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The growth of human malignancies cannot be directly observed. 
In particular, the earliest events in the growth of a large tumor are 
unknown. What happens during these first cell divisions may provide 
clues as to how to better prevent, detect and treat cancers. Because 
tumor growth is an evolutionary process and the ancestral history is 
recorded within tumor cell genomes1–3, detailed information on the 
early growth phase may be encoded in the patterns of genomic ITH 
present in the final neoplasm. Specifically, in the absence of selective 
sweeps, it is feasible to recover the genomic profile of the primordial 
tumor. This task is possible because private (subclonal) alterations, 
including copy number aberrations (CNAs) and point mutations, that 
occur early during growth should be ‘pervasive’ in the final neoplasm, 
where pervasive refers to private alterations that are found throughout 
the tumor but are not dominant. Experimentally, pervasive alterations 
can be detected through systematic sampling and genomic profiling of 
numerous regions of the same neoplasm. The initial events in neoplastic 
transformation are thought to occur through the stepwise accumulation 
of driver alterations4, whereas the growth dynamics of established neo-
plasms remain poorly characterized. In particular, extensive ITH and 
branching phylogenies identified by cancer genomic studies5–9 suggest 
that the same linear paradigm does not apply to the subsequent growth 
of established tumors, such as colorectal carcinomas and advanced ade-
nomas. However, the origins of ITH are unknown, and a quantitative 
framework to describe the dynamics of tumor growth is needed.

Here we propose a Big Bang model where, after the initial transfor-
mation, colorectal tumors grow predominantly as a single expansion 
populated by numerous intermixed subclones (Fig. 1a). As expected, 
public alterations in the initiating cell will be present in all tumor 

cells (clonal). In contrast, although new private alterations will 
continuously be generated as a result of replication errors, only the 
earliest will be pervasive, whereas later alterations will be localized 
in progressively smaller tumor subpopulations. Although private 
alterations acquired during growth may confer survival advantages, 
selective sweeps that substantially alter the clonal composition  
of the final tumor are predicted to be extremely rare owing to the 
rapidly expanding population and spatial constraints10–12. Hence,  
the timing of an alteration rather than clonal selection for that  
alteration is the primary determinant of its pervasiveness. Notably, 
most observable private alterations that give rise to ITH are  
generated early after the transition to an advanced tumor, well  
before the neoplasm becomes clinically detectable. Given the absence 
of sequential selective sweeps, our model anticipates uniformly high 
levels of ITH throughout the neoplasm. Moreover, in some tumors, 
early subclone mixing followed by scattering to different distant 
tumor regions might occur (for example, Fig. 1a, red subclone). This 
phenomenon results in variegated tumor cell populations, where the 
spatial relationship between cells does not necessarily recapitulate 
their clonal relationship.

An example of the variegation predicted by the Big Bang model 
is shown in Figure 1b. Progeny of the first initiating tumor cell 
propagate public alterations but also acquire new private alterations 
(colored areas), resulting in ITH within the newly formed small,  
primordial tumor, which can subsequently scatter to distant regions 
during growth. For instance, the earliest alterations (shown in red) can 
be scattered to opposite sides of the neoplasm during tumor expan-
sion, despite remaining private and non-dominant. This mechanism 

A Big Bang model of human colorectal tumor growth
Andrea Sottoriva1,6, Haeyoun Kang2,3, Zhicheng Ma1,6, Trevor A Graham4,5, Matthew P Salomon1,  
Junsong Zhao1, Paul Marjoram1, Kimberly Siegmund1, Michael F Press2, Darryl Shibata2 & Christina Curtis1,6

What happens in early, still undetectable human malignancies is unknown because direct observations are impractical. Here 
we present and validate a ‘Big Bang’ model, whereby tumors grow predominantly as a single expansion producing numerous 
intermixed subclones that are not subject to stringent selection and where both public (clonal) and most detectable private 
(subclonal) alterations arise early during growth. Genomic profiling of 349 individual glands from �5 colorectal tumors showed 
an absence of selective sweeps, uniformly high intratumoral heterogeneity (ITH) and subclone mixing in distant regions, as 
postulated by our model. We also verified the prediction that most detectable ITH originates from early private alterations and 
not from later clonal expansions, thus exposing the profile of the primordial tumor. Moreover, some tumors appear ‘born to  
be bad’, with subclone mixing indicative of early malignant potential. This new model provides a quantitative framework  
to interpret tumor growth dynamics and the origins of ITH, with important clinical implications.

1Department of Preventive Medicine, Keck School of Medicine of the University of Southern California, Los Angeles, California, USA. 2Department of Pathology,  
Keck School of Medicine of the University of Southern California, Los Angeles, California, USA. 3Department of Pathology, CHA University, Seongnam-si,  
South Korea. 4Center for Evolution and Cancer, University of California, San Francisco, San Francisco, California, USA. 5Centre for Tumor Biology, Barts Cancer 
Institute, Queen Mary University of London, London, UK. 6Present addresses: Division of Molecular Pathology, The Institute of Cancer Research, London, UK (A.S.), 
Department of Medicine, Stanford University, Stanford, California, USA (Z.M. and C.C.) and Department of Genetics, Stanford University, Stanford, California,  
USA (Z.M. and C.C.). Correspondence should be addressed to D.S. (dshibata@usc.edu) or C.C. (cncurtis@stanford.edu).

Received 12 October 2014; accepted 12 January 2015; published online 9 February 2015; doi:10.1038/ng.3214

http://www.nature.com/doifinder/10.1038/ng.3214
http://www.nature.com/naturegenetics/
http://www.nature.com/naturegenetics/


©
20

15
N

at
u

re
 A

m
er

ic
a,

 In
c.

  A
ll 

ri
g

h
ts

 r
es

er
ve

d
.

�  ADVANCE ONLINE PUBLICATION Nature GeNetics

A rt i c l e s

generates patterns of genetic variegation in the tumor. Therefore, 
clones harboring early private alterations (red or yellow) will be more  
pervasive in the final tumor, whereas late-arising clones will not  
have had time to expand to a detectable size, regardless of their 
relative fitness advantage (pink, black, green and blue). This  
simple model predicts that early private alterations underlie the 
extensive ITH commonly detected in human neoplasms. Hence, 
public as well as the majority of detectable private alterations occur 
early during tumor growth.

Here we experimentally evaluate the predictions of the Big Bang 
tumor model by profiling 349 individual tumor glands sampled  
from opposite sides (arbitrarily defined as ‘right’ and ‘left’) of  
15 colorectal carcinomas and large adenomas (Supplementary Table 1) 
using orthogonal genomic techniques—namely, whole-genome array- 
based profiling of CNAs, whole-exome sequencing, targeted  
deep sequencing, FISH and neutral methylation tag sequencing.  
By analyzing single tumor glands composed of <10,000 cells, 
this approach enables the detection of alterations that occur in a  
fraction of tumor cells with remarkable sensitivity. At this level  
of resolution, we find unexpected spatial structure, indicative of  
order amid the apparent chaos of genomic ITH. By integrating these 
data in a robust statistical inference framework based on a spatial 
computational model of tumor growth, we also verified that most 
ITH detectable with current technologies arises early during tumor 
growth and that the genomic profile of the primordial tumor can be 
recovered from the present-day neoplasm.

