A COMPARISON OF TWO ANTIMICROBIAL-IMPREGNATED CENTRAL VENOUS CATHETERS

RABIH O. DAROUICHE, M.D., ISSAM I. RAAD, M.D., STEPHEN O. HEARD, M.D., JOHN I. THORNBY, PH.D., OLIVIER C. WENKER, M.D., ANDREA GABRIELLI, M.D., JOHANNES BERG, M.D., NANCY KHARDORI, M.D., HEND HANNA, M.D., RAY HACHEM, M.D., RICHARD L. HARRIS, M.D., AND GLEN MAYHALL, M.D., FOR THE CATHETER STUDY GROUP*

ABSTRACT

Background The use of central venous catheters impregnated with either minocycline and rifampin or chlorhexidine and silver sulfadiazine reduces the rates of catheter colonization and catheter-related bloodstream infection as compared with the use of unimpregnated catheters. We compared the rates of catheter colonization and catheter-related bloodstream infection associated with these two kinds of antinfecive catheters.

Methods We conducted a prospective, randomized clinical trial in 12 university-affiliated hospitals. High-risk adult patients in whom central venous catheters were expected to remain in place for three or more days were randomly assigned to undergo insertion of polyurethane, triple-lumen catheters impregnated with either minocycline and rifampin (on both the luminal and external surfaces) or chlorhexidine and silver sulfadiazine (on only the external surface). After their removal, the tips and subcutaneous segments of the catheters were cultured by both the roll-plate and the sonication methods. Peripheral-blood cultures were obtained if clinically indicated.

Results Of 865 catheters inserted, 738 (85 percent) produced culture results that could be evaluated. The clinical characteristics of the patients and the risk factors for infection were similar in the two groups. Catheters impregnated with minocycline and rifampin were 1/3 as likely to be colonized as catheters impregnated with chlorhexidine and silver sulfadiazine (28 of 356 catheters [7.9 percent] vs. 87 of 382 [22.8 percent], P<0.001), and catheter-related bloodstream infection was 1/12 as likely in catheters impregnated with minocycline and rifampin (1 of 356 [0.3 percent], vs. 13 of 382 [3.4 percent] for those impregnated with chlorhexidine and silver sulfadiazine; P<0.002).

Conclusions The use of central venous catheters impregnated with minocycline and rifampin is associated with a lower rate of infection than the use of catheters impregnated with chlorhexidine and silver sulfadiazine. (N Engl J Med 1999;340:1-8.)

©1999, Massachusetts Medical Society.
who were at high risk for catheter-related infection (such as pa-
tients in intensive care units or those who were immunocompro-
mised) and were likely to require a central venous catheter for
three or more days were eligible for the study. Pregnant women
and patients with a history of allergy to any of the antimicrobial
agents used for impregnating the catheters were excluded. All en-
rolled patients or their legal guardians gave informed consent.

Catheters

Patients were randomly assigned to undergo implantation of
7-French, 20-cm-long, noncuffed, triple-lumen polyurethane cen-
tral venous catheters impregnated with either minocycline and ri-
fampin (Cook Spectrum, Cook Critical Care, Bloomington, Ind.)
or chlorhexidine and silver sulfadiazine (Arrowguard Blue, Arrow
International, Reading, Pa.). Both types of catheter are available
for clinical use; the retail prices of a catheter tray are $70 and $61,
respectively. The catheters impregnated with minocycline and ri-
fampin provided antimicrobial activity on both the external and
the internal surfaces. Examination by high-performance liquid
chromatography showed that these catheters contained higher
amounts of minocycline and rifampin (11.08 and 10.50 mg per
catheter, respectively) than those previously studied (2.79 and
0.28 mg per catheter, respectively).3,4 In contrast, only the exter-
nal surface of catheters impregnated with chlorhexidine and silver
sulfadiazine (0.75 and 0.70 mg per catheter, respectively) provid-
ed antimicrobial activity.5 All study catheters were sterilized with
ethylene oxide before use.

Randomization

A special randomization scheme was used to help match the
two study groups closely. Catheter trays wrapped in identical
folders were randomly assigned in blinded fashion according to
computer-generated identification numbers, in blocks of six (three
from each group), so that the catheter trays would be removed
from the box one at a time in the prescribed, random order from
the top to the bottom. Blocks of six catheters were then shipped
to the participating hospitals for assignment to specified patient-
care units. In each case, the patients, nurses, physicians, and prin-
cipal investigators who assessed the outcomes in each hospital
were unaware of the type of catheter inserted.

