Genetic Diseases in Dogs and Humans

Duchenne Muscular Dystrophy, Copper Toxicosis, and Narcolepsy

1Julia Tsai, 2Shannon Smith, and 3Megan Albertelli, DVM, PhD, DACLAM

Stanford University 1(Class of 2016), 2(Class of 2015), and 3Department of Comparative Medicine, Stanford School of Medicine

Duchenne Muscular Dystrophy

Background: Golden Retriever Muscular Dystrophy (GRMD) in dogs and Duchenne Muscular Dystrophy in humans are characterized by on-going muscle fiber necrosis and regeneration.

Causes: X-linked recessive mutation / deletion in DMD gene that encodes for dystrophin, a vital protein for supporting muscle fiber strength and preventing muscle fiber injury.

Dogs: RNA processing error from single point mutation → early termination of translation and truncated dystrophin.

Symptoms: elevated creatine kinase (CK) levels at birth (indicating abnormal muscle degradation), progressive deterioration of muscles.

Dogs: gait abnormalities (*“bunny” shuffle*), muscle atrophy, fibrosis, contractures, cardiomyopathy.

Humans: mutations or deletions in DMD gene.

Copper Toxicosis

Causes: X-linked recessive mutation / deletion in copper metabolism genes COMMD1 or ATP7B.

Dogs: loss of function mutation in COMMD1.

Symptoms: liver inflammation → necrosis → cirrhosis.

Dogs: liver most affected. Often no signs initially; differences in severity depending on breed; lethargy, vomiting, icterus, hepatic encephalopathy.

Humans: liver, brain, and cornea affected. Kasyer-Fleischer rings in eyes; neurological issues (anxiety, schizophrenia, depression); abnormal serum ceruloplamin concentrations.

Humans: muscle fatigue, learning difficulties, loss of mobility, breathing difficulties and heart disease by 20.

Narcolepsy

Causes: Deficit in the hypocretin signaling pathway causing abnormal hypothalamic function.

Dogs: Mutation/deletion in Hcrt2 (hypocretin receptor 2) → loss of protein function.

Humans: No mutation in gene noted; most likely acquired by destruction of hypocretin synthesizing cells.

Symptoms: cataplexy following emotional stimuli, excessive daytime sleepiness, disrupted REM sleep.

Dogs: develops between 4 weeks and 6 months.

Humans: develops between age of 7-25.

Treatment

Dogs: methoxamine and zinc compounds to inhibit GI absorption of copper, especially for presymptomatic or pregnant patients.

Humans: sodium oxybate; tricyclic antidepressants for cataplexy; daytime naps.

Cell-Based Therapy: transplant stem cells

Humans: physical therapy, insulin-like growth factor, cardiac drugs, corticosteroids, aminoglycoside antibiotics.

References:

6. Andrographoliode (AG) in a rat model, copper is stained red (Roy 2011).

A Affected Golden Retriever at (A) 3 months and (B) 6 months (NCIDMD 2014)

B Necrotic muscle cells replaced by fibrous and fatty tissue (Pestronk 2013)

C Affected child using hands to push body up due to lower limb weakness (Gower’s Sign).

D Necrotic muscle cells filled by fibrous and fatty tissue (Pestronk 2013)

E Reddish-brown Kayser-Fleischer ring in the right eye (Sullivan 2002)

F Catalepsy in a Doberman (Nishino 2007)

G Loss of hypocretin cells in humans (Thamnickal 2000)