Developing Liquid Biopsy for Predicting Early Disease & Therapeutic Drug Response in Localized & Metastatic Kidney Cancer

Viola Chen, MD
T32 update
Fan lab
1-23-19
Kidney cancer biomarker development

Localized disease (stage I/II)
- Platelet RNA-seq for detection of localized kidney cancer

Metastatic disease (stage IV)
- Nanotechnology capture of kidney cancer CTCs
Platelet RNA-seq for the early detection of kidney cancer
Achieving early kidney cancer detection

- Nanotechnology to molecularly probe for pre-malignant or early cancer lesions
- Next-generation sequencing to diagnose kidney cancers at stage I
Early diagnosis of kidney cancer means better survival

<table>
<thead>
<tr>
<th>AJCC Staging</th>
<th>5-year survival</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stage I</td>
<td>96%</td>
</tr>
<tr>
<td>Stage II</td>
<td>82%</td>
</tr>
<tr>
<td>Stage III</td>
<td>64%</td>
</tr>
<tr>
<td>Stage IV</td>
<td>23%</td>
</tr>
</tbody>
</table>

Incidence (stage III&IV): 40%

Chittoria, Renal Cell Carcinoma, Cleveland Clinic CCE. Aug 2013
Platelets: beyond coagulation

- Megakaryocytes package RNA into platelets
 - 5000-9000 human genes

- Active translational machinery exists in platelets
 - process non-mature RNA into mature forms

- Bidirectional communication with environment
 - direct physical interactions
 - secretion/horizontal transfer microparticles
 - capture/sequestration circulating proteins/microvesicles
Platelets reflect a systemic response to disease

- Megakaryocytes pre-package unique repertoire of transcripts → platelets
- **Hypothesis:** early kidney cancer induces change in platelet RNA profiles
- Active splicing machinery allows processing pre-packaged RNA in response to environmental signals
- Disease-specific RNA patterns described in many diseases, including cancer
Finding a cancer-specific platelet RNA signature

- Gender-matched
- Race-matched
- Age-matched
Healthy donor platelet transcriptome stable over time
Platelet RNA-seq workflow

- Isolate platelets from whole blood of pilot patients
- Extract total RNA from platelets; convert to cDNA
- RNA-seq

Isolation of desired cell type

- Determine ideal digestion time for stranded RNA-seq of low-input material
- Determine candidate RNA signature for localized RCC
Sequencing low-input platelet RNA

Fragmentation based on RIN #
3 min digestion produces greatest % coding sequences

“MultiQC” Bioinformatics (2016)
Pre-pilot RNAseq shows excellent gene coverage
Clinical sample collection status

Paired Samples (Pre- & Post-Surgery)

<table>
<thead>
<tr>
<th>Clinical Diagnosis</th>
<th>Number of Patients</th>
<th>IDs</th>
<th>Number of Samples</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clear Cell RCC only</td>
<td>11</td>
<td>RCC230, RCC231, RCC234</td>
<td>22</td>
<td>2 time points each, stage I unless indicated otherwise</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CTC713, CTC715, RCC250,</td>
<td></td>
<td>RCC234: stage II + stable lung nodules of unknown etiology, unlikely metastatic</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RCC252, RCC254, RCC255, CTC726/RCC254, CTC725/RCC259</td>
<td></td>
<td>RCC255: stage II w/ rhabd. features + lung nodules, possibly metastatic, first seen on CT just before 2nd timepoint</td>
</tr>
<tr>
<td>Non-Clear Cell RCC only</td>
<td>3</td>
<td>CTC719, CTC724/RCC256, CTC722</td>
<td>6</td>
<td>CTC719: stage I pRCC type I</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>CTC724: stage II pRCC type II</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>CTC722: stage I clear cell tubulo-papillary RCC</td>
</tr>
<tr>
<td>RCC + Other Cancer</td>
<td>2</td>
<td>CTC711, CTC717/RCC240</td>
<td>5</td>
<td>CTC711: stage I ccRCC + bladder cancer</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>CTC717: 3 time points (3rd timepoint 5 months p surgery); stage I MIT translocation RCC + lung cancer</td>
</tr>
<tr>
<td>Benign Kidney Tumors</td>
<td>1</td>
<td>CTC716</td>
<td>1</td>
<td>CTC716: mixed epithelial and stromal tumor, likely benign</td>
</tr>
<tr>
<td>Non-Tumor Surgery</td>
<td>1</td>
<td>CTC1501</td>
<td>2</td>
<td>CTC1501: simple nephrectomy d/t hydrenephrosis</td>
</tr>
<tr>
<td>Healthy Controls</td>
<td>1</td>
<td>CTC590</td>
<td>2</td>
<td>(platelets)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>(plasma)</td>
</tr>
<tr>
<td>TOTAL</td>
<td>20</td>
<td></td>
<td>41</td>
<td>(platelets)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>40</td>
<td>(plasma)</td>
</tr>
</tbody>
</table>