Insertion and Maintenance of Catheters

Attending physicians, house staff, or supervised medical stu-
dents inserted the catheters into the subclavian, jugular, or fem-
oral vein using maximal sterile-barrier precautions. To avoid the
potential confounding effect of the controversial practice of cath-
eter exchange over a guide wire, we determined at the outset of
the trial to study only catheters inserted through a new venipunc-
ture. Randomly selected study catheters could be inserted subse-
quently at new sites in the same patient, so long as that patient
had only one study catheter at a time. At the time of catheter in-
sertion and at each dressing change, the insertion site was dis-
fected with 10 percent povidone–iodine. The dressing was
changed and the insertion site was inspected three times a week.
Coordinators at each study location evaluated patients daily until
the catheter was removed. The decision to remove the catheter
was made solely by the patient’s physician, who kept the catheter
in place until it was no longer needed or until an adverse event,
such as catheter-related infection or catheter occlusion, necessi-
tated its removal.

Cultures

Four-centimeter segments from the tips and subcutaneous sec-
tions of the aseptically removed catheters were cultured by the
roll-plate method,6 then cultured by the sonication method.7 To
help identify the sources of organisms that colonize catheters,
swab cultures of surrounding skin were obtained at the times of
catheter insertion and catheter removal in four participating hos-
pitals. In patients in whom catheter-related infection was suspec-
ed on clinical grounds, one or more peripheral-blood samples for
culture were collected before or immediately after catheter re-
moval. Recovered organisms were identified by standard microbi-
ologic methods.

Molecular Typing

Bacterial isolates from cultures of blood, catheters, and, when
available, skin of patients in whom catheter-related bloodstream
infection was diagnosed were typed by genomic fingerprinting
with the use of the repetitive-element polymerase chain reaction.8
In the same bacterial species isolated from different sites in a
single patient, DNA-fingerprint patterns were compared for simi-
larly by visual inspection of band patterns and by computer-
assisted analysis (RFLPscan Plus, Scanalytics, Billerica, Mass.).
Bacterial isolates were considered similar if fingerprint patterns
differed by no more than one amplification band.

Antimicrobial Susceptibility

To help determine whether these antimicrobial-impregnated
catheters increase the likelihood of the emergence of antibiotic re-
sistance, we compared the minimal inhibitory concentrations and
minimal bactericidal concentrations for bacteria isolated from the
two kinds of catheters by a standard broth-microdilution assay.9

Definitions

We adopted the definitions of catheter colonization and infec-
tion proposed by the Centers for Disease Control and Pre-
vention10 and used in previous clinical trials.2 Catheter coloni-
ization was defined as the growth of 15 or more colony-forming
units in culture of catheter segments prepared by the roll-plate
method or 1000 or more colony-forming units in cultures pre-
pared by the sonication method from either the tip or a subcuta-
aneous segment of the catheter. Catheter-related bloodstream in-
fec tion was defined as the isolation of the same organism (i.e.,
the same species with identical antimicrobial susceptibility) from
the colonized catheter and from peripheral blood in a patient with
clinical manifestations of sepsis and no other apparent source of
bloodstream infection.

Statistical Analysis

Before undertaking this study, we estimated the number of
catheters that would be required for an adequate examination of
the hypothesis that catheters impregnated with minocycline and
rifampin are significantly less likely to be colonized than catheters
impregnated with chlorhexidine and silver sulfadiazine. On the
basis of previous reports, we estimated that 7 percent of catheters
impregnated with minocycline and rifampin2 and 13.6 percent of
catheters impregnated with chlorhexidine and silver sulfadiazine2
would be colonized. Randomly assigning approximately 362
catheters that could be evaluated to each group would have al-

owed us to detect with 80 percent power a significant difference
in the rates of colonization between the two types of catheters at
a two-tailed significance level of 5 percent.

