**Drug Therapy**

Alastair J. J. Wood, M.D., Editor

**The Coxibs, Selective Inhibitors of Cyclooxygenase-2**

Garret A. Fitzgerald, M.D., and Carlo Patrono, M.D.

Nonsteroidal antiinflammatory drugs (NSAIDs) are widely used to treat arthritis, menstrual pain, and headache. Although they are effective, their long-term use is limited by gastrointestinal effects such as dyspepsia and abdominal pain and, less often, gastric or duodenal perforation or bleeding. Development of the coxibs, a new group of antiinflammatory drugs, represents a response to the unsatisfactory therapeutic profile of NSAIDs. Both groups of drugs inhibit prostaglandin G/H synthase, the enzyme that catalyzes the transformation of arachidonic acid to a range of lipid mediators, termed prostaglandins and thromboxanes (Fig. 1). However, whereas NSAIDs inhibit the two recognized forms of the enzyme, also referred to as cyclooxygenase-1 and cyclooxygenase-2, the coxibs are selective inhibitors of cyclooxygenase-2. The inhibition of cyclooxygenase-2 has been more directly implicated in ameliorating inflammation, whereas the inhibition of cyclooxygenase-1 has been related to adverse effects in the gastrointestinal tract. Therefore, it was hoped that coxibs would be better tolerated than nonselective NSAIDs but equally efficacious. This review will assess the evidence that has emerged in support of that hypothesis.

Prostaglandin G/H synthase has both cyclooxygenase and hydroperoxidase activity. Neither coxibs nor NSAIDs inhibit the activity of hydroperoxidase. Aspirin inhibits the activity of cyclooxygenase by irreversibly acetylating a serine residue at position 529 in the only form of the enzyme expressed in platelets, cyclooxygenase-1. There were several early suggestions of a second form of cyclooxygenase. Analysis of unrelated genes identified one that was highly homologous to the gene for cyclooxygenase-1. This isoform, termed cyclooxygenase-2, can be up-regulated by cytokines, growth factors, and tumor promoters, suggesting its relevance to inflammation and cancer.

Although cyclooxygenase-1 has the structural features of a “housekeeping” enzyme, its expression may also be regulated. The expression of both cyclooxygenase-1 and cyclooxygenase-2 is increased in the synovia of inflamed joints and in atherosclerotic plaques. Although the catalytic activities and tertiary structures of cyclooxygenase-1 and cyclooxygenase-2 are also remarkably similar, cyclooxygenase-2 has a broader affinity for substrates because the hydrophobic channel leading to the active site of this enzyme is more accommodating. However, distinguishing cyclooxygenase-1 as a constitutive enzyme and cyclooxygenase-2 as an inducible enzyme that accounts for the formation of prostanoid in disease is an oversimplification of the biologic reality.

**Selective and Nonselective Inhibition of Cyclooxygenase Isoforms**

Three broad classes of cyclooxygenase inhibitors have emerged: aspirin synthesized from salicylic acid; indomethacin and other NSAIIDs, whose chemical modifications were based largely on findings in models of inflammation and gastric mucosal damage; and the first selective cyclooxygenase-2 inhibitors, the coxibs (e.g., celecoxib and rofecoxib). Other selective cyclooxygenase-2 inhibitors, such as valdecoxib and etoricoxib, are being developed.

Selectivity for cyclooxygenase-2 may be expressed at several levels. A compound may be biochemically selective for cyclooxygenase-2. Drug companies assess selectivity by in vitro assays during screening, because these assays are relatively rapid and simple. However, they do not necessarily reflect the complexity of the drug–enzyme interaction in vivo. To address this concern, whole-blood assays of cyclooxygenase-isoform activity have been developed. These assays are based on the production of thromboxane B$_2$, during blood clotting (an index of platelet cyclooxygenase-1 activity) and the production of prostaglandin E$_2$, by bacterial lipopolysaccharide in whole blood (an index of monocyte cyclooxygenase-2 activity). Clinical selectivity has been based on either surrogates for clinical toxicity (e.g., endoscopically visualized gastrodudenal ulcers) or actual clinical end points at antiinflammatory doses of an inhibitor.