RESULTS
Sampling individual tumor glands
Colorectal cancer (CRC) represents an optimal system in which to 
study the dynamics of tumor growth as both the normal and neo-
plastic colon are organized into glandular epithelial structures, where 
neighboring cells within a gland share a recent common ances-
try13 and microenvironment, with gland fission being the primary  
mode of growth14,15. Here we systematically sampled an average of 
23 individual tumor glands and 2 ‘bulk’ fragments from the right 
and left sides (Fig. 1c) of 4 large, mitotically advanced adenomas and  
11 carcinomas (Supplementary Table 1), totaling 349 tumor glands 
and 22 bulk samples. This approach enables the highly sensitive  
detection of subclonal alterations (<10,000 cells per gland out of  
100 billion cells in a tumor; 0.00001%).

Single-gland copy number profiles show variegation
Copy number profiles can be used to reconstruct tumor phyloge-
nies6,8,16, and, by profiling single glands, it is possible to do so with 
unprecedented accuracy. We exploited whole-genome SNP array–
based copy number data derived from individual glands (7–10 per 
tumor; n = 127 total), left and right bulk tumor fragments (>3 cm 
apart) and corresponding matched normal tissues to systematically 
evaluate the spatial distribution of CNAs throughout each tumor. 
These data showed striking spatial patterns, which were classified 
as follows: (i) public (found in all glands of the tumor); (ii) private,  
side specific (found in all glands from one tumor side only);  
(iii) private, side variegated (found in all glands from one tumor side 
and in some glands from the opposite side); (iv) private, variegated 
(found in a subset of glands from both sides); (v) private, regional 
(found in more than one but not all glands from one tumor side only); 
and (vi) private, unique (found in a single gland).

Consistent with their likely monoclonal origin from a single 
aberrant colon crypt17, most tumors exhibited public alterations 
acquired before initiation that were present in all glands (Fig. 2a, 
Supplementary Fig. 1a and Supplementary Table 2). Adenomas 
were more chromosomally stable and less genomically complex than  
carcinomas, despite their comparably large size (Supplementary 
Table 1). Adenomas were characterized by side-specific and unique 
CNAs that clearly segregated between tumor sides. In contrast, 
the majority of carcinomas (M, N, O, U, CA, CO and R) exhibited 
the same private CNA in individual glands from opposite sides of  
the tumor (variegated and/or side variegated), as reflected in the 
underlying phylogenetic trees (Fig. 2b and Supplementary Fig. 2). 
This corresponds to the patterns of variegation presented in Figure 1b  
where an early private alteration originating in the primordial  
tumor is scattered to distant tumor sites and appears pervasive in the 
neoplasm, despite remaining subclonal.

Such genetic variegation has been noted in leukemia18 and solid 
tumors19,20 but is often obscured by the prevailing approach of analyz-
ing bulk tissue rather than individual glands or cells. To verify that 
the individual glands analyzed were representative of the larger tumor 
mass, we profiled the right and left bulk tumor fragments (Fig. 2a  
and Supplementary Fig. 1a, bulk tracks: LB, left; RB, right). We found 
that 99% of the non-unique CNAs present in the glands were also 
present in the bulk tumor fragments and that the majority of the 
private CNAs identified in glands were present as a mixture in the 

Copy number

FISH
Mutation

Methylation
tag

Bulk
samples

Left Right

Time

Left Right

1 cm

a b c
GlandFigure 1 The Big Bang model of tumor  

growth. (a) After initiation, a tumor grows  
predominantly as a single expansion populated 
by numerous heterogeneous subclones.  
ITH results from private alterations (colored 
arrowheads) that continuously accumulate  
owing to replication errors. In addition to  
public alterations present in the first  
transformed cell, private alterations  
acquired early persist and become pervasive  
in the final tumor although remaining  
non-dominant (colored segments).  
Late-arising alterations are only present in small regions of the tumor. (b) In the Big Bang model, the pervasiveness of private alterations depends  
on when the alteration occurs during growth, rather than on selection for that alteration. The schematic illustrates how early private alterations, despite 
remaining non-dominant, are pervasive within the tumor (for example, red and yellow) and can be found in distant regions, thus appearing variegated  
(for example, red). This is owing to aberrant subclone mixing in the primordial tumor, followed by scattering during expansion. Late alterations are  
restricted to small regions (for example, black, pink, gray) and are essentially undetectable by conventional bulk genomic profiling. Distance from  
the dashed vertical axis corresponds to increasingly late onset for alterations. Dashed boxes represent sampled regions. (c) We sampled an average  
of 23 individual tumor glands (<10,000 cells) from distant regions (~0.5 cm3 in size) and bulk (left and right) samples from the remaining tissue. 
Samples were profiled using several genomic techniques, including copy number analysis, whole-exome and targeted sequencing, neutral methylation 
tag sequencing and FISH, providing a panoramic view of genomic alterations throughout the tumor on multiple spatial scales.
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respective bulk fragment (Supplementary Fig. 3). All CNAs evident 
in a bulk sample were also detected in one or more corresponding 
tumor glands. Moreover, we emphasize that, if we had sampled only 
a portion of the tumor (for example, only the right side or only the 
left side), we would have reconstructed erroneous phylogenies, as 
demonstrated in Supplementary Figure 4 and as noted by others21. 
Although unlikely, we cannot exclude the possibility that the same 
CNA could arise independently in different glands. Hence, we also 
evaluated variegation at the mutational level.

Single-gland sequencing confirms variegation
To examine mutational heterogeneity, we performed whole-exome 
sequencing of the bulk tumor samples (left and right sides) and adjacent 

normal tissue from each of the adenomas and for carcinomas M, N, O, 
T, U and W. On the basis of the spectrum of somatic mutations present 
in each bulk tumor sample, we selected a panel of patient-specific  
private mutations and known drivers of CRC for deep targeted 
sequencing (>600× mean target coverage) in individual glands  
(n = 102) and the respective bulk tumor fragments (n = 20).

All sequenced tumors, except for adenoma S and carcinomas O and W  
(with microsatellite instability (MSI)), harbored public nonsense 
mutations in APC. Public missense mutations in KRAS were found 
in samples N, P, S, W and X, whereas public missense TP53 muta-
tions were only found in carcinomas (M, N, and T), as previously 
reported4. Notably, the mutational data corroborated the findings at 
the CNA level, providing further evidence for the striking segregation  
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Figure 2 The spatial distribution of ITH shows subclone mixing and the absence of clonal expansions. (a) Circos plot representation of CNAs in 
individual glands and bulk samples for carcinoma M (shown throughout this figure). LOH, loss of heterozygosity; L, left; R, right. (b) Gland-level copy 
number analysis was employed to reconstruct the tumor phylogeny. Mixing of glands from opposite regions is apparent, where glands from left and right 
tumor regions are colored purple and orange, respectively. (c) Targeted sequencing of patient-specific mutations in individual glands showed variegation 
in subsets of glands from opposite sides, thus confirming subclone mixing at the mutational level. A public APC mutation is shown as a clonal control 
(with LOH noted on chromosome 5). WES, whole-exome sequencing; TS, targeted sequencing; syn, synonomous; stp, stop gain. (d) FISH performed 
using HER2 probes (red) and corresponding chromosome 17 centromeric probes (green) showed high variability in copy number states between cells 
within a gland, as summarized by the Shannon index. For each group, box plots show the median, limited by the 25th (Q1) and 75th (Q3) percentiles, 
where whiskers represent the extremes of the maximum or Q3 + 1.5(Q3 − Q1) and the minimum or Q1 − 1.5(Q3 − Q1). The maximum possible  
ITH value (“maximum heterogeneity”) corresponds to an index of 1.79 (99% of the FISH counts; range of 0–5). (e) Summary of the characteristic 
spatial patterns and types of alterations in each tumor. Whereas adenomas were characterized by low chromosomal instability and the segregation  
of alterations, carcinomas harbored side-variegated and variegated alterations (7/11 at the copy number level and 6/6 at the mutational level).  
Yellow shading highlights variegated alterations. 
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Figure 3 Single-gland targeted sequencing confirms the predictions of the Big Bang model and exposes variegation in carcinomas but not adenomas. Heat 
maps indicate the presence of representative public and private mutations across multiple individual glands per tumor, where targeted sequencing (TS) and 
whole-exome sequencing (WES) of the bulk tumor is included for comparison. In all the adenomas, private mutations are confined to a single tumor side 
(regional and side-specific events), whereas, in invasive carcinomas, the same private mutation is found in distant regions of the neoplasm, despite remaining 
non-dominant. These patterns of genetic variegation are indicative of subclone mixing in the early neoplasm followed by scattering. For representative carcinoma 
M, the mutational data are summarized according to the schematic in Figure 1b, where variegated mutations (red) occurred early and scattered to distant tumor 
regions. Regional mutations (yellow) occurred later and were confined to smaller regions of the neoplasm. Heat maps indicate the presence of representative 
public and private mutations (nsn, nonsynonymous; syn, synonymous; stp, stop gain; NA, not available) across multiple individual glands per tumor. 

