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Electrical stimulation of retinal ganglion cells (RGCs) with electronic implants provides rudimentary artificial vision to people blinded
by retinal degeneration. However, current devices stimulate indiscriminately and therefore cannot reproduce the intricate neural code
of the retina. Recent work has demonstrated more precise activation of RGCs using focal electrical stimulation with multielectrode
arrays in the peripheral macaque retina, but it is unclear how effective this can be in the central retina, which is required for high-re-
solution vision. This work probes the neural code and effectiveness of focal epiretinal stimulation in the central macaque retina, using
large-scale electrical recording and stimulation ex vivo. The functional organization, light response properties, and electrical properties
of the major RGC types in the central retina were mostly similar to the peripheral retina, with some notable differences in density,
kinetics, linearity, spiking statistics, and correlations. The major RGC types could be distinguished by their intrinsic electrical proper-
ties. Electrical stimulation targeting parasol cells revealed similar activation thresholds and reduced axon bundle activation in the cen-
tral retina, but lower stimulation selectivity. Quantitative evaluation of the potential for image reconstruction from electrically evoked
parasol cell signals revealed higher overall expected image quality in the central retina. An exploration of inadvertent midget cell acti-
vation suggested that it could contribute high spatial frequency noise to the visual signal carried by parasol cells. These results support
the possibility of reproducing high-acuity visual signals in the central retina with an epiretinal implant.
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Significance Statement

Artificial restoration of vision with retinal implants is a major treatment for blindness. However, present-day implants do not provide
high-resolution visual perception, in part because they do not reproduce the natural neural code of the retina. Here, we demonstrate
the level of visual signal reproduction that is possible with a future implant by examining how accurately responses to electrical stimu-
lation of parasol retinal ganglion cells can convey visual signals. Although the precision of electrical stimulation in the central retina
was diminished relative to the peripheral retina, the quality of expected visual signal reconstruction in parasol cells was greater. These
findings suggest that visual signals could be restored with high fidelity in the central retina using a future retinal implant.
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Introduction
Electronic neural implants have the potential to translate our
evolving scientific understanding of the nervous system into clin-
ical restoration of sensory and motor functions. An important
example is epiretinal implants, which electrically activate retinal
ganglion cells (RGCs), causing them to send artificial visual sig-
nals to the brain. Although this technology is already a primary
treatment for blindness resulting from severe photoreceptor
degeneration (Weiland et al., 2011, 2016; Goetz and Palanker,
2016), present-day devices provide limited restoration of vision.
One likely reason for this is that all currently available implants
activate RGCs of different types simultaneously and indiscrimin-
ately, creating artificial neural signals that do not mimic the tem-
porally precise and cell type-specific neural code of the retina
(Roska and Meister, 2013). A salient example is the simultaneous
activation of ON and OFF cells at the same location, which likely
sends conflicting visual information to the brain.

A potential solution would be to develop a high-resolution
implant that can precisely reproduce neural activity in the diverse
RGC types, which are interspersed on the surface of the retina.
Previous ex vivo work in the peripheral primate retina has shown
that epiretinal electrical stimulation with high-density multielec-
trode arrays can activate individual RGCs of the major types with
single-cell, single-spike resolution (Sekirnjak et al., 2008; Jepson et
al., 2013, 2014b), and that the distinct cell types can be distinguished
by their recorded electrical signatures (Richard et al., 2016; Zaidi et
al., 2022; Madugula et al., 2022a), raising the possibility of reproduc-
ing the neural code using epiretinal stimulation. More recently, a
stimulation algorithm was developed to optimize the quality of
vision restoration in conditions when stimulation is focal and pre-
cisely calibrated but imperfect (Shah et al., 2019b, 2022). However,
it remains unclear whether these approaches can be applied effec-
tively to the central retina, the principal target for electronic
implants, because the properties and functional organization of the
diverse RGC types and the achievable specificity of electrical stimu-
lation in areas of high RGC density are not well understood.