There are two basic requirements to test the hypothesis that cyclooxygenase-2 inhibitors are better tolerated than nonselective NSAIDs but just as efficacious. First, the drug must not inhibit cyclooxygenase-1 activity in clinically relevant targets (gastrointestinal mucosa and platelets) at therapeutic plasma concentrations. Second, the clinical end points assessed must reflect cyclooxygenase-1–dependent gastrointestinal toxicity. When symptoms are the end point, a limitation is that the dependence of cyclooxygenase-1 on the signal is uncertain, and symptoms may not correlate with lesions. When endoscopically visualized lesions are the end point, the situation is...
The dependence of the lesions on cyclooxygenase-1 has been established, but it is uncertain whether the finding of lesions on endoscopy is actually predictive of the likelihood of serious gastrointestinal complications, such as perforation, obstruction, and bleeding. Indeed, the hemorrhagic nature of most serious gastrointestinal end points makes it likely that they primarily reflect the inhibition of cyclooxygenase-1 activity in platelets, rather than in gastric mucosa. Finally, the low incidence of these events means that many patients must be studied for prolonged periods of treatment to detect the differences between drugs reliably.\(^{21,22}\)

The biochemical selectivity of a particular drug, as assessed in vitro, is critically dependent on its concentration. One can summarize such selectivity profiles by plotting the drug concentrations necessary to inhibit the activity of cyclooxygenase-2 and cyclooxygenase-1 by 50 percent (Fig. 2).\(^{23-26}\) However, given the concentration dependence of these estimates, it is not useful to attempt to discriminate between existing NSAIDs on the basis of small differences in biochemical selectivity with the use of terms such as “preferential cyclooxygenase-2 inhibitor.”

How well do the results of these in vitro assays predict selectivity when the measurements are per-

---

**Figure 1.** Production and Actions of Prostaglandins and Thromboxane.

Arachidonic acid, a 20-carbon fatty acid containing four double bonds, is liberated from the sn2 position in membrane phospholipids by phospholipase A\(_2\), which is activated by diverse stimuli. Arachidonic acid is converted by cytosolic prostaglandin G/H synthases, which have both cyclooxygenase (COX) and hydroperoxidase (HOX) activity, to the unstable intermediate prostaglandin G\(_2\). The synthases are colloquially termed cyclooxygenases and exist in two forms, cyclooxygenase-1 and cyclooxygenase-2. Coxibs selectively inhibit cyclooxygenase-2. Prostaglandin H\(_2\) is converted by tissue-specific isomerases to multiple prostanoids. These bioactive lipids activate specific cell-membrane receptors of the superfamily of G-protein–coupled receptors. Some of the tissues in which individual prostanoids exert prominent effects are indicated. IP denotes prostacyclin receptor, TP thromboxane receptor, DP prostaglandin D\(_2\) receptor, EP prostaglandin E\(_2\) receptor, and FP prostaglandin F\(_{2\alpha}\) receptor.
formed in blood samples obtained from patients given cyclooxygenase inhibitors? Although the curves plotted from the in vitro data fit the plasma data well, the variance of the latter assays is much greater (Fig. 3). This variance reflects substantial variability between patients in plasma concentrations of the cyclooxygenase inhibitor after oral administration of a standard therapeutic dose and in the degree of inhibition of cyclooxygenase isoforms corresponding to any given concentration of inhibitor. Indeed, many factors determine the clinical response to a cyclooxygenase-2 inhibitor (Fig. 4). Thus, genetic variability in the target protein or metabolizing enzymes, interactions between drugs, and the characteristics of the patient, such as a history of peptic ulcer, may all influence both the efficacy and the adverse effects of cyclooxygenase-2 inhibitors in clinical trials.