M
L1

M
L2

M
L3

M
L4

M
L5

M
L6

M
L7

M
L 

W
E

S
 b

ul
k

M
L 

T
S

 b
ul

k
M

R
1

M
R

2
M

R
3

M
R

4
M

R
5

M
R

6
M

R
7

M
R

 W
E

S
 b

ul
k

M
R

 T
S

 b
ul

k

CHAT, c.912C>T, chr. 10, syn
CDH10, c.239C>A, chr. 5, stp
SAMD9, c.3517A>T, chr. 7, stp
TAGAP, c.1311G>A, chr. 6, syn
AGL, c.4364C>T, chr. 1, nsn
ARMC3, c.1294C>T, chr. 10, nsn
CYP2C8, c.1A>G, chr. 10, nsn
EPHX3, c.954C>T, chr. 19, syn
HOOK1, c.588G>A, chr. 1, syn
HSDL2, c.58C>T, chr. 9, nsn
POLQ, c.1399C>T, chr. 3, stp
PTPRK, c.1516A>T, chr. 6, stp
PTPRK, c.1518G>A, chr. 6, syn
RGS7, c.874G>T, chr. 1, stp
RP1L1, c.2109A>G, chr. 8, syn
S1PR1, c.1050C>T, chr. 1, syn
STX1B, c.570G>A, chr. 16, syn
TMCC2, c.1272G>A, chr. 1, syn
ULK3, c.547G>A, chr. 15, nsn
ZDHHC24, c.496C>T, chr. 11, stp
DNM3, c.2229C>T, chr. 1, syn
DOPEY1, c.3318G>A, chr. 6, syn
RYR2, c.7206T>C, chr. 1, syn
CDH1, c.220C>T, chr. 16, stp
TAS1R2, c.903C>T, chr. 1, syn
OLFML3, c.448C>T, chr. 1, stp
IGF2BP3, c.1502G>C, chr. 7, nsn
PTGER3, c.1170C>A, chr. 1, syn
MEFV, c.1319G>A, chr. 16, nsn
RNF17, c.1629G>A, chr. 13, syn
SOX7, c.305G>A, chr. 8, nsn
PIK3CA, c.1093G>A, chr. 3, nsn
APC, c.4012C>T, chr. 5, stp

Carcinoma M

Left Right

Left

Public mutation

Private mutation

NA

No mutation

Right

K
L2

K
L4

K
L5

K
L6

K
L7

K
L9

K
L 

W
E

S
 b

ul
k

K
L 

T
S

 b
ul

k

K
R

1

K
R

2

K
R

3

K
R

4

K
R

5

K
R

6

K
R

 W
E

S
 b

ul
k

K
R

 T
S

 b
ul

k

ANXA7, c.510A>C, chr. 10, syn
CACNA1D, c.4089G>C, chr. 3, nsn
EML3, c.2152C>T, chr. 11, nsn
ANKRD50, c.2251G>A, chr. 4, nsn
CILP, c.271C>A, chr. 15, syn
EMC3, c.440G>A, chr. 3, nsn
ENTHD2, c.413C>T, chr. 17, nsn
IMPG1, c.1519C>T, chr. 6, stp
MAP3K1, c.4074G>A, chr. 5, syn
OR4X2, c.192C>A, chr. 11, stp
PLCL1, c.2083C>A, chr. 2, nsn
SLC6A17, c.565G>A, chr. 1, nsn
TMEM25, c.187G>T, chr. 11, nsn
SDCCAG8, c.1120C>T, chr. 1, stp
GLIS1, c.1415C>T, chr. 1, nsn
CIC, c.416G>A, chr. 19, nsn
ADCY8, c.857C>T, chr. 8, nsn
OR7C2, c.483G>T, chr. 19, nsn
ZNF341, c.1612T>C, chr. 20, nsn
TNC, c.2072G>A, chr. 9, nsn
FBXO18, c.1495G>A, chr. 10, nsn
CREB5, c.109G>A, chr. 7, nsn
ABLIM3, c.1108C>T, chr. 5, nsn
CHST12, c.172A>T, chr. 7, nsn
GALC, c.847G>A, chr. 14, nsn
GALNTL6, c.377G>A, chr. 4, nsn
HELZ2, c.2101G>C, chr. 20, nsn
LCT, c.1107G>T, chr. 2, nsn
MYBL1, c.1301C>T, chr. 8, nsn
SF1, c.268G>T, chr. 11, stp
TMEM200A, c.167G>A, chr. 6, nsn
TRPV6, c.2151C>T, chr. 7, syn
ZNF641, c.1049G>A, chr. 12, nsn
CHD7, c.6513C>T, chr. 8, syn
APC, c.2365C>T, chr. 5, stp

