regulation of cardiovascular function in both normal 
physiological states and in disease states such as cardiomyopathy. Current work includes 
using iPSC-derived cardiomyocytes to better understand heart failure and congenital heart 
disease and the role of mitochondrial dynamics, structure, and function in normal and 
diseased cardiac physiology.

Daniel Bernstein, MD

SPEAKER BIOS



Erik Inglesson, MD, PhD, received his medical degree and his PhD in Epidemiology from 
Uppsala University, in Uppsala, Sweden. He then completed a research fellowship at  the 
Framingham Heart Study, Boston University School of Medicine in Cardiovascular Medicine. 
Dr. Ingelsson is a Professor of Medicine and, by courtesy, of Health Research and Policy. His 
research focuses on cardiology with a special focus on the role of obesity and insulin resistance 
in the development of subclinical and clinical cardiovascular disease. Dr. Inglesson’s work 
is translational and interdisciplinary, combining big data approaches with gene editing in 
functional model systems to obtain new biomarkers for risk prediction and for the discovery 
of novel targets for drug development. 

Erik Ingelsson, MD, PhD

SPEAKER BIOS

Dr. Verghese is the Linda R. Meier and Joan F. Lane Provostial Professor and Vice Chair for 
the Theory and Practice of Medicine at Stanford University. He is also an infectious disease 
physician, best-selling author, and a popular speaker. His research seeks to understand what 
is conveyed to a patient by the physician’s presence and technique at the bedside from an 
educational point of view, and also from ethnographic studies of how rituals impact patient-
physician relationships. He launched the Stanford Medicine 25 initiative that is designed 
to showcase and teach fundamental physical exam skills and their diagnostic benefits. Dr. 
Verghese obtained his medical degree at the University of Madras, did his residency at East 
Tennessee State University, College of Medicine, and competed a fellowship in Infectious 
Disease at Boston University School of Medicine. He also earned a Master of Fine Arts degree 
at Iowa Writers Workshop. He is a member of the National Academy of Sciences and received 
the National Humanities Medal from President Obama.

Abraham Verghese, MD, MACP

Howard Rockman, MD
Howard Rockman, MD, received his bachelor’s degree in Biochemistry and his medical 
degree from McGill University. He did his medical residency at Montreal General Hospital and 
a Cardiology Fellowship at the University of California, San Diego. He was then an Assistant 
Professor at the University of California, San Diego, before moving to the University of 
North Carolina at Chapel Hill, and finally to Duke University where he is now a Professor of 
Medicine, Cell Biology, and Molecular Genetics as well as an Edward S. Orgain Professor of 
Cardiology. Dr. Rockman is Editor-in-Chief of the Journal of Clinical Investigation Insight and is 
the Director of Duke Cardiovascular Research Center. His research focuses on understanding 
the molecular mechanisms of cardiac hypertrophy and heart failure. 



SPEAKER BIOS

Helen Blau, PhD, received her bachelor’s degree in Biology from the University of York, 
England, and her master’s degree and Ph.D. in Biology at Harvard University in Massachusetts. 
She completed her postdoctoral research fellowship in the Division of Medical Genetics, 
Department of Biochemistry and Biophysics at the University of California, San Francisco 
before becoming an Assistant Professor in the Department of Pharmacology at Stanford 
University. Dr. Blau is currently a Donald E. and Delia B. Baxter Foundation Professor at 
Stanford University. She is also Director of the Baxter Laboratory for Stem Cell Biology, and 
of the Institute for Stem Cell Biology and Regenerative Medicine. Dr. Blau is a member of 
the National Academy of Sciences, Pontifical Academy of Inventors, American Institute for 
Medical and Biological Engineering, and the American Philosophical Society. Her research 
focuses on cellular reprogramming, therapeutic interventions to enhance stem cell function 
in muscle regeneration, and cell rejuvenation.

Helen Blau, PhD

Thomas Quertermous, MD, competed his clinical training in Cardiology at Massachusetts 
General Hospital and his research training in Molecular Genetics in the Department of 
Genetics at Harvard Medical School. He first established an independent laboratory at 
Massachusetts General Hospital before moving first to Vanderbilt University and then to 
Stanford University as a leader of the Division of Cardiovascular Medicine. He is currently 
a William G. Irwin Professor in Cardiovascular Medicine at Stanford University. Research in 
Dr. Quertermous’s lab focuses on the use of genetic approaches to study vascular disease. 
Current efforts involve large-scale human genetics and genomics to better understand the 
genetic basis of atherosclerosis and its related risk factors.

Thomas Quertermous, MD

Dennis Abraham, MD, received his bachelor’s degree in Premedicine from Pennsylvania 
State University and his medical degree from Sidney Kimmel (Jefferson) Medical College. 
He completed an internship and his residency in Internal Medicine at Mount Sinai in New 
York, and was a postdoctoral research fellow at Columbia University Medical Center. Dr. 
Abraham then moved to Duke University Medical Center, where he is now an Assistant 
Professor of Medicine in the Division of Cardiovascular Medicine. He is also Director of the 
Duke Cardiovascular Physiology Core. Dr. Abraham’s work is aimed at understanding how 
heart failure develops and the development of new drug therapies.

Dennis Abraham, MD



SPEAKER BIOS

Joseph Woo, MD, is the Norman E. Shumway Professor and Chair of the Department of 
Cardiothoracic Surgery at Stanford University School of Medicine and holds a courtesy 
appointment in the Department of Bioengineering.  He received his undergraduate degree 
from the Massachusetts Institute of Technology and his medical degree from the University 
of Pennsylvania, where he also conducted his postgraduate surgical training in General and 
Cardiothoracic Surgery and completed a postdoctoral research fellowship. Dr. Woo has an 
active clinical practice of 300 pump cases per year focusing on complex cardiac valve repair, 
aortic surgery, cardiopulmonary transplantation, and minimally-invasive surgery, and has 
advanced these fields by developing several innovative operations. He also directs basic 
research on stem cells, angiogenesis, tissue engineering, and biomechanics.

Joseph Woo, MD

Joseph Rogers, MD, is a Professor of Medicine at Duke University. He obtained his bachelor’s 
degree from the University of Kansas and attended medical school at the University of 
Nebraska.  He performed his Internal Medicine residency at Nebraska prior to research and 
Clinical Cardiology training at Washington University in St. Louis.  Following his fellowship, 
he remained on faculty at Washington University and directed their Cardiac Transplant 
program for ten years prior to moving to Duke.  He also served as Medical Director of the 
Cardiac Transplant and Mechanical Circulatory Support programs at Washington University 
and Duke. Dr. Rogers’s clinical interests are directed toward the management of patients 
with advanced heart failure. His research focuses on the clinical application of mechanical 
circulatory support devices, with an emphasis on palliative care intervention in advanced 
heart failure.

Joseph Rogers, MD

Ronglih Liao, PhD
Ronglih Liao, PhD, received her bachelor’s degree in Chemistry from Tamkang University, 
Taiwan, and her PhD at the University of Alabama at Birmingham. She then became an 
Assistant Professor in the Department of Medicine at Boston University School of Medicine 
before moving to Harvard Medical School as an Associate Professor. She next moved to 
Stanford University School of Medicine where she is a Professor of Medicine and co-Director 
of the Stanford Cardiac Amyloid Center. She is also a visiting Professor of Medicine at 
Brigham and Women’s Hospital, Harvard Medical School. She was the first female Council 
Chair of the AHA Basic Cardiovascular Science Council. Dr. Liao’s research aims to understand 
the mechanisms that underlie the pathophysiology of heart failure and to develop novel 
treatments to combat heart failure. 



Latha Palaniappan, MD, MS, received her bachelor’s and medical degrees from the University 
of Michigan. She also obtained her master’s degree in clinical epidemiology from Stanford 
University. Dr. Palaniappan is currently a Professor of Medicine and, by courtesy, of Health 
Research and Policy at Stanford University Medical Center. Her research focuses on addressing 
the gap in knowledge of health in Asian subgroups and other understudied racial and ethnic 
minorities. She co-founded PRANA, a South Asian Wellness program, and the Center for Asian 
Health Research and Education (CARE). Her current work examines the clinical effectiveness 
of structured physical activities for diabetes management and the best exercise regimes for 
normal-weight diabetics. 

Latha Palaniappan, MD, MS

Ravi Karra, MD, received his medial degree from Duke University School of Medicine and 
completed his residency in Internal Medicine at Brigham and Women’s Hospital and a 
Cardiology fellowship and an Advanced Heart Failure fellowship at Duke University Medical 
Center. He is currently an Assistant Professor in the Department of Medicine, Division of 
Cardiology, Section of Advanced Heart Failure at Duke University School of Medicine. He 
leads a research group focused on translating regenerative biology to patients with heart 
failure.  His group uses state-of-the-art functional screening approaches to identify key 
mediators of heart regeneration. In addition, through collaboration with the Department 
of Biomedical Engineering, he has a focus on the design of biopolymers for delivering 
regenerative compounds to the heart. He is also a practicing cardiologist, specializing in 
recovery from heart failure.