The significance of the differences between the two study
groups was determined with use of Student’s t-test or the Wilco-
xon rank-sum test for continuous variables and Fisher’s exact test
or the chi-square test for categorical variables. All P values were
based on two-tailed tests of significance. The proportions of cath-
eters that were free of colonization and not associated with
bloodstream infection as a function of the length of time they had
been in place were compared between the groups with use of a
log-rank test on Kaplan–Meier estimates. A multivariate logistic-
regression model was used to estimate the simultaneous effects of
multiple variables on the incidence of catheter colonization and
catheter-related bloodstream infection. To avoid rejecting variables
that might have influenced the risk of catheter colonization or
catheter-related bloodstream infection, variables that were signif-
ificant at a P value of 0.25 or less in the univariate analysis were
entered in stepwise fashions into logistic-regression analyses and

T o

The New England Journal of Medicine
tested for an independent effect. The limit for entering or removing variables in the logistic regression models was a P value of 0.05 or less. All computations were performed with SAS/STAT software. An independent monitoring board composed of experts on infectious diseases reviewed and helped interpret the findings of the study. An interim analysis of the data was not performed.

RESULTS

Characteristics of Patients and Catheters

A total of 865 study catheters (414 impregnated with minocycline and rifampin and 451 impregnated with chlorhexidine and silver sulfadiazine) were inserted into 817 patients. Complete data could be evaluated for 738 catheters (85 percent): 356 impregnated with minocycline and rifampin and 382 impregnated with chlorhexidine and silver sulfadiazine, inserted in 698 patients. The remaining 127 catheters (58 impregnated with minocycline and rifampin and 69 impregnated with chlorhexidine and silver sulfadiazine, with similar patient and catheter characteristics) were not cultured (84 were removed without notification of study coordinators, 19 were grossly contaminated during removal, and 24 were not available for other reasons) and therefore were excluded from further analysis. The two groups of catheters that could be evaluated were similar with respect to characteristics of patients and catheters (Table 1).

Colonization of Catheters

Eighty-seven of 382 catheters impregnated with chlorhexidine and silver sulfadiazine (22.8 percent) and 28 of 356 catheters impregnated with minocycline and rifampin (7.9 percent) were colonized according to at least one method of assessment (relative risk, 2.90; 95 percent confidence interval, 1.94 to 4.33; P<0.001). Catheters impregnated with minocycline and rifampin were less likely to be colonized than those impregnated with chlorhexidine and silver sulfadiazine, whether the catheter remained in place for seven days or less (13 of 217 catheters [6.0 percent] vs. 45 of 210 [21.4 percent], P<0.001) or for more than seven days (15 of 139 [10.8 percent] vs. 42 of 172 [24.4 percent], P<0.002). Analysis of the Kaplan–Meier estimates of the risk of catheter colonization according to the length of time the catheters were in place in each group showed that catheters impregnated with minocycline and rifampin were significantly less likely to be colonized (P<0.001 by the log-rank test). The overall beneficial effect of the use of catheters impregnated with minocycline and rifampin was seen in all hospitals that contributed more than 32 catheters that could be evaluated. Catheters impregnated with minocycline and rifampin were also significantly less likely to be colonized than catheters impregnated with chlorhexidine and silver sulfadiazine (P<0.001) according to each of the four combinations of catheter segment and culture method (tip–roll plate, tip–sonication, subcutaneous segment–roll plate, and subcutaneous segment–sonication) or any combination of these assessment methods.

Catheters impregnated with chlorhexidine and silver sulfadiazine were significantly more likely than those impregnated with minocycline and rifampin to be colonized with coagulase-negative staphylococci (18 percent vs. 4 percent; relative risk, 4.16; 95 percent confidence interval, 2.42 to 7.14; P<0.001), gram-positive bacilli (2 percent vs. 0.3 percent; relative risk, 7.46; 95 percent confidence interval, 0.94 to 58.8; P=0.04), or gram-negative bacilli (4 percent vs. 1 percent; relative risk, 3.96; 95 percent confidence interval, 1.35 to 11.63; P=0.007). However, the rates of colonization of catheters with Staphylococcus aureus (1 percent vs. 0), enterococci (2 percent vs. 2 percent), and yeast (2 percent vs. 3 percent) did not differ significantly between the two groups.