Adenoma K

S
L1

S
L2

S
L3

S
L4

S
L 

W
E

S
 b

ul
k

S
L 

T
S

 b
ul

k

S
R

1

S
R

2

S
R

3

S
R

4R

S
R

 W
E

S
 b

ul
k

S
R

 T
S

 b
ul

k

CTNNA3, c.988G>A, chr. 10, nsn

CRB1, c.3724G>A, chr. 1, nsn

NEB, c.12278C>T, chr. 2, nsn

NRXN1, c.3643G>A, chr. 2, nsn

PCNX, c.441T>A, chr. 14, syn

PIP4K2B, c.412C>T, chr. 17, nsn

RBP1, c.277C>T, chr. 3, nsn

ZFP14, c.489G>C, chr. 19, nsn

AUTS2, c.2338C>T, chr. 7, nsn

ADCY5, c.3360G>T, chr. 3, nsn

GLI3, c.3595G>A, chr. 7, nsn

ITPR2, c.877C>T, chr. 12, nsn

SYNE2, c.1405C>T, chr. 14, stp

KRAS, c.34G>A, chr. 12, nsn

Adenoma S

P
L1

P
L2

P
L3

P
L4

P
L 

W
E

S
 b

ul
k

P
L 

T
S

 b
ul

k

P
R

1

P
R

2

P
R

3R

P
R

 W
E

S
 b

ul
k

P
R

 T
S

 b
ul

k

RIMBP2, c.2124C>T, chr. 12, syn

COBL, c.2009C>T, chr. 7, nsn

PRODH2, c.1573C>T, chr. 19, nsn

ATP6V0A4, c.85C>T, chr. 7, nsn

THBD, c.316C>T, chr. 20, nsn

KRAS, c.351A>T, chr. 12, nsn

APC, c.2413C>T, chr. 5, stp

APC, c.4222G>T, chr. 5, stp

Adenoma P
X

L1

X
L2

X
L3

X
L4

X
L5

X
L 

W
E

S
 b

ul
k

X
L 

T
S

 b
ul

k

X
R

1

X
R

2

X
R

3

X
R

4

X
R

5

X
R

 W
E

S
 b

ul
k

X
R

 T
S

 b
ul

k

OLIG3, c.319C>T, chr. 6, nsn

AGTR1, c.243G>T, chr. 3, nsn

PCDH9, c.3623G>A, chr. 13, nsn

SLITRK5, c.1352G>A, chr. 13, nsn

ZDHHC1, c.1264C>T, chr. 16, stp

ATP8B2, c.1972C>T, chr. 1, nsn

CCT8L2, c.1182C>T, chr. 22, syn

ADAMTSL5, c.1319A>G, chr. 19, nsn

SLC22A4, c.796C>T, chr. 5, nsn

PIEZO2, c.1845G>A, chr. 18, syn

OR4S2, c.869C>A, chr. 11, nsn

WDR61, c.438G>A, chr. 15, syn

GFPT2, c.1950C>T, chr. 5, syn

EHMT1, c.2866G>A, chr. 9, nsn

ITIH1, c.1557G>A, chr. 3, syn

LOXHD1, c.2034C>T, chr. 18, syn

KRAS, c.35G>A, chr. 12, nsn

APC, c.2309C>G, chr. 5, stp

APC, c.4348C>T, chr. 5, stp

Adenoma X

N
L1

N
L3

N
L5

N
L6

N
L7

N
L 

W
E

S
 b

ul
k

N
L 

T
S

 b
ul

k

N
R

10

N
R

3

N
R

6

N
R

7

N
R

9

N
R

 W
E

S
 b

ul
k

N
R

 T
S

 b
ul

k

ATP1A1, c.347G>A, chr. 1, nsn
CDC73, c.547G>T, chr. 1, nsn
LNP1, c.349C>T, chr. 3, nsn
NKX6−1, c.748G>A, chr. 4, nsn
PCNT, c.4072G>A, chr. 21, nsn
AK8, c.827C>A, chr. 9, nsn
BTNL2, c.961G>A, chr. 6, nsn
CUL7, c.5089G>C, chr. 6, nsn
CUL9, c.870A>C, chr. 6, syn
DLX3, c.16G>T, chr. 17, nsn
GTF2F1, c.550G>C, chr. 19, nsn
MAML1, c.2951C>G, chr. 5, nsn
OR14C36, c.667G>A, chr. 1, nsn
OR4C12, c.666T>G, chr. 11, syn
PELP1, c.408G>T, chr. 17, nsn
PREX1, c.2992C>T, chr. 20, nsn
PVRL3, c.995T>C, chr. 3, nsn
SETDB1, c.1713T>G, chr. 1, syn
SIGLEC1, c.5006G>A, chr. 20, nsn
SLC5A4, c.167G>C, chr. 22, nsn
TSPYL5, c.468G>A, chr. 8, syn
ZBTB4, c.1406C>T, chr. 17, nsn
ZDHHC5, c.1471C>T, chr. 11, nsn
ZSWIM4, c.1261T>C, chr. 19, nsn
NALCN, c.1114C>T, chr. 13, nsn
PCDH17, c.942C>T, chr. 13, syn
GPR6, c.294G>A, chr. 6, syn
ZBTB16, c.729G>A, chr. 11, syn
LRSAM1, c.1939G>A, chr. 9, nsn
HUNK, c.631G>A, chr. 21, nsn
TP53, c.527G>T, chr. 17, nsn
KRAS, c.35G>A, chr. 12, nsn