Ravi Karra, MD

Kiran Khush, MD, MAS, is an Associate Professor of Medicine in the Division of Cardiovascular 
Medicine at Stanford University School of Medicine. She obtained her bachelor’s degree from 
Stanford University and her medical degree from Harvard Medical School. She completed 
her medical residency at the University of California, San Francisco (UCSF), followed 
by fellowships in General Cardiology, Echocardiography, and Advanced Heart Failure 
and Transplant Cardiology. Dr. Khush became an Assistant Professor at UCSF while also 
completing her master’s degree in Clinical Research and Epidemiology. She then moved 
to Stanford University. Her clinical and translational research program focuses on heart 
transplantation.

Kiran Khush, MD, MAS

SPEAKER BIOS



Dr. Carlos D. Bustamante is an internationally recognized leader in the application of data 
science and genomics technology to problems in medicine, agriculture, and biology. He 
received his Ph.D. in Biology and MS in Statistics from Harvard University (2001), was on 
the faculty at Cornell University (2002-9), and was named a MacArthur Fellow in 2010. He 
is currently Professor of Biomedical Data Science, Genetics, and (by courtesy) Biology at 
Stanford University. Dr. Bustamante has a passion for building new academic units, non-
profits, and companies to solve pressing scientific challenges. He is Founding Director of 
the Stanford Center for Computational, Evolutionary, and Human Genomics (CEHG) and 
Inaugural Chair of the Department of Biomedical Data Science. 

Carlos Bustamante, PhD

Mintu Turakhia, MD, MAS, is a cardiac electrophysiologist, outcomes researcher, and clinical 
trialist. He is the Executive Director of the Stanford Center for Digital Health and Associate 
Professor of Medicine at the Palo Alto Veterans Affairs Health Care System. Dr. Turakhia has 
an active, highly-funded multidisciplinary program in heart rhythm research, where he uses 
big data, biostatistical, and data science approaches to examine quality, outcomes, and risk 
of heart rhythm disorders such as atrial fibrillation. He is a principal investigator of several 
multi-center trials to test digital health tools and wearable devices in the detection and 
treatment of heart disease. Dr. Turakhia is an elected member of the American Society of 
Clinical Investigation and Fellow of the American Heart Association, American College of 
Cardiology, and Heart Rhythm Society. 

Mintu Turakhia, MD, MAS

Christopher Holley, MD, PhD
Christopher Holley, MD, PhD, received his bachelor’s degree in Biology from Duke University. 
He also obtained his MD and PhD in Pharmacology from Duke University. Dr. Holley then 
completed his residency in internal medicine and a cardiovascular clinical fellowship and 
cardiovascular research fellowship at Washington University School of Medicine / Barnes-
Jewish Hospital in St. Louis, Missouri. He is now an Assistant Professor of Medicine, in the 
Sections for Heart Failure, Transplantation, and Mechanical Circulatory Support at Duke 
University School of Medicine as well as Assistant Professor of Molecular Genetics and 
Microbiology. His research focuses on the role of non-coding RNA in cardiovascular health 
and disease, with a focus on small nucleolar RNA (snoRNA).

SPEAKER BIOS



Dr. Eric Peterson is a Fred Cobb Distinguished Professor of Medicine in the Division of 
Cardiology at Duke University. He received his medical degree from the University of 
Pittsburg, completed his residency at Children’s Hospital Boston, was a Fellow in General 
Internal Medicine at Harvard University, and a Fellow in Cardiology at Duke University. Dr. 
Peterson is the Principal Investigator of the National Institute of Health, Lung, and Blood 
Institute Coordinating Center for Education and Research on Therapeutics. He received 
the American Heart Association Meritorious Achievement Award and was voted one of the 
world’s top 400 most influential researchers in biomedicine. With over 800 peer-reviewed 
publications, Dr. Peterson is recognized as a leader in outcomes and quality research. 

Eric Peterson, MD

Mark Hlatky, MD, is a Professor of Health Research and Policy and of Medicine at Stanford 
University, and is Director of Health Services Research Master’s Degree Program. He received 
his bachelor’s degree in Physics from Massachusetts Institute of Technology and his medical 
degree from the University of Pennsylvania. His interests are in outcomes research, evidence-
based medicine, and cost-effectiveness analysis. He pioneered the collection of data on 
economic and quality of life outcomes as part of randomized trials. He has also developed 
decision models to assess the efficacy and cost-effectiveness of clinical strategies. Dr. 
Hlatky has been awarded both the Distinguished Scientist Award from the American Heart 
Association and the Distinguished Scientist Award from the American College of Cardiology.

Mark Hlatky, MD

Dr. Paul Wang is a Professor of Medicine at the Stanford University School of Medicine and 
co-Director of Bioengineering Scholarly Concentration. He received his bachelor’s degree 
from Harvard University and his MD at the College of Physicians and Surgeons Columbia 
University. Dr. Wang is an expert in the treatment of cardiac arrhythmias, was co-inventor of 
catheter cryoblation, and has pioneered new techniques in the management of heart rhythm 
issues. He has co-authored numerous textbooks and book chapters and is past Chair of the 
American Heart Association Council on Clinical Cardiology ECG and Arrhythmias Committee. 
In addition, Dr. Wang founded the annual Stanford Biodesign New Arrhythmia Technologies 
Retreat, focusing on new technological advances in arrhythmia management and diagnosis. 
He is Editor-in-Chief of Circulation:Arrhythmia and Electrophysiology.

Paul Wang, MD

SPEAKER BIOS



Kevin Schulman, MD
Kevin Schulman, MD, is Professor of Medicine at Stanford University School of Medicine and, 
by courtesy, Professor of Economics at Stanford Graduate School of Business. He is also 
Associate Chair of Business Development and Strategy in the Department of Medicine and 
Director of Industry Partnerships and Education for the Clinical Excellence Research Center 
(CERC) at Stanford University School of Medicine. Dr. Schulman’s research interests include 
organizational innovation in health care, health care policy, and health economics. He is the 
Founding President of the Business School Alliance for Health Management, which consists 
of the leading business schools offering health management programs. Dr. Schulman is an 
elected member of the American Academy of Pediatrics and the American Society for Clinical 
Investigation.

SPEAKER BIOS

Howard Rockman, MD 
Edward S. Orgain Professor of Cardiology
Professor of Medicine, Cell Biology, and Molecular Genetics
Duke University

Sean M. Wu, MD, PhD 
Associate Professor of Medicine, and by courtesy, of Pediatrics
Stanford University

Joseph C. Wu MD, PhD 
Simon H. Stertzer, MD, Professor, and Professor Medicine & Radiology
Director, Stanford Cardiovascular Institute

ORGANIZING 
COMMITTEE



1. Proteomics of Right Heart Failure in Patients with Pulmonary Arterial Hypertension

Myriam Amsallem MD MS1,2,3*, Andrew J. Sweat MD4*, Jennifer Arthur Ataam PhD2,3, Edda Spiekerkoetter 
MD4, Marlene Rabinovitch MD PhD5, Elie Fadel MD PhD3, Olaf Mercier MD PhD3, François Haddad MD1,2* and 
Roham Zamanian MD PhD4,5*

1Div. of Cardiovascular Medicine , Stanford University School of Medicine, CA, USA; 2Stanford Cardiovascular 
Institute, Stanford University School of Medicine, CA, USA; 3Research and Innovation Unit, INSERM U999, Marie 
Lannelongue Hospital, Paris Sud University, France; 4Div. of Pulmonology and Critical Care, Stanford University 
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Background: Inflammatory features have been reported in pressure-overloaded right ventricle. This 
study sought to determine the circulating immune proteomic profile associated with right heart 
maladaptive phenotype (RHMP) in patients with pulmonary arterial hypertension (PAH).

Methods: This study included a discovery cohort (n=121, from 2008 to 2011) and a validation cohort 
(n=76, from 2011 to 2014), who underwent plasmatic proteomic profiling using 48-plex flow cytometry 
multiplex Luminex® (including interleukins, chemokines and growth factors). RHMP was defined using 
the Mayo right heart score (based on right ventricular RV longitudinal strain, NYHA class and NT-
proBNP) and the Stanford right heart score (based on RV end-systolic remodeling index, NYHA class 
and NT-proBNP). The association between cytokines and RHMP was assessed using partial least square 
regression analysis.

Results: The median age of the discovery cohort was 50 [39 – 59] years, with a majority of female (74%), 
and 33% with connective tissue disease. Patients from the validation cohort had more severe features 
(lower six minute walk test distance, lower cardiac index and higher levels of NT-proBNP) than patients 
from the discovery cohort, with similar resistance levels and right heart echocardiography metrics. 
High levels of hepatic growth factor (HGF), stem cell growth factor beta (SCGFꞵ) and nerve growth 
factor (NGF) were significantly associated with worst Mayo and Stanford scores but not with pulmonary 
vascular resistance or mean pulmonary arterial pressure, in both cohorts.

