T1 Mapping and ECV Estimates at 3T in Pediatric Subjects with Duchenne Muscular Dystrophy and Healthy Controls

Nyasha G. Maforo1,2, Patrick Magrath1,3, Kévin Moulin5, Jiaxin Shao1, Kavya Umachandran3, Grace Kim1, Pierangelo Renella1, Nancy Halnon4, Holden Wu1,2,3, and Daniel B. Ennis5

1 Department of Radiological Sciences, UCLA, Los Angeles, CA, United States
2 Physics and Biology in Medicine IDP, UCLA, Los Angeles, CA, United States
3 Department of Bioengineering, UCLA, Los Angeles, CA, United States
4 Department of Pediatrics (Cardiology), UCLA, Los Angeles, CA, United States
5 Department of Radiology, Stanford University, Stanford, CA, United States
I have nothing to disclose
Duchenne Muscular Dystrophy (DMD)

Incidence of 1:3500 boys\(^1\)

\[1\] McNally EM et al., Circulation (2015)
Duchenne Muscular Dystrophy (DMD)

The genotype is variable, therefore the phenotype is variable.

> 2,000 mutations in the DMD gene have been identified\(^2\)

The genotype is variable, therefore the phenotype is variable.

Duchenne Muscular Dystrophy (DMD)

Dystrophin Protein

- Links sarcomere and extracellular matrix
- Mutation disrupts link to extracellular matrix
 - Causing tears in cellular membrane during myocyte contraction
DMD - Histology

DMD Muscle

- Myofiber size variation
- Fatty replacement, myofiber splitting, and hypertrophy
- Atrophic fibers and fibrofatty replacement

DMD - Progression

Skeletal Muscle

- Gowers Sign
- Using hands to push on legs to stand
- Corticosteroids

Respiratory Muscle

- Airway Clearance
- Muscle Training
- Ventilation

Cardiac Muscle

- DCM
- ~25 Years
- ACE Inhibitors
- ß-blockers
- Resynchronization

Mayo Clinic

~20 Years

~12 Years

~25 Years
Imaging shows that there is clearly disease in the myocardium long before onset of clinical symptoms4.

The genotypic/phenotypic variations blur the line of cardiac involvement. Important to determine biomarkers most sensitive to cardiac involvement in DMD.

Often noted as late outcomes in DMD.

4 Bushby et al., Lancet Neurol. (2010)
Pre-contrast T1 is a non-invasive measure of myocardial remodeling and potential early indicator of cardiac disease.

T1 measurements in boys with DMD acquired at 1.5T may identify myocardial changes and assess disease severity\(^5\).

Extracellular volume (ECV) can be calculated and used to quantify diffuse fibrosis\(^6\).

<table>
<thead>
<tr>
<th></th>
<th>Native T1 (ms)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Lateral</td>
</tr>
<tr>
<td>DMD</td>
<td>1075.1(71.8)</td>
</tr>
<tr>
<td>CONTROL</td>
<td>978.2(36.4)</td>
</tr>
<tr>
<td>p</td>
<td>0.000</td>
</tr>
</tbody>
</table>

Mavrogeni et al, JCMR 2016

To characterize differences in global and septal myocardium between boys with DMD and healthy controls at 3T. Pre-contrast T1, post-contrast T1, and ECV estimates.
Results: Demographics

<table>
<thead>
<tr>
<th></th>
<th>DMD (N=26) Median (IQR)</th>
<th>Control (N=17) Median (IQR)</th>
<th>Mann-Whitney P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td>13(5.0)</td>
<td>13(4.0)</td>
<td>>0.05</td>
</tr>
<tr>
<td>Height (cm)</td>
<td>134(26.0)</td>
<td>165(20.3)</td>
<td><0.01</td>
</tr>
<tr>
<td>Weight (kg)</td>
<td>50(26.3)</td>
<td>51.3(15.3)</td>
<td>0.61</td>
</tr>
<tr>
<td>Body mass index (kg/m²)</td>
<td>25.9(9.5)</td>
<td>18.2(3.38)</td>
<td><0.01</td>
</tr>
<tr>
<td>Heart rate (bpm)</td>
<td>87(24)</td>
<td>69(30)</td>
<td>0.02</td>
</tr>
<tr>
<td>Hematocrit (%)</td>
<td>43.5(3.6)</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
Methods - DMD MRI EXAM at 3T