Carcinoma N

O
L1

O
L2

O
L4

O
L5

O
L6

O
L 

W
E

S
 b

ul
k

O
L 

T
S

 b
ul

k

O
R

1

O
R

2

O
R

3

O
R

4

O
R

5

O
R

6

O
R

 W
E

S
 b

ul
k

O
R

 T
S

 b
ul

k

HMOX1, c.695G>A, chr. 22, nsn

SLC22A5, c.1539C>T, chr. 5, syn

TTN, c.28324A>G, chr. 2, nsn

LRP2, c.8863T>C, chr. 2, nsn

FER1L5, c.6153C>T, chr. 2, syn

SPATC1L, c.119A>T, chr. 21, nsn

DOCK3, c.5916G>A, chr. 3, syn

ARHGAP12, c.1149G>A, chr. 10, syn

RYR2, c.12537A>T, chr. 1, nsn

RPS6KL1, c.1015G>A, chr. 14, nsn

C15orf52, c.1523C>G, chr. 15, nsn

FPR1, c.395G>T, chr. 19, nsn

DYNC2H1, c.11002A>G, chr. 11, nsn

CTNND1, c.729C>T, chr. 11, syn

Carcinoma O

T
L1

T
L2

T
L3

T
L4

T
L6

T
L 

W
E

S
 b

ul
k

T
L 

T
S

 b
ul

k

T
R

10

T
R

13

T
R

15

T
R

6

T
R

8

T
R

 W
E

S
 b

ul
k

T
R

 T
S

 b
ul

k
A2M, c.1081C>T, chr. 12, stp

DOPEY1, c.5872C>T, chr. 6, nsn

ANKRD11, c.3437C>T, chr. 16, nsn

CHD9, c.6689C>T, chr. 16, nsn

CNTN6, c.1340C>T, chr. 3, nsn

PTPRB, c.1847G>C, chr. 12, nsn

SEC24B, c.2524C>G, chr. 4, nsn

OCEL1, c.336G>C, chr. 19, nsn

MYO18B, c.705G>T, chr. 22, nsn

SLC8A1, c.1933G>A, chr. 2, nsn

MYCBP2, c.3167C>T, chr. 13, nsn

ZNF230, c.641G>A, chr. 19, nsn

LRP1B, c.8185G>A, chr. 2, nsn

NIPBL, c.4202T>A, chr. 5, nsn

MCAM, c.1624A>G, chr. 11, nsn

PFKFB3, c.1211C>G, chr. 10, nsn

SNRNP200, c.3455G>A, chr. 2, nsn

CA11, c.696C>T, chr. 19, syn

NCAN, c.3842G>A, chr. 19, nsn

APC, c.4012C>T, chr. 5, stp

Carcinoma T

U
L1

U
L2

U
L3

U
L4

U
L5

U
L 

W
E

S
 b

ul
k

U
L 

T
S

 b
ul

k

U
R

2

U
R

3

U
R

4

U
R

5

U
R

6

U
R

 W
E

S
 b

ul
k

U
R

 T
S

 b
ul

k

NUDCD1, c.1427A>G, chr. 8, nsn

CSMD3, c.2048G>A, chr. 8, nsn

ABCF3, c.1754G>A, chr. 3, nsn

MLXIPL, c.2034T>C, chr. 7, syn

KNG1, c.878C>T, chr. 3, nsn

CYYR1, c.453C>T, chr. 21, syn

DLGAP3, c.1194C>G, chr. 1, nsn

EPHA3, c.2259G>T, chr. 3, nsn

NKAIN2, c.115G>A, chr. 6, nsn

RSPRY1, c.631G>A, chr. 16, nsn

APC, c.2413C>T, chr. 5, stp

Carcinoma U

W
L1

W
L2

W
L3

W
L4

W
L5

W
L 

W
E

S
 b

ul
k

W
L 

T
S

 b
ul

k

W
R

1

W
R

2

W
R

3

W
R

4

W
R

6

W
R

 W
E

S
 b

ul
k

W
R

 T
S

 b
ul

k

SYMPK, c.292G>T, chr. 19, stp

FBN3, c.170C>T, chr. 19, nsn

ANO2, c.1853T>C, chr. 12, nsn

ZNF23, c.1370T>C, chr. 16, nsn

SENP7, c.2238C>A, chr. 3, stp

PIK3CA, c.1637A>G, chr. 3, nsn

PIK3CA, c.3141T>G, chr. 3, nsn

KRAS, c.182A>T, chr. 12, nsn

Carcinoma W



©
20

15
N

at
u

re
 A

m
er

ic
a,

 In
c.

  A
ll 

ri
g

h
ts

 r
es

er
ve

d
.

Nature GeNetics  ADVANCE ONLINE PUBLICATION 5

A rt i c l e s

of subclones in all adenomas, whereas variegation, indicative of 
early subclone mixing, was observed in the carcinomas. A summary  
of the characteristic spatial patterns in each tumor is reported in 
Figure 2e. Here variegation, determined on the basis of the presence 
of the same single-nucleotide variant (SNV) in glands from distant 
tumor sides, was found in all carcinomas (Fig. 2c and Supplementary 
Figs. 1b and 5), despite the bias against detecting this phenomenon 
due to only 7–10 glands being profiled per tumor.

The targeted sequencing results for private mutations (red) and 
representative public mutations (blue) are presented in Figure 3.  
As shown for carcinoma M (Figs. 2 and 3), mutations in SAMD9, 
CDH10 and CHAT were variegated and recapitulate the predictions of 
the Big Bang model (Fig. 1b), where a private mutation originates in 
the primordial tumor and subsequently scatters as a result of expan-
sion. In contrast, early public mutations in APC were found in all cells 
in the neoplasm and represent a clonal control. Private mutations 
detectable in the bulk specimens were always present in at least one 
of the sampled glands, consistent with the pervasive nature of ITH. 
In addition, within small gland populations, private mutations will 
eventually be lost or fixed. Private mutations were clonal within the 
gland, reflecting their early acquisition and sufficient time for loss  
or fixation via cell turnover or neutral drift22.

Hypothetically, glands harboring the same private mutations found 
on opposite tumor sides (several centimeters apart) could result from 
alternative mechanisms such as late-arising mutations and subse-
quent migration or tumor cell reseeding23. However, such migration 
is unlikely because the private mutations were clonal within individual 
glands, and the migration of whole glands is improbable. Instead, sub-
clone mixing is efficient in an early, small malignancy characterized 
by loss of normal cell adhesion and disorganized growth. The ensuing 
expansion allows early private mutations to become fixed within glands, 
pervasive in the tumor and scattered to opposite tumor sides, thus 
generating patterns of variegation. Indeed, variegation was restricted 

to carcinomas (Figs. 2e and 3). This observation suggests that certain 
malignant features, such as abnormal mobility, might be expressed very 
early, even before visible invasion and/or metastasis occurs, implying 
that some tumors are ‘born to be bad’. An illustrative simulation dem-
onstrates that subclone mixing in an early tumor followed by expansion  
can create complex patterns of variegation (Supplementary Fig. 6). 
In contrast, when the same mutation arises later, subclones appear 
segregated, irrespective of their relative fitness advantage.

Single-cell profiling shows uniformly high ITH
The fixation of private alterations within a gland could occur through 
stepwise selection, where cells with even a slight selective advantage 
will sweep through the gland. In this scenario, there should be very 
little within-gland heterogeneity. By contrast, a single Big Bang expan-
sion implies that individual glands in the final tumor are relatively 
old populations that should exhibit similar within-gland diversity. 
We evaluated copy number heterogeneity between physically adjacent  
single cells by FISH in a subset of tumor glands (n = 65) and adjacent 
normal glands (n = 22). In particular, we assayed for HER2 (ERBB2) 
gene amplification, a driver event in breast and gastric cancers,  
which has been implicated in CRC24. These data showed a high 
degree of variability in copy number between physically adjacent cells 
within the same gland as quantified by the Shannon index19. Notably, 
this diversity was uniformly high throughout the tumor (Fig. 2d, 
Supplementary Fig. 1c and Supplementary Table 3). Because altera-
tions should fix quickly within small populations25, this finding sug-
gests the absence of recent clonal expansions within glands. Variation 
in copy number between nearby cells is reportedly common in CRC 
owing to chromosomal instability (CIN)26 and may be important for 
tumor initiation27 and progression28. Moreover, it can be used to assess 
genetic and phenotypic diversity in response to chemotherapy29.

We also evaluated epigenetic passenger mutations through ultra-
deep single-molecule methylation tag sequencing of individual glands 
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inferred mutational timeline is  
indicated for different classes of  
CNAs for all tumors, where time is  
represented in relation to tumor  
volume. In particular, the posterior  
probability distribution of tumor  
size (number of cells) is illustrated  
for each class of alteration. The results  
show that both public alterations and  
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(n = 55), which provides an efficient means to infer cell ancestries in 
normal30,31 and cancerous5,9 tissues. These data showed uniformly 
high ITH (Supplementary Fig. 1d), reflecting similar tumor age in 
different glands and opposite sides of the neoplasm, in agreement 
with the FISH analysis. In particular, numerous mitotic subclones 
within the same gland were found in the majority (49/55) of samples 
(Supplementary Fig. 1e), supporting the absence of recent selective 
sweeps, as predicted by the Big Bang model.

Statistical inference verifies the Big Bang model predictions
The most striking prediction of the Big Bang tumor model is that, 
even though new alterations occur continuously throughout tumor 
growth, the majority of private alterations that can be detected occur 
early after the transition to an advanced tumor, rather than as a 
result of the subsequent selection of de novo clones. To quantitatively 
test this prediction, we extended our previously described statisti-
cal inference framework approach9 to take as input copy number 
and mutational data from multiple tumor glands and to account for  
differences in subclone fitness and contributions from the local 
microenvironment. The framework uses Approximate Bayesian 
Computation (ABC)32 and three-dimensional mathematical modeling 
to infer patient-specific tumor characteristics, including the mutation 
rate, subclone fitness changes and the mutational timeline, given the 
observed multiple-sampling genomic data (Supplementary Fig. 7). 
The model simulates the expansion of a tumor containing ~8 million  
glands, corresponding to a realistically sized neoplasm composed  
of ~80 billion cells with a diameter of ~5.3 cm, and accounts for  
gland proliferation in three-dimensional space, somatic alterations 
(CNAs and point mutations) and changes in subclone fitness (see  
the Online Methods for details).