Conclusion: High plasmatic levels of HGF, SCGFꞵ and NGF are associated with right heart adaptive 
phenotypes beyond pulmonary disease severity in patients with PAH.

2. Multi-Echo Flow-encoded Rosette (MELROSE) enables velocity and T2* assessment of both extravascular 
tissue and intravascular blood for motion robust, quantitative cardiovascular blood flow and oxygenation 
mapping

Adam Bush, Christopher Sandino, Marcus Alley, Shreyas Vasanawala

Cardiovascular Cardiac catheterization is an invasive albeit common procedure performed in children 
with congenital  heart  disease  for  intrathoracic  oxygen  saturation assessment, exposing patients  to  
anesthesia  and risk of infection and complication. Prior MRI based intrathoracic oximetry methods have 
been limited due to partial volume contamination of the blood pool with surrounding tissue and motion 
corruption. Recently, subtractive MRI oximetry methods have demonstrated reliability and robustness but 
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are limited to Cartesian strategies in the brain. In this work we use a subtractive, velocity encoded, non-
Cartesian rosette trajectory for quantitative, motion robust, extra and intravascular flow and T2* mapping 
entitled Multi Echo fLowencoded ROSEtte (MELROSE). We validate flow and T2* values in a flow phantom 
and present preliminary results in a healthy subject. Theory Rosette trajectories are flower-like k-space 
traversal patterns first described by Noll. Rosette trajectories have several advantages over spiral and 
radial sequences, including higher average gradients and improve incoherence for compressed sensing 
application yet remain largely unused. In this work, we use a novel rosette shape parameterization, q. 
Each repetition time, a “flower” is acquired, representing a highly undersampled k-space acquisition. 
By performing a multi-shot sequence and incrementing successive flowers by the golden angle (137.5°) 
a fully sampled data set can be acquired. Recombination of individual petals, or samples between 
temporally adjacent center crossings, allows for multi-echo reconstructions... Abstract truncated

3.  Induced pluripotent stem cell modeling of insulin resistance and endothelial dysfunction 

Mark Chandy1,2,3, Edward Lau1, Ian Chen1, Chun Liu1, Brad Oh1, Mansoor Husain2,3,4, Nazish Sayed1, Shriram 
Nallamshetty1, Joseph C. Wu1

1 Cardiovascular Institute, Stanford University, CA; 2 Heart and Stroke Richard Lewar Centre of Excellence, 
University of Toronto, Toronto, Canada; 3 McEwen Centre for Regenerative Medicine, Toronto General Hospital 
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Background: Cardiovascular disease (CVD) is the number one cause of death globally, with 17.5 million 
deaths per year. Insulin resistance is a precursor to type 2 diabetes and patients with this condition are 
more likely to develop CVD. The genetic causes of insulin resistance and effects on the vascular system 
are poorly understood. Our goal is to elucidate the molecular mechanisms of how insulin resistance 
causes vascular dysfunction using patient-specific induced pluripotent stem cells (iPSCs) differentiated 
into endothelial cells. Unlike previous models, iPSC-derived endothelial cells (iPSC-EC) are ideal 
because they generate abundant patient-specific tissue sample.

Hypothesis:  iPSC-EC derived from patients with insulin resistance are dysfunctional

Methods & Results: Insulin resistant and control patient peripheral blood mononuclear cells were 
reprogrammed into iPSCs and subsequently differentiated into endothelial cells as confirmed by 
qPCR and flow cytometry.  iPSC-EC stimulation with tumour necrosis factor TNFɑ was used to model 
insulin resistance. When treated with TNFɑ, iPSC-EC had increased cell adhesion molecule expression 
and dysfunctional insulin signaling, implying endothelial dysfunction and genes involved in the 
insulin signaling were downregulated. At baseline, iPSC-EC derived from insulin resistant patients 
had increased endothelial nitric oxide synthetase (eNOS) expression and phosphorylation and 
paradoxically, stimulation with insulin did not increase eNOS phosphorylation, suggesting endothelial 
dysfunction may be caused by an abnormality in this pathway. Indeed, insulin resistant iPSC-EC have 
a relative impairment of NO release, impaired angiogenesis and increased reactive oxygen species 
production under conditions of hyperglycemia and inflammation mimicked by TNFɑ.

Conclusion: iPSC endothelial cells model insulin resistance and endothelial dysfunction. eNOS 
expression and endothelial cell function is abnormal in insulin resistant patients.  The underlying 
mechanisms merits further investigation. 



4. Accelerated aging in lethal dilated cardiomyopathy

Alex CY Chang1,2,3, Gaspard Pardon3,4,5, Andrew CH Chang1,2,3, John W Day4, Joseph C Wu2,3, Beth Pruitt3,5,6, 
Helen M Blau1,3 
1 Baxter Laboratory for Stem Cell Biology, Microbiology and Immunology, Stanford, CA; 2 Cardiovascular 
Medicine, Stanford, CA; 3 Stanford Cardiovascular Institute, Medicine, Stanford, CA; 4 Department of Neurology, 
Medicine, Stanford, CA ; 5 Department of Bioengineering at Stanford University, Stanford, CA; 6 Department of 
Mechanical Engineering at Stanford University, Stanford, CA

Introduction: Duchenne muscular dystrophy (DMD) is a lethal X-linked recessive disease that results 
from mutations in the dystrophin gene and is the most common myopathic disease in humans with 
a prevalence of one in every 3500 males. Dystrophin is crucial for the formation of a dystrophin-
glycoprotein complex, which connects the cytoskeleton of a muscle fiber to the surrounding 
extracellular matrix in both skeletal and cardiac muscles. In the heart, loss of dystrophin leads to 
increased fibrosis and death in the third decade of life due to dilated cardiomyopathy. Previously 
we showed that cardiomyocytes in patients with DMD had telomeres 50% the length of unaffected 
controls. Notably, shortening was not observed in smooth muscle cells. 

Hypothesis: We hypothesize that contractile defects due to dystrophin deficiency drive telomere 
shortening and result in metabolic compromise and cell death due to inhibition of mitochondrial 
function and biogenesis.

Method: To study telomere shortening in the course of disease progression, we differentiated DMD 
human induced pluripotent stem cell line into beating cardiomyocytes (hiPSC-CMs) as a model. 

Results: We observed aberrant calcium handling and decreased contractility using bioengineered 
micropatterned hydrogel traction force microscopy. Here we present new evidence where aberrant 
contraction results in telomere deprotection and resection in in non-dividing hiPSC-CMs. Induction of 
DNA damage response culminated in mitochondrial dysfunction and apoptosis.

Conclusions: Patient hiPSC-CMs recapitulate in 30 days the telomere shortening that occurs in 30 
years of life in DMD patients and this technology enables the study of cause and effect and tests of 
interventions.

5. Deep learning of cardiac MRI data shows genome-wide associations for bicuspid aortic valve in the UK 
Biobank 

Aldo Córdova-Palomera1, Jason Fries2,3, Paroma Varma4, Vincent S. Chen2, Madalina Fiterau2, Ke Xiao1, 
Heliodoro Tejeda1, Bernard Keavney5,6, Heather J. Cordell7, Christopher Ré2, Euan Ashley8, James R. Priest1 

1Department of Pediatrics, Division of Pediatric Cardiology Stanford Medicine, Stanford, CA; 2Department 
of Computer Science, Stanford University, Stanford, CA; 3Center for Biomedical Informatics Research, 
Stanford University, Stanford, CA; 4Department of Electrical Engineering, Stanford University, Stanford, CA 
5Cardiovascular Sciences, Faculty of Biology, Medicine & Health, University of Manchester, Manchester, UK; 
6Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, 
UK; 7Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK; 8 Department of Medicine, 
Stanford University, Stanford, CA

With a prevalence of 1-2% in the general population, bicuspid aortic valve (BAV) is the most common 
congenital heart disease (CHD) and accounts for more morbidity and mortality than all other CHDs 



combined. Although reported heritability estimates are as high as 89%, specific molecular genetic 
markers of BAV risk remain to be discovered.

 Here, 9,802 magnetic resonance imaging (MRI) sequences from the UK Biobank were analyzed to 
classify aortic valves as either BAV or normal (tricuspid) using a deep learning algorithm (https://www.
biorxiv.org/content/early/2018/06/05/339630). A genome-wide association study was conducted on the 
subset of unrelated European-ancestry participants (595 BAV, 9207 tricuspid aortic valve) using PLINK. 
External validation of the genetic findings was performed on imputed data from a case-control study of 
up to 2594 cases representing eight CHD types and 5159 healthy subjects from the Wellcome Trust Case 
Control Consortium 2 (WTCCC2).

 Markers at three loci displayed statistically significant associations with BAV, including a variant on 
chromosome 12 near IGF1 and LINC00485 (rs146357447, 12:103025165, MAF=1.3%, odds ratio (OR): 3.2, 
p=6.1e-9), an intronic locus on MIR28 (rs550423221, 3:188508236, MAF=0.2%, OR=9.6) and a marker on 
chromosome 2 (rs192377594, 2:140363901, MAF=0.6%, OR=4.1). In the external dataset rs146357447 
was associated with risk for atrial septal defect (OR=1.9, p=0.033), and the MIR28 marker displayed an 
association with non-specific/mixed CHD (OR=1.9, p=0.013).