PHARMACOKINETICS AND DRUG INTERACTIONS

The pharmacokinetics, metabolism, and drug interactions of celecoxib and rofecoxib are summarized in Table 1. The clinically important differences between the two drugs are related to oral bioavailability, half-life, and main pathways of hepatic metabolism. Differences in the pathways of hepatic metabolism may have smaller effects on the pharmacokinetics of rofecoxib than on those of celecoxib.

CLINICAL VERIFICATION OF THE CYCLOOXYGENASE-2 HYPOTHESIS

Both celecoxib and rofecoxib are superior to placebo in the relief of both subjective and objective measurements of pain and inflammation in patients with osteoarthritis of the hip and knee and in the relief of symptoms in patients with rheumatoid arthritis. Moreover, analgesic efficacy has been demonstrated in clinical models of acute pain, such as that after dental surgery, after orthopedic surgery, and during dysmenorrhea. On the basis of the results of various phase 3 studies, the Food and Drug Administration (FDA) approved celecoxib for the treatment of patients with osteoarthritis and rheumatoid arthritis, and rofecoxib for the treatment of patients with osteoarthritis and acute musculoskeletal pain.

Similar indications have now been approved worldwide. However, whether rofecoxib and celecoxib are equally efficacious is not known. In all of these stud-
ies, a nonselective NSAID — that is, a drug that nonselectively inhibits cyclooxygenase-1 and cyclooxygenase-2 at therapeutic plasma concentrations — was included. However, the trials were designed to detect equivalence of efficacy between the NSAID and the coxib, rather than any small, but potentially important, difference between the treatments. Thus, although cyclooxygenase-1 may be a minor source of the prostaglandins produced in response to inflammation in humans, and although both cyclooxygenase isoforms are expressed in inflamed synovia, the studies of the efficacy of coxibs were not designed to det...
tect a small difference in efficacy that might result from the coincidental inhibition of both isoforms, rather than from the inhibition of cyclooxygenase-2 alone. Moreover, it should be emphasized that the clinical-efficacy end points used in these trials have a rather poor ratio of signal (the drug effect) to noise (the placebo effect), making detection of moderate differences in efficacy between drugs an unrealistic exercise. Furthermore, although the efficacy of coxibs is similar to that of nonselective NSAIDs in animal models of acute inflammation,48 they may exacerbate a late phase of inflammation characterized by the generation of antiinflammatory prostaglandins by cyclooxygenase-2.49

Two large trials have addressed the efficacy of coxibs and the associated risk of gastrointestinal complications, the Vioxx Gastrointestinal Outcomes Research (VIGOR) trial and the Celecoxib Long-Term Arthritis Trials (CLASS) study.48

**Figure 4.** Factors That May Influence the Clinical Selectivity and Safety of a Cyclooxygenase-2 Inhibitor in an Individual Patient. These factors include pharmacokinetic and pharmacodynamic variables, as well as the interaction of the drug with preexisting risk factors for drug-dependent adverse effects. All these factors are subject to variability from patient to patient.