Here, we test how effectively electrical stimulation can reproduce
the neural code of two major RGC types in the central retina and
perform a direct comparison to the peripheral retina. First, using
large-scale multielectrode recordings and visual stimulation, we
probe the functional organization, light responses, spiking, and elec-
trical properties of four numerically dominant RGC types—ON
parasol, OFF parasol, ONmidget, and OFF midget (Dacey, 2004)—
in the raphe region of the central macaque monkey retina (eccen-
tricity, 4.5–20°). Next, we record and stimulate ON parasol and
OFF parasol cells in the raphe and demonstrate that these two cell
types can be identified and distinguished from midget cells based
solely on their recorded electrical signatures, and can be activated
with high spatial and temporal precision. Third, we use responses to
electrical stimulation in parasol cells to estimate the visual signal
reproduction that is possible with a central-targeting implant that
algorithmically optimizes electrical stimulation (Shah et al., 2019b,
2022). Although the selectivity of stimulation was lower in the cen-
tral compared with the peripheral retina, the unwanted activation of
axons was reduced, and the overall expected image quality from
parasol cells was substantially higher. These results support the pos-
sibility of high-fidelity vision restoration in the central retina with
an epiretinal implant.

Materials and Methods
Experimental procedures. Eyes were obtained from terminally anes-

thetized macaque monkeys (Macaca mulatta, Macaca fascicularis) of

either sex (32 males, 6 females) used by other researchers, in accordance
with Institutional Animal Care and Use Committee guidelines. Imme-
diately after enucleation, the eye was hemisected in room light and the
anterior portion of the eye and the vitreous humor was removed. The
posterior portion of the eye was stored in oxygenated, bicarbonate-buf-
fered Ames’ solution (Sigma-Aldrich) at 31–33°C.

In infrared or dim lighting, small (;2� 2 mm) segments of retina,
along with the attached retinal pigment epithelium (RPE) and choroid,
were separated from the sclera. In most preparations, the retina was then
separated from the RPE; in one preparation (Fig. 1B), the RPE was left
attached. The retina was placed RGC side down on a custom high-den-
sity multielectrode array, and a transparent dialysis membrane was used
to press the retina against the array from the photoreceptor side. A total
of 52 retinal preparations was used: 15 from the raphe region and 37
from the periphery. For raphe preparations, regions 1–4.5 mm (4.5–20°)
eccentricity along the temporal horizontal meridian were obtained. For
peripheral preparations, segments in both temporal and nasal regions of
the retina were obtained, with eccentricities ranging from 5 to 12 mm in
eccentricity (22–56° temporal equivalent). Once the retina was mounted
on the array, it was superfused with oxygenated, bicarbonate-buffered
Ames’ solution at 32–35°C.

Visual stimulation and recording. The retina was typically stimulated
with a white noise visual stimulus from a gamma-corrected cathode ray
tube monitor refreshing at 120Hz. The three monitor primaries were
modulated independently for spectral variation, or in a coordinated
manner for a black-and-white stimulus. The stimulus refresh interval
was either 8.37, 16.74, or 33.47ms and the size of each stimulus pixel at
the photoreceptor layer ranged from;22–176mm. For a single prepara-
tion (Fig. 1B), the retina was stimulated with a gamma-corrected organic
light-emitting diode monitor refreshing at 60Hz. In this case, the stimulus
refresh interval was 16.57ms and the size of each stimulus pixel at the pho-
toreceptor layer was;36mm. The recordings were obtained using a custom
multielectrode stimulation and recording system with 512 electrodes (diam-
eter, 5–15mm) with either 30mm pitch, covering an area of 0.43 mm2, or
60mm pitch, covering an area of 1.7 mm2 (Litke et al., 2004; Hottowy et al.,
2008, 2012). Raw signals from the channels were amplified, filtered (43–
5000Hz), multiplexed, digitized at 20,000Hz, and stored for off-line analy-
sis, as described previously (Litke et al., 2004). KiloSort (Pachitariu et al.,
2016) was then applied to the raw recordings to separate and identify
unique cells and their spike times.

Cell type classification. To classify distinct cell types based on their
light response properties, the spike-triggered average (STA) was com-
puted for each cell (Chichilnisky, 2001). The receptive field (RF) of each
cell was estimated by determining the pixels within the STA with a signal
significantly above the noise level (Gauthier et al., 2009a). The time
course of the STA was computed by summing the primaries of pixels
within the RF. The spatial component of the STA was computed for
each cell by taking the inner product between the time course and the
full STA, and the output was fitted with a 2D Gaussian. Clusters of light
response properties (RF diameter, first principal component of time
course; Fig. 1) and spiking properties (first principal component of the
spike train autocorrelation function; see below) were used to iden-
tify distinct cell types (Field et al., 2007). Recordings in most pe-
ripheral and some central retina preparations typically revealed
the five numerically dominant RGC types: ON parasol, OFF para-
sol, ON midget, OFF midget, and small bistratified. In most prepa-
rations, recordings from ON and OFF parasol cells were nearly
complete, whereas recordings from ON and OFF midget and small
bistratified cells were less complete (Fig. 1).