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Minocycline–rifampin catheters (N=356)</th>
<th>Chlorhexidine–silver sulfadiazine catheters (N=382)</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. of patients</td>
<td>350</td>
<td>370</td>
</tr>
<tr>
<td>Male sex (%)</td>
<td>59</td>
<td>63</td>
</tr>
<tr>
<td>Median age (yr)</td>
<td>56</td>
<td>56</td>
</tr>
<tr>
<td>Underlying disease (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cancer</td>
<td>28</td>
<td>26</td>
</tr>
<tr>
<td>Cardiopulmonary disease</td>
<td>32</td>
<td>34</td>
</tr>
<tr>
<td>Neurologic disorder</td>
<td>16</td>
<td>19</td>
</tr>
<tr>
<td>Other</td>
<td>24</td>
<td>21</td>
</tr>
<tr>
<td>Patients in intensive care unit (%)</td>
<td>66</td>
<td>67</td>
</tr>
<tr>
<td>Risk factors for infection (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hyperalimentation</td>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td>Immunosuppressive therapy</td>
<td>22</td>
<td>20</td>
</tr>
<tr>
<td>Bone marrow transplantation</td>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td>Neutropenia</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>Mechanical ventilation</td>
<td>60</td>
<td>65</td>
</tr>
<tr>
<td>Other intravascular catheter</td>
<td>53</td>
<td>54</td>
</tr>
<tr>
<td>Urinary catheter</td>
<td>85</td>
<td>86</td>
</tr>
<tr>
<td>Receiving systemic antibiotics (%)</td>
<td>89</td>
<td>90</td>
</tr>
<tr>
<td>Insertion site (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subclavian vein</td>
<td>54</td>
<td>53</td>
</tr>
<tr>
<td>Jugular vein</td>
<td>38</td>
<td>36</td>
</tr>
<tr>
<td>Femoral vein</td>
<td>8</td>
<td>11</td>
</tr>
<tr>
<td>Duration of placement (days)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>8.4</td>
<td>8.2</td>
</tr>
<tr>
<td>Median</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>Range</td>
<td>1–55</td>
<td>1–36</td>
</tr>
<tr>
<td>Reason for removal (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Catheter no longer needed</td>
<td>67</td>
<td>69</td>
</tr>
<tr>
<td>Suspected catheter infection</td>
<td>14</td>
<td>13</td>
</tr>
<tr>
<td>Occluded catheter</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>Other</td>
<td>16</td>
<td>17</td>
</tr>
</tbody>
</table>

* A total of 738 catheters that could be evaluated were inserted into 698 patients; some patients received 1 or more catheters of each type. The catheters and patients were included in both groups in such cases.
Factors that may have increased the likelihood of catheter colonization (detected by any of the assessment methods) in the univariate analysis ($P\leq 0.25$) were entered into a multivariate logistic-regression model, which identified the following predisposing factors as significant ($P < 0.05$): insertion of the catheter into the femoral or jugular vein (odds ratio as compared with other locations, 3.05; 95 percent confidence interval, 1.86 to 5.01; $P < 0.001$), use of a catheter impregnated with chlorhexidine and silver sulfadiazine (odds ratio as compared with minocycline and rifampin, 2.80; 95 percent confidence interval, 1.68 to 4.66; $P < 0.001$), hospitalization in the intensive care unit (odds ratio as compared with other wards, 2.60; 95 percent confidence interval, 1.47 to 4.62; $P = 0.001$), male sex (odds ratio, 2.45; 95 percent confidence interval, 1.43 to 4.20; $P = 0.001$), and mechanical ventilation (odds ratio, 1.97; 95 percent confidence interval, 1.14 to 3.41; $P = 0.01$).