Single Time Points (pre-surgery/ non-surgery)

<table>
<thead>
<tr>
<th>Clinical Diagnosis</th>
<th>Number of Patients</th>
<th>IDs</th>
<th>Number of Samples</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clear Cell RCC</td>
<td>1</td>
<td>RCC248</td>
<td>1</td>
<td>RCC248: stage I</td>
</tr>
<tr>
<td>Non-Clear Cell RCC</td>
<td>3</td>
<td>CTC209 (platelet RNA used up, only plasma left), CTC211, CTC2710, CTC721</td>
<td>4</td>
<td>CTC209: stage III chRCC</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>CTC211: Xp11 translocation-associated renal cell carcinoma</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>CTC710: stage I pRCC type II</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>CTC721: stage I chRCC</td>
</tr>
<tr>
<td>Benign Kidney Tumors</td>
<td>1</td>
<td>CTC716</td>
<td>1</td>
<td>CTC716: mixed epithelial and stromal tumor, likely benign</td>
</tr>
<tr>
<td>Non-Tumor Surgery Patients</td>
<td>1</td>
<td>CTC1500</td>
<td>1</td>
<td>CTC1500: simple nephrectomy d/t hydrenephrosis</td>
</tr>
<tr>
<td>Healthy Controls</td>
<td>3</td>
<td>CTC577, CTC576, CTC575</td>
<td>3</td>
<td>All male</td>
</tr>
<tr>
<td>TOTAL</td>
<td>9</td>
<td>(platelets)</td>
<td>10</td>
<td>(platelets)</td>
</tr>
</tbody>
</table>

- **Single Time Points (pre-surgery/ non-surgery)**
 - Clear Cell RCC
 - RCC248: stage I
 - Non-Clear Cell RCC
 - CTC209: stage III chRCC
 - CTC211: Xp11 translocation-associated renal cell carcinoma
 - CTC710: stage I pRCC type II
 - CTC721: stage I chRCC
 - Benign Kidney Tumors
 - CTC716: mixed epithelial and stromal tumor, likely benign
 - Non-Tumor Surgery Patients
 - CTC1500: simple nephrectomy d/t hydrenephrosis
 - Healthy Controls
 - All male
 - TOTAL
 - 9 (platelets)
 - 10 (plasma)
Conclusion

- Developed robust platelet isolation protocol from peripheral blood draw from clinic and pre-op patients
- Determined ideal digestion time for low-input total RNA stranded sequencing
- Completed collection of pilot paired-sample platelet patients with localized kidney cancer and additional control groups
- Poised to submit for sequencing and subsequent analysis
Acknowledgements

Fan Lab
Alice Fan, MD
Viola Chen, MD
Christian Hoerner, PhD

Collaborators:
Matthew T. Rondina, MD
University of Utah

Emilie Montenont, PhD
University of Utah

Jesse Rowley, PhD
University of Utah

Neal Tolley
University of Utah

University of Utah Bioinformatics Core
The Huntsman Cancer Institute

Eric Oermann, MD
Mount Sinai Health System

Funding:
- NCI T32: Dr. Rao, Dr. Felsher
- TRAM grant
- Canary Center for Early Cancer Detection

TRAM
Dean Felsher, MD
Joanna Liliental, PhD

Dept of Biomedical Data Science
Laurel Stell, MS, PhD

Dept of Urology
Tommy Metzner, John Leppert, MD, Ben Chung, MD, Geoffrey Sonn, MD, Harcharan Gill, MD, Alan Thong, MD

Stanford Cancer Center
Chia-Sui Kao, MD
Christian Kunder, MD
Participating patients