 The results suggest novel candidate loci as determinants of genetic risk for BAV in the general 
population, and indicate a shared genetic architecture with different types of CHD. 

6. Mechanisms leading to telomere shortening in Duchenne muscular dystrophy cardiomyopathy

Asuka Eguchi1, Alex C. Y. Chang1, Gaspard Pardon1, Foteini Mourkioti2, Beth L. Pruitt3, Daniel Bernstein4, 
and Helen M. Blau1

1Baxter Laboratory, Stanford University, Stanford, CA; 2Orthopaedic Surgery, University of Pennsylvania, 
Philadelphia, PA ; 3Dept. Mechanical Engineering, University of California, Santa Barbara, Santa Barbara, CA ; 
4Dept. of Pediatrics, Stanford University, Stanford, CA

Duchenne muscular dystrophy (DMD) is caused by a lack of dystrophin, and DMD patients face muscle 
degeneration that culminates in loss of respiratory muscle strength and dilated cardiomyopathy. Dystrophin 
serves several distinct functions, including maintenance of cell membrane integrity, structural support to 
the extracellular matrix, and protection against oxidative stress. While the function of dystrophin is well 
understood, the molecular events that lead to cardiomyocyte cell death remains to be explored. A severe 
limitation in the field is that the mouse model lacking functional dystrophin (mdx) does not exhibit cardiac 
symptoms seen in humans. For unknown reasons, mice maintain much longer telomeres than humans. When 
our lab generated mice with “humanized” telomeres, by crossing mdx mice with mice lacking telomerase, 
dilated cardiomyopathy as seen in patients was recapitulated. Preliminary data suggests that contractile 
stress due to the lack of dystrophin leads to a pathogenic condition of oxidative stress, telomere shortening, 
and mitochondrial dysfunction. Using human iPS cells derived from DMD patients, we observe telomere 
shortening in human DMD cardiomyocytes compared to CRISPR-corrected controls. Understanding the 
earliest molecular events that trigger pathogenesis will enable identification of strategies for intervention to 
ameliorate all forms of DMD caused by a wide range of mutations in dystrophin.



7. Lipid Peroxidation Decreases Mitochondrial Dynamics and Impairs Bioenergetics in Children with Right 
Ventricular Failure due to Congenital Heart Disease

HT Hwang1, N Sandeep1, M Zhao1, DQ Hu1, IS Lan2, M Coronado3, KB Kooiker4, G Fajardo1, D Bernstein1, S Reddy1.
1Department of Pediatrics (Cardiology), Stanford University; 2Department of Bioengineering, Stanford 
University; 3Whitman College, Washington; 4University of Washington

Background: In complex congenital heart disease patients such as those with tetralogy of Fallot, the 
right ventricle is subject to pressure overload stress leading to right ventricular hypertrophy (RVH) 
and eventually right ventricular failure (RVF). The role of chronic oxidative stress, in particular lipid 
peroxidation, in RVH and RVF in congenital heart disease is unknown. 

Methods: Oxidative stress, mitochondrial structure, dynamics and respiration were assessed in the 
right ventricle of patients with congenital heart disease and in a murine model of RVH and RVF. The 
effect of 4-hydroxynonenal (4HNE; byproduct of lipid peroxidation) and carvedilol on mitochondrial 
dynamics and respiration was assessed in cardiomyocytes.

Results: Increased lipid peroxidation was associated with lower maximal respiration in patients with 
RVF [RVH 390.2±20.17 vs. RVF 204.1±34.73 pmol/(sec*ml), p=0.0032]. Our murine model of RVH and 
RVF mimicked the patient data and also demonstrated (i) decreased mitochondrial fission (DRP1, 
MFF) and fusion (OPA1) protein expression; (ii) decreased mitochondrial DNA content by 61%; and (iii) 
fragmented mitochondrial network in RVF. Cardiomyocyte treatment with 200 µM 4HNE decreased 
mitochondrial dynamics protein expression, increased leak respiration by 33%, and abolished ADP-
mediated respiration. The ꞵ-blocker and antioxidant, Carvedilol prevented DRP1 and MFF from 
decreasing in response to 4HNE. 

Conclusion: Mitochondria are the largest source and target of lipid peroxidation products. Lipid 
peroxidation in RVF is associated with impaired mitochondrial dynamics and membrane damage 
leading to reduced energy generation. Carvedilol improved mitochondrial fission, raising the potential 
for its use in RVF in children with congenital heart disease.

8. Impaired Bioenergetics in Right Ventricular Failure is associated with Lipid Peroxidation and Decreased 
Mitochondrial Dynamics 

Hyun Tae Hwang1*, Nefthi Sandeep1*, Mingming Zhao1, Dong-Qing Hu1, Ingrid Sheu Lan2, Michael 
Coronado3, Kristina B Kooiker4, Giovanni Fajardo1, Daniel Bernstein1, Sushma Reddy1

1Department of Pediatrics (Cardiology), Stanford University; 2Department of Bioengineering, Stanford 
University; 3Whitman College (Walla Walla, Washington); 4University of Washington

Background: The right ventricle (RV) is uniquely at risk in patients with complex congenital heart 
disease (CHD). Despite successful repair, the RV is subject to pressure overload stress, leading to 
right ventricular hypertrophy (RVH) and eventually right ventricular failure (RVF). The critical role of 
mitochondrial dynamics in the development of RVH and RVF in CHD is unknown. As a major source 
of reactive oxygen species, mitochondria are susceptible to oxidative damage. We hypothesized that 
impaired energy generation in pressure overload-induced right ventricular failure is accompanied by 
blunted mitochondrial dynamics and increased lipid peroxidation.

Methods: Mitochondrial structure and function were assessed in RV tissue resected from patients with 
CHD and a murine model of RVH and RVF. The role of oxidative stress was assessed in the development 
of mitochondrial dysfunction. 



Results: Patients with RV outflow tract obstruction leading to RVF demonstrated lower maximal 
respiration than those with moderate RVH. [390.2±20.17 vs. 204.1±34.73 pmol/(sec*ml), p=0.0032]. To 
understand the mechanism of impaired respiration, we used a murine model of RVH and RVF. RVF was 
characterized by decreased maximal respiration [Sham 744.3±49.3 vs. moderate RVH 513.2±112.6 vs. 
RVF 306±40.18, p<0.0001 (vs. Sham) and p=0.0394 (vs. RVH)], and mitochondrial fission (DRP1, MFF) and 
fusion (OPA1) compared with RVH. RVF exhibited increased lipid peroxidation and irregularly shaped 
mitochondria. 

Conclusion: Pressure overload-induced RVF has impaired mitochondrial respiration and dynamics. 
These were associated with increased lipid peroxidation, which may promote the dysfunction. 

9. Modeling the Mitral Valve

Alexander D. Kaiser1,2, David M. McQueen, Charles S. Peskin3

1Institute for Computational & Mathematical Engineering; 2Dept. of Cardiothoracic Surgery, Stanford 
University; 3Courant Institute of Mathematical Sciences, New York University

This work is concerned with modeling and simulation of the mitral valve, one of the four valves in the human 
heart. The valve is composed of leaets, the free edges of which are supported by a system of chordae, which 
themselves are anchored to the papillary muscles inside the left ventricle. First, we examine valve anatomy 
and present the results of original dissections. These display the gross anatomy and information on fiber 
structure of the mitral valve. Next, we build a model valve following a design-based methodology, meaning 
that we derive the model geometry and the forces that are needed to support a given load, and construct 
the model accordingly. We incorporate information from the dissections to specify the fiber topology of 
this model. We assume the valve achieves mechanical equilibrium while supporting a static pressure load. 
The solution to the resulting differential equations determines the pressurized configuration of the valve 
model. To complete the model we then specify a constitutive law based on a stress-strain relation consistent 
with experimental data that achieves the necessary forces computed in previous steps. Finally, using the 
immersed boundary method, we simulate the model valve in uid in a computer test chamber. The model 
opens easily and closes without leak when driven by physiological pressures over multiple beats. Further, its 
closure is robust to driving pressures that lack atrial systole or are much lower or higher than normal.