Catheter-Related Bloodstream Infection

In 14 cases, bloodstream infection was attributed to an indwelling study catheter. These catheters had been in place for a median of 11 days. Thirteen cases of catheter-related bloodstream infection occurred among the catheters impregnated with chlorhexidine and silver sulfadiazine (3.4 percent), as compared with one case among the catheters impregnated with minocycline and rifampin (0.3 percent; relative risk, 12.05; 95 percent confidence interval, 1.59 to 90.9; $P < 0.002$). Two patients died as a result of bloodstream infections associated with catheters impregnated with chlorhexidine and silver sulfadiazine. Among the catheters that remained in place for more than seven days, the rate of associated bloodstream infection was significantly higher for catheters impregnated with chlorhexidine and silver sulfadiazine than for catheters impregnated with minocycline and rifampin (11 of 172 catheters [6.4 percent] vs. 1 of 139 [0.7 percent], $P = 0.01$). The rates of catheter-related bloodstream infection per 1000 catheter-days were 0.3 (95 percent confidence interval, 0.01 to 1.85) for catheters impregnated with minocycline and rifampin and 4.1 (95 percent confidence interval, 2.22 to 6.99) for catheters impregnated with chlorhexidine and silver sulfadiazine ($P < 0.001$). Figure 1 shows the Kaplan–Meier estimates of the risk of catheter-related bloodstream infection according to duration of catheterization in each group and shows that catheters impregnated with minocycline and rifampin were superior ($P = 0.001$ by log-rank test). The same conclusion was reached when we considered only the results from culture of the catheter tip (1 infection among 356 catheters [0.3 percent] vs. 11 among 382 [2.9 percent], $P = 0.006$) or the subcutaneous
Enteroxoccus faecalis caused the single case of bloodstream infection related to a catheter impregnated with minocycline and rifampin. Organisms implicated in the 13 cases of bloodstream infection associated with catheters impregnated with chlorhexidine and silver sulfadiazine included coagulase-negative staphylococci (8 cases; in 1 a diphtheroid was also present), methicillin-resistant S. aureus, vancomycin-resistant E. faecalis, Enterobacter cloacae, Klebsiella pneumoniae, and Pseudomonas aeruginosa (1 case each). Fourteen of 115 colonized catheters (12 percent) resulted in bloodstream infection; there was no difference in the likelihood of infection between catheters colonized with coagulase-negative staphylococci and catheters colonized with other organisms. Catheters impregnated with minocycline and rifampin had a significant protective effect against catheter-related bloodstream infection by coagulase-negative staphylococci as compared with catheters impregnated with chlorhexidine and silver sulfadiazine (rate of infection, 0 of 356 vs. 8 of 382; P=0.008).

The clonal relation of isolates from blood and catheter cultures was confirmed by DNA typing in 13 of 14 cases (Fig. 2). Skin swabs were cultured at the time of the removal of the catheter from seven patients with catheter-related bloodstream infection. In five of these cases (71 percent), the culture yielded bacteria of the same species with a DNA-fingerprint pattern similar to that of the isolates from the catheter and the blood; a different organism grew from skin cultures in the other two patients (29 percent), suggesting that catheter infection may have originated from contamination of the catheter hub.

Factors that may have increased the risk of catheter-related bloodstream infection in the univariate analysis (with P<0.05 as the criterion) were entered into a multivariate logistic-regression model, which identified the following predisposing factors as significant (P<0.05): catheterization for more than seven days, use of a catheter impregnated with chlorhexidine and silver sulfadiazine, and male sex (Table 2).

Analysis of data for only the first catheter insertion (698 catheters) also demonstrated that the use of catheters impregnated with minocycline and rifampin was associated with lower rates of colonization of the catheter than the use of catheters impregnated with chlorhexidine and silver sulfadiazine (79 of 359 catheters impregnated with chlorhexidine and silver sulfadiazine were colonized [22.0 percent], vs. 28 of 339 [8.3 percent] for minocycline and rifampin; relative risk, 2.66; 95 percent confidence interval, 1.78 to 4.0; P<0.001) and bloodstream infection (12 of 359 [3.3 percent] vs. 1 of 339 [0.3 percent]; relative risk, 11.33; 95 percent confidence interval, 4.8 to 33.2; P=0.003). Although there was a trend toward a lower risk of nosocomial bacteremia with catheters impregnated with minocycline and rifampin than with catheters impregnated with chlorhexidine and silver sulfadiazine (6.7 percent vs. 10.2 percent), the difference was not significant (P=0.12). There were no significant differences between the two groups in the proportions receiving therapy with vancomycin (23 percent vs. 25 percent) or antibiotics in general (89 percent vs. 90 percent) and the mean duration of stay in the intensive care unit (8.7 vs. 8.6 days).

Antimicrobial Susceptibility

The ranges of the minimal inhibitory concentrations and minimal bactericidal concentrations of minocycline and rifampin for S. epidermidis and enterococci were similar for isolates cultured from the two types of catheters (Table 3). Moreover, in the two cases in which the same organism was isolated from paired cultures of skin obtained before insertion and at the time of removal of a catheter impregnated with minocycline and rifampin (S. epidermidis in one case and enterococcus in the other), the minimal inhibitory concentrations and minimal bactericidal concentrations of minocycline and rifampin for the corresponding paired isolates were similar.