A. Localizers

B. Short Axis Tagging

C. Pre-Contrast T1-Mapping

D. T2-Mapping

E. Perfusion

F. Short & Long-Axis CINE

G. LGE Imaging

H. Post-Contrast ECV

<table>
<thead>
<tr>
<th>Sequence Parameter</th>
<th>MOLLI HR < 90</th>
<th>MOLLI HR > 90</th>
</tr>
</thead>
<tbody>
<tr>
<td>FOV (mm)</td>
<td>360 x 270</td>
<td>360 x 270</td>
</tr>
<tr>
<td>Matrix (mm2)</td>
<td>192x164</td>
<td>192x164</td>
</tr>
<tr>
<td>Resolution (mm3)</td>
<td>2x2x8</td>
<td>2x2x8</td>
</tr>
<tr>
<td>Slice thickness (mm)</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>TE (ms)</td>
<td>1.12</td>
<td>1.01</td>
</tr>
<tr>
<td>TR (ms)</td>
<td>2.7</td>
<td>2.44</td>
</tr>
<tr>
<td>Flip angle (°)</td>
<td>20</td>
<td>20</td>
</tr>
</tbody>
</table>
Methods - Data Analysis

CMR

- **Patients**
 - Pre- & Post-contrast T1
 - ECV

- **Volunteers**
 - Pre-contrast

Single mid-ventricular slice

ROI Selection

- **Global**
- **Septal**

Extract summary statistics
Methods - Data Analysis

CMR

Patients
- Pre- & Post-contrast T1

Single mid-ventricular slice

ROI Selection

Pre-Contrast

Register Pre+Post Blood pool T1 Hematocrit

Post-Contrast ECV

Extract summary statistics

Report Median (IQR)
Results - Increased Pre-contrast T1 in DMD Subjects

CONTROL

DMD

Native T1 (ms)

Global Myocardium

MEDIAN (IQR)

HEALTHY

* p<0.05

1291(62)

1301(39)
Results - Decreased Pre-contrast T1 in Septal Region

- **HEALTHY**
 - Global Myocardium: 1291 (62)
 - Septal Myocardium: 1301 (53)

- **DMD**
 - Global Myocardium: 1331 (58.3)
 - Septal Myocardium: 1301 (39)

* p<0.05
Results - Decreased Pre-contrast T1 in Septal Region

* p<0.05

MEDIAN (IQR)
Results - Increased Post-contrast T1 in DMD Septum

- **Post-contrast (ms)**
 - Global: 596 (92)
 - Septal: 631 (108)

- Pre-contrast vs. Post-contrast:
 - **Global Myocardium**
 - **Septal Myocardium**

- *p < 0.05

MEDIAN (IQR)
Results: Decreased ECV in DMD Septum

Previously reported ECV values⁵:
DMD: 31.3(6.7)
CONTROL: 24.4(3.5)

Discussion - Variable Disease Progression

- **Native T1**
 - Control: EF > 55%
 - DMD Early Stage: EF > 55%
 - DMD Late State: EF < 55%
- **LGE**
 - Control: EF > 55%
 - DMD Early Stage: EF > 55%
 - DMD Late State: EF < 55%
- **Post-contrast**
 - Control: EF > 55%
 - DMD Early Stage: EF > 55%
 - DMD Late State: EF < 55%
- **ECV**
 - Control: EF > 55%
 - DMD Early Stage: EF > 55%
 - DMD Late State: EF < 55%

HLA CINE

- Control: EF > 55%
- DMD Early Stage: EF > 55%
- DMD Late State: EF < 55%
Discussion & Conclusions

- Boys with DMD present with significantly elevated pre-contrast T_1 compared to healthy boys.

- As expected, 3T T_1 values here are elevated relative to previously reported 1.5T values for DMD and healthy groups.

- Post-contrast T_1 and ECV estimates are reported here for boys with DMD at 3T for the first time.

- Global myocardial values more elevated compared to the septum for DMD boys.
Acknowledgements

Funding support from:
NIH RO1 HL131975 to DBE
NSF DGE 1650604 to NGM

Research Team
Pierangelo Renella, MD
Nancy Halnon, MD
Ashley Prosper, MD
Stanley Nelson, PhD
Holden Wu, PhD
Daniel B. Ennis, PhD
Jiaxin Shao, PhD
Zhaohuan Zhang
Kavya Umachandran

Technologists
Glen
Nick
Sergio
Terry
Arnulfo

Ennis Lab @ Stanford | VA

UCLA
Magnetic Resonance Research Labs