**Table 1. Pharmacokinetics, Metabolism, and Drug Interactions of Rofecoxib and Celecoxib.**

<table>
<thead>
<tr>
<th>FEATURE</th>
<th>ROFECOXIB</th>
<th>CELECOXIB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral bioavailability (%)</td>
<td>92–93</td>
<td>22–40</td>
</tr>
<tr>
<td>Effect of food</td>
<td>Minimal</td>
<td>None</td>
</tr>
<tr>
<td>Time to maximal plasma concentration (hr)</td>
<td>2–3</td>
<td>2–4</td>
</tr>
<tr>
<td>Elimination half-life (hr)</td>
<td>10–17</td>
<td>Approximately 11</td>
</tr>
<tr>
<td>Volume of distribution (liters)</td>
<td>86–91</td>
<td>455±166</td>
</tr>
<tr>
<td>Extent of binding to plasma proteins (%)</td>
<td>86</td>
<td>&gt;97</td>
</tr>
<tr>
<td>Main pathway of liver metabolism</td>
<td>Cytosolic reduction</td>
<td>Oxidation by cytochrome P-450 2C9, 3A4</td>
</tr>
<tr>
<td>Interaction with cytochrome P-450 inhibitors</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Interaction with digoxin</td>
<td>No</td>
<td>Not tested</td>
</tr>
<tr>
<td>Interaction with warfarin</td>
<td>Causes 10% increase in INR</td>
<td>No</td>
</tr>
<tr>
<td>Interaction with methotrexate</td>
<td>At supratherapeutic doses</td>
<td>No</td>
</tr>
<tr>
<td>Interaction with antihypertensive drugs</td>
<td>Increases blood pressure</td>
<td>Increases blood pressure</td>
</tr>
<tr>
<td>Influence of renal insufficiency</td>
<td>Has little effect</td>
<td>AUC 43% lower</td>
</tr>
<tr>
<td>Influence of hepatic impairment</td>
<td>AUC 30–70% higher</td>
<td>AUC 40–180% higher</td>
</tr>
<tr>
<td>Approved daily doses (mg)</td>
<td>12.5–25</td>
<td>100–200</td>
</tr>
<tr>
<td>For osteoarthritis</td>
<td>12.5–25</td>
<td>100–200</td>
</tr>
<tr>
<td>For rheumatoid arthritis</td>
<td>Not approved</td>
<td>200–400</td>
</tr>
<tr>
<td>For acute pain</td>
<td>Up to 50</td>
<td>Not approved</td>
</tr>
</tbody>
</table>

*INR denotes international normalized ratio, and AUC area under the curve. Plus–minus value is the mean ±SD.
tis Safety Study (CLASS) trial. In the VIGOR trial, a daily dose of 50 mg of rofecoxib was compared with a twice-daily dose of 500 mg of naproxen in 8076 patients with rheumatoid arthritis who were treated for a median of nine months. The mean age of the patients was 58 years, and 80 percent were women. Almost 60 percent were receiving long-term glucocorticoid therapy, and 8 percent had a history of gastrointestinal perforation, gastrointestinal hemorrhage, or symptomatic peptic ulcer. Both drugs were similarly effective, according to either the patient’s or the investigator’s Global Assessment of Disease Activity scores or the Modified Health Assessment scores. The rates of discontinuation of treatment owing to a lack of efficacy were low in both groups (6.3 percent in the rofecoxib group and 6.5 percent in the naproxen group). The incidence of gastrointestinal perforation, gastrointestinal hemorrhage, or symptomatic peptic ulcer was 4.5 per 100 patient-years in the naproxen group and 2.1 per 100 patient-years in the rofecoxib group, a difference of 54 percent (P<0.001). The results in these patients with rheumatoid arthritis were consistent with those of an overview analysis of gastrointestinal side effects in patients with osteoarthritis treated with rofecoxib or nonselective NSAIDs.

The CLASS trial consisted of two separate studies. In one, celecoxib (400 mg twice daily) was compared with diclofenac (75 mg twice daily); in the other, celecoxib was compared with ibuprofen (800 mg three times daily). In contrast to ibuprofen, which is a nonselective NSAID, the selectivity of diclofenac for cyclooxygenase-1 and cyclooxygenase-2 was similar to that of celecoxib (Fig. 2). Seventy-two percent of the patients had osteoarthritis, and 68.5 percent were women. The study lasted 13 months, but only the data from 6 months of follow-up have been published. The patients in the CLASS trial were permitted to take aspirin in doses of up to 325 mg per day. There was no statistically significant difference between the groups in the incidence of the primary end point of ulcer perforation, gastric-outlet obstruction, or upper gastrointestinal bleeding (0.8 percent in the celecoxib group vs. 1.5 percent in either NSAID group, P=0.09). The CLASS study was not designed to compare the efficacy of the drugs, and the choice of dosing regimens was based on an analysis of prescription patterns, rather than evidence of similar efficacy. More patients withdrew from the combined NSAID groups than from the celecoxib group (14.8 percent vs. 12.6 percent, P=0.005) because of lack of efficacy. The reasons for the higher withdrawal rates in the CLASS trial than in the VIGOR trial are unclear.