Adverse Effects of the Catheters

There were no local or systemic hypersensitivity reactions associated with the use of either catheter.

DISCUSSION

Recent comparative studies have shown that the use of central venous catheters impregnated either with minocycline and rifampin or with chlorhexidine and silver sulfadiazine is associated with lower rates of catheter colonization and bloodstream infection than the use of unimpregnated catheters. Although three smaller clinical trials (which studied 72, 282, and 308 catheters that could be evaluated) showed a nonsignificant trend toward lower rates of bloodstream infection with catheters impregnated with chlorhexidine and silver sulfadiazine than with unimpregnated catheters, none had sufficient power to determine that there were no differences. We compared two very differently prepared antinfective catheters. As we hypothesized, our findings indicated that the antinfective efficacy of catheters impregnated with minocycline and rifampin was superior to that of catheters impregnated with chlorhexidine and silver sulfadiazine.

The majority of cases of catheter-related bloodstream infection are associated with the short-term use of noncuffed central venous catheters. On average, 5 percent of the 3 million short-term, unimpregnated central venous catheters that are inserted annually in the United States lead to bloodstream infection, resulting in about 150,000 cases of catheter-related bloodstream infection a year. Our
findings of remarkably low rates of catheter-related bloodstream infection (0.3 percent) and catheter colonization (7.9 percent) associated with the use of catheters impregnated with minocycline and rifampin are similar to previously reported rates. However, we found rates of catheter colonization (22.8 percent) and bloodstream infection (3.4 percent) associated with the use of catheters impregnated with chlorhexidine and silver sulfadiazine that were higher than those reported by Maki and colleagues (13.5 percent and 1 percent, respectively). The differences in rates of colonization of catheters could be attributed, at least in part, to our use of roll-plate and sonication cultures of both the tips and subcutaneous segments, as compared with the use by Maki et al. of only roll-plate culture of the catheter tips alone. As in other reports, the roll-plate culture had a limited sensitivity for the diagnosis of catheter colonization (78 of 115 catheters [68 percent]) and catheter-related bloodstream infection (12 of 14 [86 percent]) in our study.

Unlike catheters impregnated with minocycline and
rifampin, in which antimicrobial activity is present on both the external and the internal surfaces of the catheter, the antimicrobial activity of catheters impregnated with chlorhexidine and silver sulfadiazine is limited to the external surface. The difference might be an important determinant of the difference in efficacy between these two antimicrobial-impregnated catheters. For instance, catheters impregnated with chlorhexidine and silver sulfadiazine reduced colonization of the external surface as compared with uncoated catheters in studies in which the roll-plate method alone was used to culture only the catheter tips or both the catheter tips and the subcutaneous segments. Our use of sonication cultures that retrieve organisms from both the external and internal surfaces is justified by the role of luminal colonization in causing catheter-related bloodstream infection. Other factors that may have contributed to the superior efficacy of the catheters impregnated with minocycline and rifampin include the particular method used to incorporate the antimicrobial agents into the catheter material and the resulting concentration and availability of those agents on the catheter surface.

Although antimicrobial resistance is an issue of potential concern, we and others have, so far, found a very low likelihood that antibiotic resistance will result from the use of antimicrobial-impregnated catheters. However, continued surveillance for resistance is required as part of the further clinical use of such catheters. Although it is possible that the use of any antiinfective catheter that reduces ultrastructural colonization may decrease the likelihood of the development of resistance to systemically administered anti-

Table 2. Results of Univariate and Multivariate Analyses of Factors Associated with Catheter-Related Bloodstream Infection.

<table>
<thead>
<tr>
<th>Factor</th>
<th>Univariate Analysis</th>
<th>Multivariate Analysis*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>P VALUE</td>
<td>P VALUE</td>
</tr>
<tr>
<td>Duration of catheterization >7 days</td>
<td>0.001</td>
<td>0.005</td>
</tr>
<tr>
<td>Chlorhexidine–silver sulfadiazine catheter</td>
<td>0.002</td>
<td>0.02</td>
</tr>
<tr>
<td>Mechanical ventilation</td>
<td>0.002</td>
<td>—</td>
</tr>
<tr>
<td>Male sex</td>
<td>0.01</td>
<td>0.03</td>
</tr>
<tr>
<td>Hyperalimentation</td>
<td>0.01</td>
<td>—</td>
</tr>
<tr>
<td>Insertion by house staff or students</td>
<td>0.07</td>
<td>—</td>
</tr>
<tr>
<td>Patient in intensive care unit</td>
<td>0.10</td>
<td>—</td>
</tr>
<tr>
<td>Indwelling urinary catheter</td>
<td>0.12</td>
<td>—</td>
</tr>
<tr>
<td>Other intravascular catheter</td>
<td>0.14</td>
<td>—</td>
</tr>
</tbody>
</table>