The inference results indicate that, although changes in subclone 
fitness can be detected (Supplementary Fig. 8a), their effects on the 
clonal composition of the tumor are limited, as corroborated by the 
presence of adjacent glands with different fitness (Supplementary 
Fig. 8b). The magnitude of fitness changes was variable in carcino-
mas, whereas adenomas exhibited limited or no differences in fitness 
between subclones. Mutation rates were also elevated in carcinomas 
(1 × 10−6 to 1 × 10−5) as compared to adenomas (1 × 10−6 alterations 
per division) (Supplementary Fig. 8a), similarly highlighting within-
tumor variability in clonal dynamics and key phenotypic differences 

between adenomas and carcinomas. We also employed this frame-
work to infer the timeline during which different classes of alteration 
occur and quantitatively show that, for each of the tumors assayed, 
both public and most private alterations (side specific, side variegated  
and variegated) occurred early (Fig. 4a), when the malignancy  
had fewer than 10,000–100,000 cells (Fig. 4b), where size is used as 
a surrogate for tumor age. This is approximately 100–1,000 times 
smaller than the size at which colorectal tumors are potentially detect-
able (~1 mm3 or 1 × 106 cells) and 1 million times smaller than is 
typical at the time of surgical resection (the source of sampled tissue). 
Even regional alterations tended to occur before the tumor would 
be clinically detectable, whereas unique alterations arose later, as 
expected. These findings hold irrespective of tumor-specific charac-
teristics. The same conclusions were obtained using mutational data 
as input to the framework (Supplementary Fig. 9). By organizing 
the observed patient-level genomic profiles according to the inferred 
mutational timeline, it is evident that early subclonal alterations  
dominate the genomic landscape (Fig. 4c).

Using single-gland and bulk tumor mutational profiles (Fig. 3),  
we reconstructed tumor phylogenies (Online Methods) to define  
subclones, or groups of glands harboring the same private mutations. 
By superimposing the inferred mutational timelines for different  
classes of alterations (Fig. 4a and Supplementary Fig. 9c), we 
then determined the relative timing at which each subclone arose. 
This allows for the approximate reconstruction of patient-specific  
spatiotemporal evolutionary dynamics, as depicted schematically 
in Figure 5, and shows that the pervasiveness of a private mutation 
depends on when it arose during expansion, rather than as a result 
of selection for that mutation. This schematic also illustrates that, 
whereas all tumors exhibit Big Bang dynamics, early subclone mixing 
in the primordial tumor is restricted to carcinomas.

Clonal heterogeneity could alternatively be due to distinct  
local microenvironmental niches within the neoplasm that select for 
clones with different genomic profiles1. To investigate this scenario, 
we introduced microenvironmental niches in our model (Online 
Methods and Supplementary Fig. 10). The inferred parameters were 
in agreement with the results from the microenvironment-free model 
for both CNAs and mutations (Supplementary Fig. 11), further  
supporting our conclusions. This follows from the fact that micro-
environmental selection acts passively on existing variation. Of note, 

Carcinoma T Carcinoma U

Carcinoma M Carcinoma N

Carcinoma W

Carcinoma O

Adenoma S Adenoma PAdenoma K Adenoma XFigure 5 Schematic of spatiotemporal Big Bang growth dynamics. 
For each tumor profiled at the mutational level, the phylogeny was 
reconstructed from the single-gland and bulk tumor data (Online Methods) 
to define subclones. The relative timing during which each subclone arose 
was specified on the basis of the inferred mutational timeline (Fig. 4a 
and supplementary Fig. 9c) for the different classes of private alteration 
(variegated, side specific, regional and unique). By combining information 
on the mutational timeline and tumor subclonal architecture, we can 
approximately reconstruct patient-specific spatiotemporal evolutionary 
dynamics, as shown in this schematic. The topographical distribution of 
different subclones is illustrated by distinct colors, and distance from 
the tumor origin (arrowhead) corresponds to the increasingly late onset of 
alterations. Variegated and side-variegated subclones occurred very early 
within the primordial tumor (<1 million cells) and are shown within the 
inset square representing a magnified view of the primordial neoplasm. 
Regional and unique subclones arose later and are represented outside 
the inset square. Dashed boxes represent the regions of the tumor that 
were experimentally sampled. This schematic shows how, in the Big Bang 
tumor model, the prevalence of a private mutation depends on when it 
arose during tumor expansion, rather than on selection for that mutation.  
The schematic also illustrates that, although all tumors exhibit  
Big Bang dynamics, subclone mixing is restricted to carcinomas, whereas 
adenomas are characterized by subclone segregation.
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we have modeled the microenvironment as a static entity and do  
not account for the possibility that tumor cells might dynamically 
alter their environment, although such mechanisms may have a role 
in later growth3. In the future, it will be of interest to examine more 
complex interactions between cells and their microenvironment,  
as well as to measure interclonal interactions, which have recently 
been described in breast cancer33,34.

DISCUSSION
Tumor initiation is characterized by the sequential stepwise accumu-
lation of alterations, leading to the expansion of clones with selective 
growth advantages, such that the fittest clone eventually dominates4. 
The sequential model of colorectal tumorigenesis is corroborated by 
epidemiological data on CRC incidence35. This model has often been 
postulated to describe the subsequent growth of an established tumor. 
In this scenario, further growth within an advanced tumor results 
from the acquisition of new driver mutations followed by selective 
sweeps and large clonal expansions. Within this model, ITH rep-
resents a transitory state between selective sweeps. As this model 
implies the occurrence of multiple sweeps, numerous drivers of tumor 
growth are anticipated. However, relatively few putative driver muta-
tions have been identified in individual tumors36.

Recent studies in primary CRCs indicate that selective sweeps and large 
clonal expansions are infrequent after transformation13,37,38 and predict 
star-shaped phylogenies13,37. Studies in other cancers similarly high-
light such branched phylogenies39 and punctuated clonal evolution6,40.  
Moreover, karyotypic chaos41, stress-induced mutational bursts42 
and chromothrypsis43, a cataclysmic event involving surges of chro-
mosomal rearrangements, have been reported. Evidently, sequential 
clonal evolution does not accurately describe the patterns of ITH 
found in human cancers.

Here we propose and test the predictions of a Big Bang model, whereby, 
as a result of a single clonal expansion, most detectable ITH occurs 
early after the transition to an advanced tumor. In this model, owing 
to constraints on clonal selection, early private alterations are pervasive 
in the final neoplasm, despite remaining non-dominant. Indeed, only 
very strongly advantageous mutations are likely to be fixed in realistic  
time scales12 within rapidly expanding populations, where spatial  
structure delays the expansion of an advantageous mutation10–12. Such 
spatial constraints in solid tumors1,13,44 underline the limits with which 
selective forces drive tumor expansion. Hence, both public and the 
majority of detectable private alterations occur early during tumor 
growth. Although private alterations continuously occur, only those 
that occur early have time for the corresponding clone to expand to a 
detectable size. The Big Bang model explains why ITH is pervasive in 
human tumors and provides a theoretical framework to describe the 
underlying clonal dynamics. The star-shaped phylogenies predicted by 
the Big Bang model are also compatible with the long-lived lineages of 
the cancer stem cell model45, wherein a malignancy is driven by a small 
number of self-renewing cells. We demonstrate that Big Bang dynamics 
are robust to changes in subclone fitness and local microenvironment, 
which might explain why they are observed in many tumors.