10. Identifying the Novel Role of a Presenilin-2 Mutation in Arrhythmogenicity using Patient Specific 
Induced Pluripotent Stem Cells Derived Cardiomyocytes

Chi Keung Lam, Ning Ma, June-Hwa Rhee, Tomoya Kitani, Joe Zhang, Rajani Shrestha, Haodi Wu, Joseph Wu

Stanford Cardiovascular Institute; Dept of Surgery; Dept of Cardiothoracic Surgery. Stanford University, CA

Arrhythmia is a major cause of sudden cardiac death and affects more than 14 million Americans. In 
familial cases, disease-causing mutations are expected to be found in genes encoding proteins that 
regulate membrane potential or calcium kinetics. Through genetic testing, we identified a ventricular 
fibrillation patient with family history of cardiovascular diseases that does not carry any disease-
causing mutation in the arrhythmia-related genes. This patient, however, carries a previously reported 
dilated cardiomyopathy mutation (S130L) in presenilin-2 (PSEN2). To understand if this mutation can 
contribute to arrhythmia, the beating regularity and action potential morphology of cardiomyocytes 
derived from the patient-specific induced pluripotent stem cells (hiPSC-CMs) were assessed by 



fluorescence-based membrane potential imaging. Up to 30% of these hiPSC-CMs demonstrated 
delayed after-depolarizations (DAD) and irregular beating pattern, which were prevented by correcting 
this PSEN2 mutation through CRISPR/Cas9 genome editing. Interestingly, we were unable to 
recapitulate the arrhythmic propensity by introducing this mutation into two healthy control hiPSC-CM 
lines, until we inserted another modulator mutation in histidine-rich calcium binding protein (HRC) 
that was also found in the patient, suggesting PSEN2 mutation is providing the substrate for arrhythmia 
induction. Mechanistically, compromised intracellular calcium removal was detected in S130L-PSEN2 
hiPSC-CMs, which was concordant with a reduction in SERCA protein expression. Compromised 
calcium removal also led to elevated diastolic calcium and activated calcium/calmodulin-dependent 
protein kinase II (CAMKII), indicated by its enhanced phosphorylation. As a result, ryanodine receptor 
was hyper-phosphorylated at the CAMKII site (ser2814), which could facilitate calcium leakage from 
the ryanodine receptor and contribute to the occurrence of DAD. Collectively, our findings reveal 
a previously unknown function of PSEN2 in cardiomyocyte function and suggest that this PSEN2 
mutation can compromise normal intracellular calcium cycling and contribute to arrhythmia through 
activating CAMKII. 

11. Novel Alpha-actinin 2 mutations are associated with cardiomyopathy and hypertrophy in human 
cardiac tissue and iPSC-derived cardiomyocytes 

Malene Lindholm PhD, Han Zhu MD, Yong Huang, Euan Ashley MD, PhD, Matthew Wheeler MD, PhD.	

Stanford Cardiovascular Institute, School of Medicine, Stanford University, Stanford, CA

In cardiac and skeletal muscle, alpha-actinins are critical cytoskeletal proteins that anchor actin 
filaments within the sarcomere. Mutations in ACTN2 have been associated with cardiac abnormalities. 
However, the mechanisms behind how ACTN2 mutations lead to cardiac dysfunction remain poorly 
understood. The aim of this study was to investigate the effects of two novel ACTN2 mutations 
on cardiac and skeletal muscle phenotypes in human tissue and patient-specific iPSC-derived 
cardiomyocytes.

We identified patients in the Stanford Center for Inherited Cardiovascular Disease database with 
rare or novel ACTN2 variants using a custom mutation pipeline optimized for rare variant discovery. 
We identified one patient homozygous for a stop-gain mutation (p.Q860X) in ACTN2 and a family 
with an exon 8-10 deletion. In heart transplant tissue of the homozygous patient, we observed mild 
hypertrophy and interstitial fibrosis. There was no variation in ACTN2 protein expression, indicating 
absence of nonsense mediated decay. siRNA knock down of ACTN2 in neonatal rat ventricular 
cardiomyocytes and a human myoblast cell line resulted in dramatic changes in cell size and 
morphology. Patient-derived iPSC-cardiomyocytes were hypertrophic, displayed sarcomeric structural 
disarray and had a slower contractile velocity. Using Co-Immunoprecipitation for ACTN2, followed by 
mass-spectrometry, we identified a missing protein-protein interaction with AKAP9 in the patient with 
the truncated ACTN2 variant. 

The molecular effects of ACTN2 on a cellular level and how it causes cardiomyopathy has not been 
fully elucidated. Here, we provide evidence that two loss of function genetic variants in ACTN2 are 
associated to contractile dysfunction and lead to cardiac abnormalities.



12. Development Of A Genome Base Editing Approach For The Treatment Of Genetic Dilated 
Cardiomyopathy In Vivo 

Pooja Nair1,2, Jennifer Ataam Arthur3, and Ioannis Karakikes1,2 
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Transplantation, and Infection, Stanford Medicine, Stanford, CA

Rationale: The recently developed CRISPR–Cas-based genome editing holds great promise for targeting 
genetic disorders, such as cardiomyopathies. Adenine base editors (ABE) enable efficient adenine-to-
guanine base (A∙T to G∙C) conversion in post-mitotic cells independent of dsDNA break formation and 
homology-directed repair (HDR). Familial dilated cardiomyopathy arising from C-to-T point mutations, 
such as TNNT2R173W, can potentially be corrected by an ABE base editing system in vivo.

Objective: As precise correction of disease-causing mutations in adult tissues in vivo is challenging, we 
are establishing a versatile adeno-associated viral (AAV) platform for ABE-dependent base editing in 
adult animals. 

Methods and Results: We engineered a dual trans-splicing AAV vector system encoding the newly 
described xCas9 and SpCas9-NG variants that recognize a wider range of protospacer adjacent motif 
(PAM) sequences that is compatible with gRNA-directed targeting of the TNNT2R173W mutation. This 
system allows splitting of the fusion ABE-Cas9 protein into two parts, thereby circumventing the limited 
cargo capacity of AAV vectors. Combined with an AAV vector expressing a targeting gRNA, a three-vector 
base editing system was developed and validated in vitro. In silico analysis of the TNNT2R173W site has 
shown that it is amenable to adenine base editing with multiple gRNAs. We are currently testing this 
system in patient-specific induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) harboring 
the TNNT2R173W mutation in vitro, and in a transgenic mouse model of dilated cardiomyopathy 
carrying the same mutation in vivo.   

Conclusions: The therapeutic potential offered by this AAV-ABE system holds promise in future testing 
on transgenic mice models of dilated cardiomyopathy. Our system addresses two key challenges in 
therapeutic base editing, namely target recognition and in vivo delivery of the large ABE-Cas9 fusion 
gene, by introducing two engineered AAV-ABE variants with relaxed PAM recognition and a modified 
split-AAV platform respectively.

  

13. Regulatory Mechanism of LMOD1 Association with Coronary Artery Disease 
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Atherosclerotic coronary artery disease (CAD) continues to be the leading cause of mortality and 
morbidity worldwide, with an estimated 40% of one’s lifetime risk attributed to genetic factors. 
Meta-analysis of genome-wide association studies implemented to identify this risk in human 
populations, has now identified rs2820315 (P=7.7E-10; OR=1.05), in the smooth muscle cell-restricted 
gene, Leiomodin 1 (LMOD1), as the leading genetic polymorphism associated with CAD. However, 
the causal mechanism by which this polymorphism is responsible for predisposition to CAD remains 
to be identified. Expression quantitative trait loci (eQTL) mapping in GTEx and STARNET databases 
revealed that carriers of the risk allele at rs2820315 display significantly attenuated LMOD1 expression 



in vascular tissues than carriers of the ancestral allele. Epigenomic profiling and fine-mapping analyses 
identified rs34091558 as a top candidate causal variant in high linkage disequilibrium (r2=0.94) with the 
lead variant. To determine the mechanism responsible for reduced LMOD1 expression, we performed 
position weight matrix (PWM) motif analyses and found that rs34091558 disrupts the binding site of a 
transcription factor called forkhead box O3 (FOXO3). Subsequent chromatin immunoprecipitation and 
reporter assays demonstrated reduced FOXO3 binding and transcriptional activity by the risk allele in 
cultured HCASMCs. Platelet-derived growth factor BB (PDGF-BB) stimulation also significantly reduced 
LMOD1 expression coincident with FOXO3 knockdown. Finally, both gain and loss-of-function for FOXO3 
and LMOD1 in HCASMC delineated a regulatory circuit by which LMOD1 regulates SMC proliferation, 
migration and contraction, characteristic features of atherosclerotic lesion progression. Taken 
together, these results provide compelling functional evidence that: 1) rs3091558 is associated with 
reduced LMOD1 expression, 2) this reduction appears to be mediated through the inhibition of FOXO3 
binding and 3) changes in vessel wall processes through LMOD1 dysregulation may partially explain the 
heritable risk for CAD.

14. Exosomal miRNA Profiles of Endothelial Cells and Pericytes in Pulmonary Niche on an Organ-on-a-chip 
Model

Mehmet O. Ozen1,2, Elya A. Shamskhou2,3,4, Abinaya Nathan2,3,4, Ananya Chakraborty2,3,4, Ke Yuan2,3,4, Mark E. 
Orcholski2,3,4, Vinicio A. de Jesus Perez2,3,4 and Utkan Demirci1,2
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Pulmonary arterial hypertension (PAH) is a disorder effecting pulmonary circulation. PAH is a result 
of reduced blood flow due to partial or entire elimination of microvessels because of attenuated 
recruitment of pericytes (Pc), in addition to genetic aberrations and environmental factors including 
endothelial cell (EC) death. To understand the cross-talk between cells, extracellular vesicles (EVs), are 
being increasingly investigated since their shedding from cells occurs in response to global and local 
changes in their environment and can be used to monitor cargo molecules carried by them, in response 
to these conditions in vitro and in vivo. Exosomes involve in this communication, which will impact the 
recipient cell’s fate, packed with microRNAs (miRNAs). 