Linear–nonlinear Poisson cascade model. To summarize the light
response properties of the major RGC types, the linear–nonlinear
Poisson (LNP) cascade model was fitted to responses to white noise
(Chichilnisky, 2001; Chichilnisky and Kalmar, 2002). At the retinal
eccentricities recorded, the RF diameters of raphe RGCs are approxi-
mately half the diameter of those in the periphery (Figs. 1, 2).
Therefore, to compare model parameters in the raphe and periphery,
stimuli with a 22mm pixel width were used in the raphe and stimuli
with a 44 or 55mm pixel width were used in the periphery. Both stimuli
had a 16.74ms refresh interval. Preparations recorded at different
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temperatures (32, 33, and 35°C) were all used, and there was a modest
effect of temperature (i.e., lower temperatures resulted in slightly
slower response time courses). However, the effects reported here were
present at all temperatures (albeit with different magnitudes), and thus
are not attributable to temperature differences.

First, the RF diameter of each cell was determined by fitting a
2D Gaussian to the spatial component of the STA (see above) and calcu-
lating the geometric mean of each SD parameter multiplied by 2.
To summarize the response time course of each cell, the STA time
course of each cell was normalized (L2) and fitted with a difference of
cascades of low-pass filters of the form f ðtÞ ¼ p1ðt=t 1Þne�nðt=t 1�1Þ�
p2ðt=t 2Þne�nðt=t 2�1Þ, where f ðtÞ is the time course, t is the time index,
and n, p1, t 1, p2, and t 2 are free parameters (Chichilnisky and Kalmar,
2002). Then, the time of zero crossing of the time course was estimated
by numerically solving for the root of the fitted function using the
bisection method. Last, the contrast–response relationship for each cell
was estimated from the STA, stimulus, and spike train (Chichilnisky,
2001; Chichilnisky and Kalmar, 2002) and fitted with a smooth func-
tion of the form f ðxÞ ¼ aLðb x1gÞ, where x is the generator signal, L
is the logistic cumulative distribution function, and a; b , and g are
free parameters. The nonlinearity index for each cell was defined as the

logarithm of the ratio of f 9ðx1s Þ and f 9ðx�s Þ, where
f 9ðxÞ is the first derivative of the contrast–response
relation at x (computed numerically using the cen-
tral difference method) and xs is the 1 SD generator
signal value estimated from the distribution of all
generator signal values for that cell during the
recording.

Analysis of spike train autocorrelation functions.
The autocorrelation function of the spike trains from
white noise visual stimulation were computed for
each parasol and midget cell. Briefly, spike times were
binned with 1ms precision and a histogram of pair-
wise spike time differences (range, 1–500ms) was cal-
culated and then the spike counts within each bin
were then converted to a spike rate. To determine dif-
ferences in firing between raphe and peripheral para-
sol cells, the autocorrelation was normalized to unit
sum and the sum of the first 25 elements (1–25ms)
for ON parasol cells and the first 100 elements (1–
100ms) for OFF parasol cells was calculated. These
quantities provide estimates of the probability that,
after the occurrence of a spike, a second spike occurs
within 25 and 100ms, respectively.

Analysis of spike train cross-correlation functions.
The cross-correlation functions of spike trains
obtained during white noise visual stimulation were
computed between all homotypic pairs of ON
parasol and OFF parasol cells. Briefly, spike times
were binned with 1 ms precision and a histogram
of pairwise spike time differences ranging from �1000
to 1000ms (0ms inclusive) was calculated, and then
the spike counts within each bin were converted to a
spike rate. To determine differences in correlated firing
kinetics, nearest-neighbor homotypic pairs of ON par-
asol and OFF parasol cells were identified and an esti-
mate of the baseline spike rate was determined by
calculating the median value of the spike rate from
�1000 to �995ms time offset and from 995 to
1000ms time offset. Next, the cross-correlation was
smoothed with a Gaussian kernel (s = 5ms), the noise
estimate was subtracted, and the resulting signal was
upsampled 10�. To determine the width of the cross-
correlation, the full-width at half-maximum (FWHM)
was computed.