The Big Bang model explains many poorly understood features 
of cancer genomic data, with the following implications: (i) ITH is 
an inherent characteristic of colorectal tumors that arises early and 
continuously increases during growth, and it is not significantly  
constrained by clonal selection; branched phylogenies naturally follow  
from the Big Bang model; (ii) substantial clonal expansions or  
selective sweeps are extremely rare after the transition to an advanced 
tumor owing to the dynamics and spatial constraints of the rapidly 
growing population and the formation of microenvironmental niches; 

(iii) both public and the majority of detectable private alterations 
arise early and become pervasive during tumor growth, thereby domi-
nating the genomic structure of the neoplasm; and (iv) potentially 
aggressive subclones may remain rare or even undetectable in the 
primary tumor, despite their relative fitness advantage, providing a 
heterogeneous substrate to fuel resistance in response to selective 
pressures from treatment.

A number of clinical implications also follow from the Big Bang 
model. For example, it is uncertain why certain large tumors remain 
localized, whereas others eventually invade and metastasize. Variegated 
alterations were found in the majority of invasive carcinomas but in 
none of the adenomas. Hence, variegation might reflect the early 
expression of an invasive phenotype (abnormal cell intermixing), 
such that some tumors are ‘born to be bad’. In other words, malignant 
potential is determined early, as previously proposed46,47. Moreover, 
the degree of subclone mixing might be a readout of subsequent inva-
siveness and could represent a new biomarker for predicting which 
adenomas will become invasive versus remain indolent. Another  
clinical implication that follows from the timing of mutation being the 
primary determinant of whether a subclone is pervasive in a tumor 
is that ‘dangerous’ treatment-resistant clones that occur late will be 
undetectable, presenting obvious challenges for personalized medicine. 
This is in line with recent reports that minor cell subpopulations can 
drive tumor growth34 and with the presence of preexisting, intrinsically 
resistant subclones that contribute to poor treatment response48.

Not every tumor may exhibit Big Bang dynamics, and ‘selective 
bottlenecks’ may be common for markedly different environments, 
such as in the context of metastatic seeding to foreign sites or during 
treatment. However, for primary tumors that arise predominantly 
as single clonal expansions, this new model represents a theoretical 
framework in which to interpret cancer genomic data and predicts 
that the earliest events should be pervasive in the final neoplasm.  
This concept shares an interesting analogy with the cosmic microwave 
background (CMB) of the Big Bang universe, which is composed of 
scattered thermal radiation originating in the earliest phase of the 
universe that subsequently streamed through the expanding cosmos. 
From this CMB signature, it is possible to reconstruct the events that 
occurred right after the birth of the universe. Our findings offer a 
radically new way to interpret cancer genomic data, providing new 
insights into how primary human tumors progress, which should 
facilitate more effective early detection and prognostication efforts.

METHODS
Methods and any associated references are available in the online 
version of the paper.

Accession codes. The copy number data are accessible via the 
ArrayExpress database under accession E-MTAB-2140. The sequence 
data are accessible via the ArrayExpress database under accession 
E-MTAB-2247. The methylation data are available via the NCBI 
BioProject database under accession PRJNA230833.

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.
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ONLINE METHODS
Sample collection. This study employed deidentified excess tissue specimens  
collected in the course of routine clinical care and was approved by the local 
institutional review board (IRB). Individual tumor glands composed of 
<10,000 adjacent cells were isolated from fresh colectomy specimens following 
EDTA treatment, as previously described30. DNA was isolated from individual 
glands by incubation in 15 µl of Tris-EDTA solution with Proteinase K solution  
(4 h at 56 °C), and reactions were boiled for 5 min. Using this method, we 
consistently obtained samples with >95% tumor purity. Bulk tumor samples 
and adjacent normal samples composed of a pool of thousands of single glands 
were also obtained, and DNA was extracted using the DNeasy Blood and 
Tissue kit (Qiagen).

Analysis of copy number data. Individual glands, as well as right and left bulk 
tumor fragments, were profiled on the OmniExpress SNP platform (Illumina) 
according to the manufacturer’s protocol. Only samples with call rates >85% 
were analyzed, with an average gland call rate of 97%. Data were processed 
using GenomeStudio software, followed by quantile normalization49 and seg-
mentation with psCBS50, where adjacent normal tissue was employed as a 
baseline reference for each tumor. To define regions of aberrant copy number, 
we applied a threshold method based on the standard deviation, σ, calculated  
for the 50th central percentile of the probes sorted by the log2 relative ratio 
(LRR), adapted from Curtis et al.51. Briefly, CNAs were determined as  
follows: amplifications, LRR > 6σ; gains, 2σ < LRR < 6σ; heterozygous losses, 
−7σ < LRR < −2.5σ; and homozygous deletions, LRR < −7σ. The LRR and 
beta-allele frequency (BAF) for each array were manually inspected to verify 
the accuracy of the copy number calls and eventually corrected to maintain  
a conservative approach and to avoid overcalling ITH. Processed copy  
number data were then used to generate within-gland phylogenetic trees  
(Fig. 2b and Supplementary Figs. 2 and 4) using MEDICC16.

Analysis of mutational data. For all adenomas and carcinomas M, N, O, 
T, U and W, left and right bulk tumor fragments were subjected to whole-
exome sequencing to a depth of coverage of 20× on the HiSeq 2000 platform 
(Illumina). For adenomas K, P and S and carcinomas M and N, the samples 
subsequently underwent additional sequencing to 60× coverage on the HiSeq 
2500 platform (Illumina). For each tumor, a panel of subclonal mutations iden-
tified in the bulk fragments and a set of clonal mutations, including putative 
drivers (for comparison), were profiled in individual tumor glands on the Ion 
Torrent PGM platform (Life Technologies) using custom AmpliSeq panels.  
Resultant data were aligned to the hg19 reference genome and processed 
using MuTect52 for mutation calling and quantification of allelic frequencies.  
For the whole-exome sequencing bulk samples, mutations were only called if the 
coverage exceeded 10× with three or more variant reads. Furthermore, to filter 
out false positives introduced owing to the presence of paralogous regions, we 
used BLAST to verify that the 40-bp region around each mutation matched the 
reference genome uniquely. For the targeted sequencing data, mutations were  
only called if the coverage exceeded 50× with 20 or more variant reads. To avoid 
overcalling ITH as a result of false negatives due to low coverage, the absence 
of a mutation in a gland was indicated not only by a mutation not being called 
but also by the presence of at least 50× coverage at the locus, of which >95% of 
the reads had to indicate no mutation. If a mutation was not called in a gland 
and there was insufficient evidence (owing to low coverage) to confirm its 
absence, the allelic frequency was annotated as ‘NA’. Mutations for which more 
than half of the glands had NA values were discarded (only four mutations 
were filtered out because of this problem). The mean coverage for the targeted 
sequencing data was 626.58 ± 20.2 95% (confidence interval) (Supplementary 
Fig. 12). Public canonical driver mutations (APC, KRAS or TP53) served as 
a clonal control and are reported alongside the private subclonal events in 
Figure 2c and Supplementary Figures 1b and 5. For tumor O, APC, KRAS and 
TP53 mutations were not detected, and a clonal CTNND1 mutation is plotted 
instead. Among the mutations reported, those for which data were available 
for all glands of a given tumor (where no glands were NA; totaling 167/194 
mutations) were employed as input to the statistical inference framework for 
comparison with the results based on whole-genome copy number profiles. 
We also employed the mutational profiles of individual glands to infer tumor 
phylogenies using MEDICC16. This allows for the identification of subclones, 

or groups of glands harboring the same private mutation, where each node in 
the phylogeny represents a new clone (branching event). By combining the 
tumor phylogenies and the inferred mutational timelines for different classes 
of alterations on the basis of our three-dimensional computational model 
(Fig. 4 and Supplementary Fig. 9c), we could approximately reconstruct the 
spatiotemporal evolutionary dynamics for each patient (Fig. 5).