Motivated by this strong relationship between exosomes and their regulatory behaviors, we 
hypothesize that shear stress on ECs can trigger exosome mediated Pc recruitment during PAH 
progression through WNT family. The objective of this work is to determine molecular changes during 
Pc recruitment of ECs leading to PAH via deciphering exosomal miRNA profiling. 

We cultured patient derived healthy and PAH EC and Pc cell lines in static conditions as monocultures 
to draw a baseline of exosomal miRNA profiles. We profiled secreted exosomes from these cultures. And 
collected RNA for sequencing, where PAH EC and Pc cultures had more exosomes and exosomal RNAs, 
compared to healthy donor cultures (n=3). We will report on cultures in static co-culture models, and 
on an in-house developed dynamic organ-on-a-chip model to decode their exosomal cross-talk through 
exosomal miRNA profiling.



15. Modelling microenvironmental mechanical properties in Duchenne Muscular Dystrophy iPSC-derived 
cardiomyocytes

Gaspard Pardon2,3, Alex Chang2,3, Beth Pruitt1,3, Helen M. Blau2,3
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Duchenne Muscular Dystrophy (DMD) is an X-linked disease affecting ~1:3500 boys per year that 
culminates in heart failure in early adulthood. DMD results from >200 possible genetic mutations on 
dystrophin. The lack of dystrophin disrupts the anchoring of the cell sarcomere to the extracellular 
matrix (ECM), affecting cardiomyocyte contraction. With disease progression, tissue increases in 
stiffness due to fibrosis and changes in ECM composition in accordance with a dilated cardiomyopathy 
phenotype. We hypothesize that this entails a positive feedback loop involving multiple 
mechanosensing pathways. Here, we use a single-cell platform to model the fibrotic remodelling 
in DMD. We measure the force production of single human induced pluripotent stem cell derived 
cardiomyocytes (hiPSC-CMs) on hydrogel substrates with a stiffness matching that of healthy or fibrotic 
tissue. Furthermore, we enhance the hiPSC-CMs structural maturity and standardize our measurements 
by patterning single iPSC-CMs in an elongated 1:7 aspect ratio using microcontact printing of ECM 
proteins. We compute the contractile strength as a function of bead displacement in the hydrogel 
substrate using Digital Image Correlation (DIC) and Fourier Transform Traction Cytometry (FTTC). We 
show that DMD hiPSC-CMs have a dramatically reduced ability to produce force on stiffer substrates 
compared to their isogenic controls. This loss of function correlates with an increase in reactive oxygen 
species (ROS) and mitochondrial dysfunction. The effect of stiffness in this difference in contractile 
function uncovers a potent role of mechanosignaling mediated by the dystroglycan complex. This 
platform will increase our understanding of the biophysics underlying cardiomyocyte mechanosensing.

16. High-throughput phenotypic screening using induced pluripotent stem cell derived cardiomyocytes 
identifies compounds that rescue genetic dilated cardiomyopathy contractility performance

Isaac Perea-Gil1,2, Maricela Prado1,2, Arne Bruyneel2, Wesley McKeithan2,3, Dries Feyen2,3, Pooja Nair1,2, Mark 
Mercola2,3 and Ioannis Karakikes1,2

1Department of Cardiothoracic Surgery; 2Stanford Cardiovascular Institute; 3Department of Medicine, Division 
of Cardiovascular Medicine, Stanford Medicine

Introduction: Familial dilated cardiomyopathy (DCM) is a leading cause of heart failure. To date, 
there is still a large gap in our understanding of the molecular events and signaling pathways that 
lead from a mutation to diverse disease phenotypes, and disease-modifying therapies are lacking. 
The development of induced pluripotent stem cell (iPSC) technology has enabled new opportunities 
to identify disease-modulating therapeutics and empowers comparatively rapid drug screening for 
human genetic diseases such as DCM.

Methods: iPSCs were generated from three DCM patients harboring a pathogenic mutation in the 
TNNT2 gene (p. Arg173Trp; TNNT2R173W) and differentiated towards cardiomyocytes (iPSC-CMs). We 
performed a primary phenotypic screening using high-throughput contractility assays in iPSC-CMs 
monolayers, and further validated our finding at the single cell and 3D engineered heart tissue levels.

Results: We tested a small molecule library of 200 well-characterized protein kinase inhibitors and 
identified two compounds that rescued the contractile deficit of TNNT2R173W iPSC-CMs. We pursued 



two hits for further studies and demonstrated that these two kinase inhibitors when combined 
provided a synergistic effect.

Conclusions: Here we determined the feasibility of performing a primary phenotypic screen in DCM 
iPSC-CMs and demonstrated that small-molecule discovery using an iPSC-based disease model can 
identify candidate drugs for potential therapeutic intervention. The identification of compounds that 
increase contractility in DCM iPSC-CMs could yield novel therapies for genetic DCM.

17. Stanford Center for Undiagnosed Diseases: Unusual Cardiovascular Phenotypes and Precision 
Medicine 

CM Reuter1,8, JN Kohler1, D Bonner1, DB Zastrow1, M Majcherska1, L Fernandez1, C McCormack1, S 
Marwaha1, C Curnin1, J Hom1,2, J Sampson1,3, M Ruzhnikov1,3,4, S Sutton1,5, AM Dries1, C Zhao1,7, Y Huang1,7, E 
Brimble1,3, Undiagnosed Diseases Network6, PG Fisher1,5,6, JA Bernstein1,4,5, EA Ashley1,7,8, MT Wheeler1,7,8.
1Stanford Center for Undiagnosed Diseases, Stanford Medicine; 2Department of Medicine, Stanford Medicine; 
3Department of Neurology, Stanford Medicine; 4Department Pediatrics – Medical Genetics, Stanford Medicine; 
5Department of Genetics, Stanford Medicine; 6NIH Undiagnosed Diseases Network, Office of the Director and 
the National Human Genome Research Institute, National Institutes of Health, Bethesda, MD. 7Division of 
Cardiovascular Medicine, Stanford Medicine; 8Center for Inherited Cardiovascular Diseases, Stanford Medicine

Introduction: The Stanford Center for Undiagnosed Diseases (CUD) is a clinical site of the Undiagnosed 
Diseases Network (UDN). The CUD enrolls patients with rare, undiagnosed diseases across various 
clinical indications including those with undiagnosed cardiovascular disease. The mission of the UDN 
is to improve knowledge of the molecular etiology of disease and to develop bioinformatic tools to 
support precision medicine. Since 2015, the CUD has enrolled 153 of 359 patients who applied (42.6%). 
The primary phenotype is cardiovascular in twelve patients (7.8%). To date, evaluation in the CUD has 
yielded a confirmed diagnosis in two of twelve patients with cardiovascular phenotypes and 29 of 106 
patients overall. 

Case Report: A 32-year-old female presented with a 10-year history of persistent intermittent chest pain 
and troponin elevation (>20 mg/dL) of unclear etiology, borderline left ventricular (LV) ejection fraction 
(55%), hypokinesis of the LV wall, mesocardial myocardial fibrosis, mild endothelial dysfunction, and 
sinus tachycardia. Repeated coronary catheterizations showed no epicardial coronary artery disease 
and PET CT showed no evidence of myocardial inflammation. Her extensive clinical workup had failed 
to identify a unifying diagnosis. Prior clinical exome sequencing was recommended, but coverage was 
denied by the patient’s insurance provider. The patient was thus referred to the CUD. Evaluation in the 
CUD included clinical exome sequencing. A heterozygous pathogenic nonsense variant was identified 
in the DSP gene (c.1273C>T; p.Arg425Ter). Pathogenic variants in DSP are associated with both 
dilated cardiomyopathy and arrhythmogenic right ventricular cardiomyopathy. While the patient’s 
cardiac imaging did not reveal any LV enlargement or right ventricular involvement, case reports of 
patients with DSP nonsense variants have described similar presentations with elevated troponin, 
chest pain, and fibrosis in the absence of ventricular enlargement. Thus, we considered the DSP 
variant to be diagnostic. The patient has since established care with a heart failure cardiologist and 
electrophysiologist for ongoing surveillance and sudden death risk stratification. 