Despite the evidence that a coxib is safer than a nonselective NSAID, there are some caveats. The likelihood of a gastrointestinal complication in patients who are taking NSAIDs depends on preexisting risk factors, including age and a history of peptic ulcer and gastrointestinal bleeding, which are likely to be relevant to the gastrointestinal effects of cyclooxygenase-2 inhibitors. Patients with a history of peptic ulcer and gastrointestinal bleeding who are given an NSAID have a risk of a complicated ulcer of about 5 percent per year, in contrast to an incidence of 0.4 percent in patients with no such history. Although patients with peptic ulcers were excluded from both the VIGOR and the CLASS trials, many of those enrolled still had risk factors for gastrointestinal events. Analysis of the VIGOR results revealed an absolute reduction in the risk of peptic ulcers or gastrointestinal bleeding of 2.4 percent in the patients treated with rofecoxib, suggesting that 41 patients needed to be treated for one year to prevent one such event.

The distinct roles of the two cyclooxygenase enzymes in patients with peptic ulcers are unknown. For example, cyclooxygenase-2, as well as cyclooxygenase-1, has been detected in apparently normal gastrointestinal epithelium, and therefore, it may also help protect the gastric mucosa. However, the results of both the VIGOR and the CLASS trials suggest that cyclooxygenase-1 has the main cytoprotective role. Perhaps of more concern is that the expression of gastrointestinal epithelial cyclooxygenase-2 is increased by traumatic and inflammatory stimuli, as well as by Helicobacter pylori infection. Expression is increased in the margin of healing ulcers, and cyclooxygenase-2 inhibitors impair ulcer healing in mice. We still have much to learn about the potential risks of the inhibition of cyclooxygenase-2 in the gastrointestinal tract. For example, cyclooxygenase-2 inhibitors impair tolerance of dietary antigens and exacerbate experimental colitis in rodents.

**CYCLOOXYGENASE-2, COXIBS, AND CARDIOVASCULAR DISEASE**

Cyclooxygenase-1 is constitutively expressed in cultured endothelial and vascular smooth-muscle cells. The expression of cyclooxygenase-2 is increased by cytokines, growth factors, phorbol esters, and lipopolysaccharide in both types of cells and by injury to smooth-muscle cells. These observations suggest that cyclooxygenase-2 has an important role in the increase in prostacyclin formation that occurs in clinical syndromes of platelet activation. Expression of both cyclooxygenase-2 and cyclooxygenase-1 is up-regulated in the foam cells and smooth-muscle cells of atherosclerotic plaques. Cyclooxygenase-2 may well be important under physiologic conditions also. For example, cyclooxygenase-2 inhibitors decrease urinary excretion of prostacyclin metabolites in normal subjects, indicating that the production of prostacyclin is also decreased. Laminar shear forces increase the expression of cyclooxygenase-2 in endothelial cells in vitro and may do so in endothelial cells in normal subjects. Prostacyclin is thought to be part of a homeostatic defense mechanism that limits the consequences of platelet activation in vivo.
In mice, deletion of the prostacyclin receptor increased the sensitivity to thrombotic stimuli but did not increase the risk of spontaneous thrombosis.68

What are the implications of these observations with respect to selective cyclooxygenase-2 inhibitors? If they are associated with a risk of thrombosis, the risk should be small, because of the presence of other endothelium-derived substances, such as nitric oxide, that protect against thrombosis. However, thrombosis would be expected to occur in patients who are already at increased risk because of other underlying conditions. In fact, arterial thrombosis occurred after the initiation of celecoxib therapy in four patients with lupus anticoagulant.69

In the VIGOR trial, 4 percent of the patients met the FDA criteria for the use of aspirin therapy for secondary prevention of major vascular events, but patients who were taking aspirin were excluded from the trial.22 The rates of nonfatal myocardial infarction, nonfatal stroke, and death from any vascular event were higher in the rofecoxib group than in the naproxen group (0.8 percent vs. 0.4 percent, P<0.05). This difference was largely due to a difference in the incidence of myocardial infarction (0.4 percent in the rofecoxib group vs. 0.1 percent in the naproxen group, P<0.01). In contrast, in the CLASS trial, in which 21 percent of the patients took aspirin, there was no significant difference between the treatment groups in the incidence of major cardiovascular events.21