Analysis of neutral methylation tag data. Molecular clock analysis based on 
neutral methylation tag data was performed as previously described9. Briefly, 
DNA was extracted from individual tumor glands and subjected to bisulfite 
conversion. Samples were then PCR amplified for the ZNF454 molecular 
clock locus, and ultra-deep targeted sequencing (average coverage >1,100× 
per gland) was performed on the Roche 454/GS JR platform. Data were then 
processed using our custom pipeline, as previously described9.

FISH analysis. FISH analysis of copy number for the HER2 gene and  
chromosome 17 centromere was performed using the Vysis HER-2 DNA  
Probe kit (Abbott Molecular) in the laboratory of M.F.P., which routinely  
performs CLIA-certified HER2 assays. Fluorescence microscopy was employed 
to quantitatively evaluate the copy number status of 20 cells per gland for  
3–6 glands from the left side and 3–6 from the right side of each tumor  
and 20 cells from 3–4 crypts for each matched normal sample. Thus, 120–240 
cells were counted per tumor, and 60 cells were counted per normal sample.  
Of note, this is 6 times more cells than the 20 that are routinely counted 
for the diagnosis of HER2 amplification in breast cancer53. As the tissue  
sections employed for FISH analyses were 5 µm thick, whereas CRC cells are 
8–10 µm thick, we verified that this did not introduce bias in estimating the 
number of amplified cells by analyzing multiple planes and by comparing 
counts from the tumor and adjacent normal glands (Supplementary Fig. 13 
and Supplementary Table 3).

Computational framework. We extended our previously described compu-
tational framework9 to (i) accommodate whole-genome copy number and 
targeted mutational data; (ii) to model fitness effects, corresponding to differ-
ent survival probabilities; and (iii) to account for microenvironmental niches. 
This framework exploits ABC, an established approach commonly used in 
population genetics32, to obtain posterior parameter distributions by fitting 
a computational model of tumor growth to the single-gland-level genomic 
data (Supplementary Fig. 7a). The cellular automaton three-dimensional 
model of tumor growth (Supplementary Fig. 7b) accounts for gland growth 
by fission, the occurrence of CNAs and mutations, and variable gland growth 
rates. The three-dimensional position of each gland at any point in time is 
recorded, and glands can have different survival (and growth) fitness owing 
to CNAs or point mutations. In particular, we simulated the growth of a real-
istically sized malignancy composed of 8 million glands (~80 billion cells; 
5.3 cm in diameter) and incorporated CNAs at a rate µ that might induce a 
change in fitness. As simulating changes in fitness for 80 billion cells would 
be computationally intractable, we assumed that cells within a gland had the 
same fitness and that fitness changes occurred at the gland level as a result 
of acquired somatic alterations within the gland (for example, modal copy 
number changes). Beginning with a single gland with normalized fitness 1 and 
an associated survival probability, we simulated the possibility that deleterious, 
neutral and advantageous mutations might change the fitness according to a 
transition distribution. The input parameters were the mutation rate (µ) and 
the magnitude of the fitness changes (σ), where the model produces as output 
multi-sampling data for each simulated tumor. At the end of the simulation, 
glands were ‘virtually’ sampled as they are physically sampled in practice from 
the tumor, thus maintaining information on the proximity of subclones. In this 
manner, we faithfully simulated the experimental system (which for practical 
reasons is restricted to sampling 7–10 glands) several thousand times.

When a CNA occurred, the fitness change was sampled from a Gaussian 
distribution with mean 0 and variable standard deviation σ. This models the 
possibility of both advantageous and disadvantageous alterations. Higher 
values of σ correspond to a greater likelihood that the new clone exhibits 
an increase or decrease in its fitness, whereas for σ = 0 no change in fitness 
occurs, corresponding to the neutral model of growth in which all clones have 
equal fitness. Here fitness F is expressed in terms of an increase in survival  
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rate, ranging from 1 to 5, with all simulations initiated with a single gland 
with F = 1. At each division, a gland has probability Pα = α/F of dying, where 
α is set to 20%. Recent studies indicate the possibility that fitness changes for 
driver mutations might be as low as 1% (ref. 54), but values on the order of 
10% are also typically employed55. We evaluated two key parameters, namely, 
the magnitude of fitness changes σ ∈ {0, 0.2, 0.6}, corresponding to no change, 
moderate and large changes, respectively, and the mutation rate µ ∈ {10−8, 
10−7, 10−6, 10−5, 10−4} per gland per division. Because σ is the standard devia-
tion of a normal distribution with mean = 0, for σ = 0.2 we expect a fitness 
increase of 10% or greater in 30.7% of the cases, whereas for σ = 0.6 a fitness 
increase of 10% or greater is expected in 48.8% of the cases. Thus, these values 
correspond to a range of small to large variations in fitness. Other complex 
and poorly characterized processes, such as cellular migration and apoptosis 
within a gland, are not modeled, nor is the contribution of the surrounding 
normal tissue or angiogenic factors.

The simulation began with a gland in the center of a 400 × 400 × 400 point 
lattice where glands then split by fission until a volume of 8 million glands is 
reached. Subsequently, five glands from the left side and five glands from the 
right side of the tumor were virtually sampled from the simulation, in accord-
ance with the experimental sampling scheme performed on the tumor speci-
men. The CNA profiles of the sampled glands were saved for comparison with 
the actual data (Supplementary Fig. 7a). We employed ABC to fit the model 
to the data, to generate posterior probability distributions of the parameters  
(σ and µ) for each patient, assuming uninformative uniform priors. Every 
CNA was associated to a binary string indicating its presence (1) or absence (0)  
in each sampled gland. Public alterations were excluded from the inference, 
as the vast majority likely occurred during preneoplastic stages, before the 
transition to an established neoplasm, and thus do not belong within the simu-
lated scenario. Nevertheless, relaxing this rule yielded similar results (data not 
shown). Summary statistics were then computed using these binary patterns, 
including the number of distinct CNAs (the number of different strings), the 
Shannon index of the binary patterns, the total number of alterations, the 
number of variegated alterations and the number of side-variegated alterations. 
As a measure of the distance between the actual data and the simulated data, 

we employed the average distance of the summary statistics, normalized to 
mean = 0 and s.d. = 1. The inference framework was validated using synthetic 
data to demonstrate that the correct parameter value was accurately recovered 
in the majority of cases (Supplementary Fig. 14).

To examine the influence of differences in local tumor microenvironment, 
we developed a version of the model in which specific CNAs were selected 
depending on the surrounding tumor area by incorporating static microenvi-
ronmental niches of differing size (env parameter: 5 × 5, 20 × 20, and 150 × 150)  
in the simulation. Each ‘block’ in the grid selects for a random CNA or muta-
tion on a specific chromosome by inducing a high apoptosis rate (20%) 
for glands that do not have that particular alteration, such that the overall  
apoptosis rate is quite high, representing positive selection. In this man-
ner, rudimentary microenvironmental niches that select for different gland 
populations are represented (Supplementary Fig. 10). The same approach as 
described above was applied to perform inference on mutational profiles in 
both the niche-based and microenvironment-free models (Supplementary 
Fig. 11). The results imply that distinct yet static local microenvironments 
do not alter Big Bang dynamics. In the future, it will be of interest to examine  
contributions due to dynamic interactions between tumor cells and their 
microenvironment, as well as clonal cooperation and interference.
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