18. Modeling hypertrophic cardiomyopathy caused by mutations in beta-myosin using human induced 
pluripotent stem cell derived cardiomyocytes (iPSC-CMs)

Alison Schroer, Gina Jung, Kristina Kooiker, Arjun Adhikari, Kathleen Ruppel, Beth Pruitt, James Spudich, 
Daniel Bernstein 

Hypertrophic cardiomyopathy affects 1:500 Americans and is commonly caused by mutations in 
beta-myosin heavy chain, the main motor protein responsible for contraction of human ventricles. 
This protein is arranged in hierarchical structures called sarcomeres and myofibrils that allow 
for coordinated contraction of cardiomyocytes. We have used CRISPR-Cas9 gene editing to insert 
mutations (P710R and D239N) into hiPSCs that we subsequently differentiate into cardiomyocytes. We 
used micropatterning techniques to promote cell and myofibril alignment and contractile function. 
Transmission electron microscopy has confirmed microstructural changes in the sarcomeres and 
myofibrils of cells containing these mutations, and traction force microscopy has revealed differences 
in force generation at the single cell level. We have also measured altered signaling through MAPK 
pathways that may regulate hypertrophy. These cellular level experiments provide an important 
complement to molecular studies of these mutations, and we are developing models that will allow 
us to predict how changes in force and kinetics might translate across scales and contribute to cellular 
and tissue remodeling.

19. Parental disease and over transmission of genetic risk for diabetes are related to Congenital Heart 
Disease in offspring 

Catherine Tcheandjieu DVM PhD, John Gorzynski DVM, Aldo Cordova Palomera, Priyanka Saha BS, Jane 
W. Newburger, Christine E. Seidman, Wendy K. Chung, Elizabeth Goldmuntz, Martina Brueckner, George A. 
Porter, Jr., Richard W. Kim, Deepak Srivastava, Martin Tristani-Firouzi, Bruce D. Gelb, and James Priest MD

Maternal diabetes and elevated blood glucose during pregnancy are the most recognized risk factor for 
Congenital heart disease (CHD). However, the contribution or relationship to other maternal conditions 
such as cancer, lung, and neurological diseases, in addition to any paternal contribution to CHD risk 
in offspring are largely unexplored.  The relationship of parental conditions was assessed using the 
500,000 participants of the UK-biobank among which, 2006 adults have CHD. in the UK-biobank, 
a survey uniformly ascertained the Self-reported parental history of diseases (including diabetes, 
heart disease (unspecified), chronic bronchitis, cancer, Parkinson and Alzheimer disease, and severe 
depression) at the time of enrollment.  

In a separate study of 850 trios (2550 individuals) with array genotyping data from the Pediatric 
Cardiology Genomic Consortium (PCGC), the deviation in the transmission of the genetic risk from 
parent to child for each condition was tested using the transmission disequilibrium test based 
on the Polygenic risk score (pTDT).  In the UK Biobank CHD risk was associated with history of 
heart diseases in both parents [OR=1.41(1.19–1.66), p=5x10-05], chronic bronchitis/emphysema in 
mother or father [OR=1.22(1.07–1.39), p=2.8x1003], and Alzheimer in mother [OR=1.26(1.08 – 1.47), 
p=2.2x10-03] but not with the parental history for diabetes.  Among the trios, we found a deviation in 
the transmission of PRS from parent to child for diabetes [mean(pTDT)=0.15(0.05–0.25) p=3x10-03], 
chronic obstructive pulmonary diseases (COPD) [mean(pTDT)=0.13(0.02–0.24) p =0.02], and Alzheimer 
disease [mean(pTDT)=0.11(0.06 – 0.16), p=0.02].  Our findings suggest that lifetime risk of heart, lung 



and Alzheimer diseases in the parents may be related to the risk of CHD in offspring. Additionally, risk alleles 
for diabetes, COPD, and Alzheimer in the parents were observed to be over-transmitted from parent to child, 
suggesting that these novel inherited risk alleles for CHD may not be limited to a maternal or in utero metabolic 
effect. 

 

20. Transgenic Mice Lacking BMPR2 in Smooth Muscle Cells have Persistent Pulmonary Hypertension Related to Impaired 
Contractility, Heightened Proliferation and Resistance to Apoptosis of PASMC 

Lingli Wang MD, Jan Renier Moonen MD, PhD, Aiqin Cao PhD, Caiyun G Li PhD, Nesrine El-Bizri PhD, Pin-I Chen PhD, 
Nancy Ferreira Tojais PhD, Hirofumi Sawada MD, PhD, YuMee Kim PhD, Marlene Rabinovitch MD 

Department of Pediatrics (Cardiology), & Cardiovascular Institute, Stanford University, School of Medicine, Stanford, CA 

Mutations in bone morphogenetic protein receptor 2 (BMPR2) are associated with idiopathic pulmonary 
arterial hypertension (PAH), but the link between loss of BMPR2 and the pathogenesis of PAH remains unclear. 
To understand the role of BMPR2, we generated mice lacking BMPR2 in vascular smooth muscle cells (SMC) 
with reporter (SM22 Cre+R26R+Bmpr2-/-). The penetrance of a ventricular septal defect was 50%. SM22 Cre-
Bmpr2-/- survivors were compared to controls in room air, three weeks of hypoxia and following four weeks 
recovery in room air (n = 4-8). While female groups were similar under all conditions, mutant males showed 
reduced hypoxia-induced vasoconstriction and developed less severe PH following chronic hypoxia, judged 
by right ventricular systolic pressure. There was, however, more persistent PH following recovery, associated 
with sustained muscularization of distal pulmonary arteries (PA). We found that PASMCs from male SM22 Cre-
Bmpr2-/- mice vs. controls were less contractile in response to angiotensin II (4µM) and showed heightened 
proliferation and resistance to apoptosis. We observed a similar phenotype in human PASMC where BMPR2 was 
knocked down by siRNA, related to increased ꞵ-arrestin2 and active ꞵ-catenin and reduced active RhoA and 
Rac1. Reducing ꞵ-arrestin2 restored the contractile phenotype and attenuated the heightened proliferation 
phenotype. Interestingly, tissue staining revealed heightened expression of ꞵ-arrestin2 and active ꞵ-catenin in 
PASMCs of PAH patients with BMPR2 mutation vs. controls. Our study relates loss of BMPR2 in PASMC to impaired 
PA contractility and heightened PASMC proliferation. The mechanism is consistent with dysregulation of tandem 
ꞵ-catenin and RhoA signaling in response to BMPR2 stimulation.

21. Endothelial expression of constitutively active Notch4 initiates brain arteriovenous malformation involving a 
nitric oxide synthase-mediated molecular mechanism

Lawrence Huang1, Weiwei Xiang1, Matthew A. Nystoriak2, Xitao Wang1, Weiya Jiang1, Kevin S. Hou1, Jiayi Zhang1, 
Manuel F. Navedo2, Rong A. Wang1*
1Laboratory for Accelerated Vascular Research, Department of Surgery, University of California, San Francisco, San 
Francisco, CA; 2Department of Pharmacology, University of California, Davis, Davis, CA.

Arteriovenous (AV) malformations (AVMs) are characterized by a nidus of enlarged, tangled vessels that 
shunt blood directly from arteries to veins, displacing intervening capillaries. Mechanisms underlying 
AVM pathogenesis are poorly understood, hindering therapeutic development. Endothelial expression of 
constitutively active Notch4 (Notch4*) initiates brain AVMs in mice through enlargement of capillary-like vessels 
without an increase in endothelial cell number or proliferation. Instead, initial enlargement of AV shunts 
correlates with area expansion of individual endothelial cells, suggesting that aberrant vasodilation may play 
a role in early stages of AV shunting. We hypothesized that Notch4* disrupts endothelial nitric oxide synthase 
(eNOS) signaling, permitting vessel enlargement and AV shunting. Consistent with this, pharmacological 
inhibition of nitric oxide synthase (NOS) by administering the NOS inhibitor NG-nitro-L-arginine (L-NNA) or 



eNOS gene deletion decreased brain AV shunt diameter, severity of brain AVM-associated pathologies, and 
illness progression in mice expressing endothelial Notch4*. Furthermore, pial arteries isolated from Notch4* 
mice exhibited decreased arterial tone compared to controls, and this was abolished by L-NNA. Interestingly, 
endothelial Notch4* expression did not result in detectable changes in nitric oxide (NO) production by 4-Amino-
5-Methylamino-2',7'-Difluorofluorescein (DAF-FM) Diacetate in the brain or by cyclic guanosine monophosphate 
(cGMP) production, a surrogate for aortic NO production. Instead, NOS-dependent superoxide production was 
elevated in Notch4* brains at the initial stages of AV shunting formation, as assessed by dihydroethidium (DHE). 
Administering the superoxide dismutase mimetic 4-Hydroxy-2,2,6,6-tetramethylpiperidine 1-oxyl (Tempol) 
decreased brain AV shunt diameter, severity of brain AVM-associated pathologies, and illness progression in mice 
expressing endothelial Notch4*, mirroring the effects of NOS inhibition and eNOS deletion. Our data suggest that 
endothelial Notch4*-induced brain AVM involves an eNOS-dependent molecular mechanism that upregulates 
superoxide production. 