The difference in major cardiovascular events in the VIGOR trial may reflect the play of chance. The end point was prespecified, and the difference in the frequency of events was statistically significant, but the absolute number of cardiovascular events was small (less than 70). Although an effect of this magnitude would be surprising, it would be consistent with the formation of thromboxane in the absence of the concomitant generation of prostacyclin. This would be a drug-class–specific effect, but a difference in rates of cardiovascular events may not have been revealed in the CLASS trial because of differences in the study patients, the use of aspirin by some patients, or the nature of the nonselective NSAIDs used in the two trials. Patients with rheumatoid arthritis, such as those in the VIGOR trial, may have an increased risk of thrombotic events.70,71 This is not true of patients with osteoarthritis, who constituted most of the patients in the CLASS trial. Naproxen, the nonselective NSAID used in the VIGOR trial, may be protective against cardiovascular events.22 Naproxen has an extended half-life and may have completely suppressed the capacity of platelets to make thromboxane A2 throughout its dosing interval,72 although this feature of naproxen has been disputed.73 There is no convincing evidence from epidemiologic studies that NSAIDs, including naproxen, protect against cardiovascular events.74 Clearly, more information is needed on the cardiovascular effect of selective inhibitors of cyclooxygenase-2 and their combination with antiplatelet drugs.

In the interim, what approach to cardioprotection might be taken in patients with arthritis? Patients who have had a major cardiovascular event should be treated with low-dose aspirin.75 For such patients who need antiarthritis therapy, the additional suppressive effect on the synthesis of prostacyclin of either a coxib or a nonselective NSAID should be indistinguishable,61-63 whereas the profile of adverse gastrointestinal effects may favor the former. However, whether this combination maintains the advantage of a coxib over a nonselective NSAID with respect to gastrointestinal side effects remains to be tested. The incidence of serious gastrointestinal bleeding in patients taking low doses of aspirin, although low, is roughly double the incidence in those taking placebos.76 Aside from potentially increasing the rate of acute events, such as myocardial infarction, cyclooxygenase-2 inhibitors may have relevance to other aspects of cardiovascular biology, such as cardiac function and atherogenesis.77-79

CYCLOOXYGENASE-2 AND RENAL FUNCTION

Cyclooxygenase-2–dependent prostaglandin formation is necessary for normal renal development. In mice, the complete absence of cyclooxygenase-2 results in severe renal dysplasia characterized by a postnatal arrest of maturation in the subcapsular nephrogenic zone and progressive deterioration with increasing age.80 Antenatal exposure of both mice and rats to an inhibitor of cyclooxygenase-2, but not of cyclooxygenase-1, had similar effects.81

Cyclooxygenase-2 has been localized to the renal vasculature, the cortical macula densa, and the medullary interstitial cells of the kidney, and its content in these areas increases with age. By contrast, cyclooxygenase-1 is found in the vasculature, the collecting ducts, and the thin loops of Henle.82 The presence of both isoforms in the vasculature raises the question of which is the predominant source of the increased production of vasodilator prostaglandins that are critical to the preservation of renal blood flow in the presence of volume depletion. Inhibition of this homeostatic response accounts for the most common renal side effects associated with nonselective NSAID therapy.83

Remarkably little information on the renal pharmacology of cyclooxygenase-2 inhibitors in humans is available. In normal salt-replete subjects who were 59 to 80 years of age, the administration of 50 mg of rofecoxib once daily or 50 mg of indomethacin three times daily transiently decreased urinary sodium excretion by approximately 20 percent but did not cause detectable edema or hypertension. The glomerular filtration rate, measured after 14 days, declined by an average of 5 percent in the indomethacin group but did not change in the rofecoxib group (P=0.005).65
By contrast, 12.5 or 25 mg of rofecoxib once daily and 50 mg of indomethacin three times daily reduced the glomerular filtration rate in salt-depleted elderly subjects, but to a similar degree.85