*OR denotes odds ratio, and CI confidence interval.

Table 3. Antimicrobial Susceptibility of Bacterial Isolates Cultured from Catheters.*

<table>
<thead>
<tr>
<th>Isolate and Antibiotic</th>
<th>Minocycline–Rifampin Catheters†</th>
<th>Chlorhexidine–Silver Sulfadiazine Catheters‡</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MIC RANGE</td>
<td>MBC RANGE</td>
</tr>
<tr>
<td>Coagulase-negative staphylococci</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Minocycline</td>
<td>0.06–1</td>
<td>1–16</td>
</tr>
<tr>
<td>Rifampin</td>
<td>0.06–128</td>
<td>0.06–128</td>
</tr>
<tr>
<td>Enterococci</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Minocycline</td>
<td>1–8</td>
<td>4–128</td>
</tr>
<tr>
<td>Rifampin</td>
<td>1–128</td>
<td>64–128</td>
</tr>
</tbody>
</table>

*MIC denotes minimal inhibitory concentration, and MBC minimal bactericidal concentration.
†Eleven isolates of coagulase-negative staphylococci and four of enterococci were tested.
‡Forty-five isolates of coagulase-negative staphylococci and five of enterococci were tested.
bacteriostatic practices.10,11 The actual effects of the use of antimicrobial-impregnated catheters on infection-control measures require further evaluation.

In conclusion, our results demonstrate that the capacity of catheters impregnated with minocycline and rifampin to resist infection is superior to that of catheters impregnated with chlorhexidine and silver sulfadiazine, particularly in patients who require vascular access for seven or more days. Despite their proven efficacy, antimicrobial-impregnated catheters should complement rather than replace adequate aseptic practices.10,11

Supported by funds from Cook Critical Care, Bloomington, Indiana; the Department of Veterans Affairs, Washington, D.C.; and the University Cancer Foundation at the University of Texas M.D. Anderson Cancer Center, Houston. Presented in part as an abstract (LB-22) at the 37th Interscience Conference on Antimicrobial Agents and Chemotherapy, Toronto, September 28–October 1, 1997.

Impregnation of catheters with minocycline and rifampin is described in two patents that are the property of Baylor College of Medicine and the University of Texas M.D. Anderson Cancer Center, Houston. Dr. Darouiche (an employee of Baylor College of Medicine) and Dr. Raad (an employee of the University of Texas M.D. Anderson Cancer Center) are coinventors of the two patented methods. Both patents were licensed by Cook Critical Care, Bloomington, Indiana, with royalty rights to Baylor College of Medicine and the University of Texas M.D. Anderson Cancer Center. The inventors receive a percentage of the royalties according to the official policies of each academic institution. None of the authors, including Dr. Darouiche and Dr. Raad, have other financial links to Cook Critical Care or other catheter-manufacturing companies.

We are indebted to Daniel M. Musher, M.D., and Gerald P. Bodey, M.D., for serving on the study monitoring board and for their critical review of the manuscript.

APPENDIX

In addition to the authors, the following members of the Catheter Study Group participated in the clinical trial: C. Robertson, M. Wall, J. Jones, M. Mansouri, C. Stewart, and S. Dunbar (Baylor College of Medicine, Houston); J. Dupuis, A. Buzaid, K. Price, A. El Rahwan, J. Abbas, and S. Sidarous (University of Texas M.D. Anderson Cancer Center, Houston); I. Toth, K. Longtime, and A. Breuggermann (University of Massachusetts Medical Center, Worcester); K. Rand (University of Florida College of Medicine, Gainesville); S. Bjornson (University of Cincinnati Medical Center, Cincinnati); and P. Falk (University of Texas Medical Branch, Galveston).

REFERENCES