22. Single cell analysis of smooth muscle cell phenotypic modulation in vivo reveals a critical role for coronary 
disease gene TCF21 in mice and humans

Robert C. Wirka1,3, Dhananjay Wagh2, David T. Paik1,3, Milos Pjanic1,3, Trieu Nguyen1,3, Clint L. Miller4, Ramen 
Kundu1,3, Manabu Nagao1,3, John Coller2, Tiffany K. Koyano5, Robyn Fong5, Y. Joseph Woo5, Boxiang Liu6, Stephen B. 
Montgomery6, Joseph C. Wu1,3, Kuixi Zhu7, Rui Chang7, Melissa Alamprese8, Michelle D. Tallquist9, Juyong B. Kim1,3,10, 
Thomas Quertermous1,3,10

1Division of Cardiovascular Medicine and Cardiovascular Institute, Stanford Medicine; 2Stanford Functional Genomics 
Facility, Stanford University; 3Stanford Cardiovascular Institute; 4Center for Public Health Genomics, Dept of Public 
Health Sciences, Biochemistry and Genetics, & Biomedical Engineering, University of Virginia, Charlottesville, VA; 
5Department of Cardiothoracic Surgery, Stanford Medicine; 6Dept. of Genetics, Stanford Medicine; 7Dept of Neurology 
& Center for Innovation in Brain Sciences, University of Arizona; 8Banner Behavior Health, Argosy University; 9Center for 
Cardiovascular Research, John A. Burns School of Medicine, University of Hawaii, Manoa, Honolulu, HI; 10Senior Authors

In response to various stimuli, vascular smooth muscle cells (SMCs) can de-differentiate, proliferate and migrate 
in a process known as phenotypic modulation. However, the phenotype of modulated SMCs in vivo during 
atherosclerosis and the influence of this process on coronary artery disease (CAD) risk are not established. Using 
single cell RNA sequencing, we comprehensively characterized the transcriptomic phenotype of modulated 
SMCs in vivo in both mouse and human arteries and found that these cells transform into unique fibroblast-like 
cells that we term “fibromyocytes”. SMC-specific knockout of TCF21, a causal CAD gene, markedly inhibited 
SMC phenotypic modulation in mice, leading to fewer fibromyocytes within the lesion and the protective 
fibrous cap. TCF21 expression was also strongly associated with SMC phenotypic modulation in diseased 
human coronaries. In human CAD-relevant tissues, TCF21 expression was associated with decreased CAD risk, 
establishing a protective role for both TCF21 and SMC phenotypic modulation in this disease.

23. Anti-aging effects of growth hormone-releasing hormone agonist on cardiovascular system in old mice

Pingping Xianga, Andrew V Schallyb, Hong Yua

aDepartment of Cardiology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China; 
bDepartment of Medicine, Miller School of Medicine, University of Miami, Veterans Affairs Medical Center, Miami, FL 

Aim: Diastolic dysfunction is a characteristic of aged hearts. The agonists of growth hormone-releasing hormone 
(GHRH-A) exhibit several favorable effects on heart function. Here we assessed the effects of GHRH-A MR409 on 
heart function and systemic parameters in aged mice. 



Methods and Results: Starting at the age of 15 months, mice were subcutaneously injected daily with MR409 
(100ug/mouse) or vehicle (n=7 each). Echocardiography and body weights were measured at baseline and 5 
months after treatment. Mice treated with MR409 for 5 months showed significantly improved ejection fraction 
and attenuated hypertrophy, increased exercise activity, and healthier hair growth in comparison with the 
controls. No changes in body weight were observed after the treatment. In studies in vitro, senescence levels 
were detected with ꞵ-gal staining in the doxorubicin-treated H9C2 cardiac myoblasts, neonatal cardiomyocytes 
(NRCM) or endothelial cells (EC) after 2 or 10 passages, respectively.  When cultured with MR409, significantly 
fewer ꞵ-gal positive cells were observed as compared with control cells.  Cell cycle associated protein p21 was 
reduced in all MR409-treated cells (H9C2, NRCM and EC). Reactive oxygen species in Dox-treated H9C2 cells 
were reduced when cultured with MR409. Electron microscopy showed that mitochondrial morphology was 
preserved in the Dox-treated H9C2 cells upon cultures with MR409 while it was damaged in control cells after Dox 
treatment. MR409 also improved cellular ATP production and oxygen consumption rate of Dox-treated H9C2. 

Conclusion: GHRH-A can rejuvenate aged mice in aspects of heart function, exercise capacity, hair growth, 
cellular energy production and senescence biomarkers.

24. Pericytes differentiate into smooth muscle cells through CXCL12 activation in hypoxia induced pulmonary 
hypertension

Ke Yuan1,2, Wendy Zhang3, Elya A. Shamskhou1,2, Mark Orcholski1,2, Abinaya Nathan1,2, Stanley Qi4, Kristy Redhorse2,5, 
Mark Nicolls1 and Vinicio de Jesus Perez1,2

1Divisions of Pulmonary and Critical Care Medicine and Stanford Cardiovascular Institute, 2Cardiovascular Institution, 
3Department of Genetics, School of Medicine, 4Department of Bioengineering, 5Dept of Biology, Stanford University

Background: Pericytes are specialized perivascular cells that directly interact with endothelial cells. They are 
also multipotent cells-like. Little is known regarding the contribution of pericytes to pulmonary vascular diseases 
such as pulmonary arterial hypertension (PAH), a disorder associated with abnormal vascular remodeling of 
microvessels secondary to smooth muscle cell (SMC) accumulation. It is also unclear whether the overabundant 
SMCs are of pericyte-origin and what underlying mechanisms drive that transition.

Materials and Methods: Transcriptome analysis was performed on human healthy and PAH pericytes and 
compared against healthy and PAH SMC.  In order to trace pericyte lineage during hypoxia induced PH, we utilized 
fate mapping using the NG2-tdTomato(NG2-tdT) murine model which can selectively mark pericytes with red 
florescence. FACS was used to sort tdT positive cells followed by bulk and single cell RNA-seq analysis. 

Results: Transcriptomic analysis demonstrated that genetic landscape of PAH pericytes was homologically similar 
to that of PAH SMCs.  Analysis of NG2-tdT murine lung sections revealed that pericytes relocate from alveolar 
capillaries to the precapillary arterioles and expressed smooth muscle myosin heavy chain (SMMHC), a marker of 
mature SMCs. Bulk RNA-seq analysis of pericytes sorted from 21-day hypoxia revealed strong upregulation of cell 
motility related genes compared to normoxia.  Further analysis using single cell RNA-seq revealed that pericytes 
under hypoxia can be distinguished into 8 different clusters.  Among them, the SMC-like cluster was the most 
abundant and within this cluster, individual cells had elevated level of C-X-C motif chemokine 12 (CXCL12). Analysis 
of in both human PAH serum samples (N=83) and pericytes demonstrated a significant elevation in CXCL12. 
Moreover, overexpression of CXCL12 in healthy human lung pericytes produced a SMC like phenotype associated 
with greater contractility and reduced association to endothelial cells in matrigel tube formation assay.   

Conclusion: Our results suggest that pericytes contribute to muscularization of distal precapillary vessels in 
response to hypoxia by differentiating into SMCs via a CXCL12 associated pathway. Our findings contribute to a 
better understanding of pericyte biology and identify pericytes as a potential therapeutic target in both hypoxia 
induced PH and PAH. 



25. GDF 11 is essential for maintaining cardiac function under pressure overload 

Jingyun Zhu, Yun Zhao, Ning Zhang, JianAn Wang, Hong Yu

Department of Cardiology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China

Objective: Growth differentiation factor 11 (GDF11) is a member of transforming growth factor ꞵ superfamily. The 
physiological and pathological functions of GDF11 in cardiomyocytes and heart remain unclear.  Here we sought 
to elucidate the cardiomyocyte-specific roles and mechanism of GDF11 in pathological cardiac hypertrophy.

Methods and Results: GDF11 expression was increased in human hearts with dilated cardiomyopathy (DCM) 
and myocardial infarcted (MI), which was confirmed in mouse models of hearts after transverse aortic 
constriction (TAC) and MI.  GDF11 in heart was mainly derived from cardiomyocytes. Cardiac specific GDF11 
conditional knockout (CKO) and control Cre mice were subjected to TAC-mediated pressure overload or MI. 
Deficiency of GDF11 accelerated cardiac dysfunction and left ventricular dilatation after TAC or MI. More fibrosis 
and fewer vasculatures were detected in the hearts of CKO mice after TAC or MI as compared with controls. 
GDF11 overexpression with cardiac injection of AAV9-GDF11 during TAC procedure rescued the detrimental 
cardiac function of CKO mice. In vitro culture, GDF11 overexpression in CMs resulted in more VEGF secretion. 
The conditioned medium from GDF11-overexpressed CMs stimulated significantly more tube formation of 
endothelial cells, which could be blocked by VEGF neutralizing antibody. GDF11 overexpression promoted the 
phosphorylation of Smad2/3 and Akt/protein kinase B (AKT) in CMs. Inhibition of TGF-ꞵ/Smad signal pathway by 
TGF-ꞵ receptor inhibitor (SB431542) blunted the GDF11-induced CM’s paracrine effect. 

Conclusions: GDF11 functions as an injury-induced cardiokine that stimulates paracrine effect of CMs to protect 
myocardium from injury.
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