An analysis of the post-marketing data for celecoxib revealed that edema occurred in 2.1 percent of patients, hypertension in 0.8 percent, and exacerbation of preexisting hypertension in 0.6 percent — a profile and incidence similar to those of nonselective NSAIDs.85 Similarly, post hoc analysis of the rofecoxib data base revealed that peripheral edema occurred in 3.8 percent of the patients who received a dose of 25 mg per day.86 Controlled comparisons of the coxibs with each other and with nonselective NSAIDs are necessary to assess the risk of hypertension. These should be designed to match the degree and duration of cyclooxygenase-2 inhibition throughout the dosing interval.

EFFECTS OF OTHER CYCLOOXYGENASE-2 INHIBITORS

Two older drugs, nimesulide and meloxicam, the latter recently approved for use in the United States, exhibit cyclooxygenase-2 selectivity similar to that of celecoxib in vitro (Fig. 2). It is not clear whether their effects are similar to those of rofecoxib or celecoxib in clinical practice. Variability between patients in plasma drug concentrations is an important determinant of the selectivity of these agents for cyclooxygenase-2. Thus, in the case of nimesulide, a daily dose of 100 mg reduced cyclooxygenase-1 activity measured ex vivo in normal subjects in one study87 but not in another.88 Meloxicam caused dose-dependent inhibition of cyclooxygenase-2 and cyclooxygenase-1, but the extent of inhibition varied greatly among the subjects (Fig. 3).89,90

The clinical selectivity of these drugs has not been addressed in large trials with statistical power similar to that of the VIGOR and CLASS trials. Thus, although post hoc analyses of small studies have suggested that gastrointestinal side effects are less frequent with nimesulide than with nonselective NSAIDs,90 prospective studies of the efficacy and gastrointestinal safety have been small, involving 60 to 392 patients who were treated for eight days to three months.90-93 There was no significant difference in the incidence of serious gastrointestinal side effects among patients who were taking 7.5 mg of meloxicam daily, those who were taking 100 mg of slow-release diclofenac daily, and those who were taking 20 mg of piroxicam daily for 28 days in two large studies, the Meloxicam Large-Scale International Study Safety Assessment94 and the Safety and Efficacy Large-Scale Evaluation of COX-Inhibiting Therapies. 95 A meta-analysis of six trials, including these two large trials, suggested a relative risk of serious upper gastrointestinal side effects of 0.5 for meloxicam as compared with NSAIDs, with the upper bound of the 95 percent confidence interval approaching 1.0.96 In contrast, a small observational study suggested that the risk of upper gastrointestinal complications associated with meloxicam was similar to that of conventional NSAIDs.97

CONCLUSIONS

In less than a decade after the discovery of cyclooxygenase-2, clinical trials have demonstrated that treatment with highly selective cyclooxygenase-2 inhibitors causes significantly fewer serious gastrointestinal adverse events than does treatment with nonselective NSAIDs. More selective coxibs are already being developed. We must gather additional information on the pharmacology of the coxibs. Given the cardiovascular findings in the VIGOR trial and the association of both rofecoxib and celecoxib with small, but potentially clinically relevant, changes in blood pressure, elucidation of the cardiovascular and renal effects of these drugs and their interactions with potential adjuvant therapies, such as low-dose aspirin, is imperative.

Supported by grants from the National Institutes of Health (HL 62250, HL 57847, and M01 RR00040) and the Italian Ministry of University and Research (9706570507-005).

Dr. FitzGerald has received grant support from Bayer, Johnson & Johnson, Merck, and Searle and has served as a consultant to Boehringer Ingelheim, Bristol-Myers Squibb, Johnson & Johnson, Merck, and Searle. Dr. Patrono has received grant support from Bayer, Merck, and McNeil and has served as a consultant to Merck, Pharmacia & Upjohn, and Novartis.

REFERENCES


39. FitzGerald GA, Smith B, Pedersen AK, Brash AR. Increased prosta-