Analysis of receptive field overlap. To determine
the RF overlap between nearest-neighbor homotypic
pairs of ON and OFF parasol cells, an estimate of the
RF of each RGC was generated from its 2D Gaussian
fit and the correlation coefficient was calculated

between the RF of each cell and the RF of its nearest homotypic neighbor.
Analysis of electrical images. Electrical images (EIs) were computed

for each cell by averaging the voltage signal on the array during the time
of each spike (Litke et al., 2004; Petrusca et al., 2007). Features of spike
waveforms obtained from the EI were then used to classify them into
distinct cellular compartments (Litke et al., 2004; Müller et al., 2015). In
general, somatic and dendritic waveforms exhibit biphasic structure,
whereas axonal waveforms exhibit triphasic structure, reflecting bio-
physical differences between compartments. Based on these known dif-
ferences, a heuristic-based automated method (Madugula et al., 2022b)
was applied to label each electrode as either “dendritic,” “somatic,” “axo-
nal,” or “mixed” (a superposition of either somatic and dendritic or so-
matic and axonal waveforms; Madugula et al., 2022b). First, waveforms
with a larger positive than negative phase were labeled as dendritic.
Second, the waveforms at remaining electrodes were identified as so-
matic, mixed, or axonal, based on the ratio of the first positive peak to
the second positive peak. Thresholds for each respective compartment
were determined by two empirically observed inflection points (0.05 and
1.6, respectively) in the pooled distribution of ratios obtained from
many cells and electrodes in peripheral recordings.
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Figure 1. Identification of major RGC types using light response and spiking properties in the raphe and peripheral
retina. A, Example recording from the raphe (eccentricity, 3.5 mm). Clusters of RF diameter and the first principal com-
ponent (PC1) of the STA time course (and occasionally the PC1 of the spike train autocorrelation function; data not
shown) were used to separate and identify known functionally distinct cell types. The RF mosaics, STA time courses,
and spike train autocorrelation functions are shown for each cell type. The ellipses denote the 2s boundary of a 2D
Gaussian fit to the spatial component of the STA. Note: other cell types were also observed, forming different clusters,
but for clarity, data only for the five numerically dominant RGC types—ON parasol, OFF parasol, ON midget, OFF
midget, and small bistratified—are shown. Black hexagonal outline denotes the approximate location of the electrode
array. B, Same as A, but for an example recording in the peripheral retina (8.5 mm temporal equivalent eccentricity).
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To determine spike amplitudes within
each compartment, for each cell, electrodes
recording somatic and axonal signals were
determined and the maximum absolute
value of the peak negative voltage on each
electrode was calculated. Then, the maxi-
mum voltage over somatic and axonal elec-
trodes was computed. Each preparation in
this analysis was acquired using the elec-
trode array with 30mm interelectrode spac-
ing to ensure consistent estimates of spike
amplitudes (see Fig. 4B).

Axon spike conduction velocity was
estimated from the electrical images of ON
and OFF parasol and midget cells, as
described previously (Zaidi et al., 2022;
Madugula et al., 2022a). Briefly, axonal
electrodes for each cell were identified (see
above) and pairwise velocity estimates
were computed by dividing the distance
between each electrode by the time differ-
ence in the negative peak amplitude, for
each pair of axonal electrodes. Then, a ve-
locity estimate was computed by averaging
the estimate from each pair of electrodes
weighted by the product of the peak
amplitudes.

Analysis of electrical features for distin-
guishing cell types. Axon spike conduction
velocities and the spike train autocorrela-
tion function were used together to distin-
guish ON and OFF parasol and ON and
OFF midget cells, to demonstrate the effec-
tiveness of cell type classification based on
intrinsic electrical features alone (Richard
et al., 2016; Zaidi et al., 2022). Each prepa-
ration in this analysis (see Fig. 4C–G) was
acquired using the electrode array with
30mm interelectrode spacing to ensure
consistent estimates of spike conduction
velocities. To quantify the degree of separa-
bility between parasol and midget cell spike
conduction velocities, a 1D support vector
machine was fitted to the spike conduction
velocity–cell type label pairs (L2-penalty
with a linear kernel). The learned optimally
separating hyperplane (a point in the 1D
space) was used to quantify the classifica-
tion accuracy on the training data. The goal
of this analysis was merely to determine the
degree of separability in the data, so cross-
validation with held-out data was not
performed.

Parasol and midget cells were highly
distinguishable using spike conduction
velocity (see Fig. 4D,F). To determine
whether ON and OFF types within the
parasol and midget cell classes could be separated by features of the
autocorrelation function, the autocorrelation function was calculated
(see above), and the resulting spike count vector was normalized by its
L2 norm. Then, principal components analysis (PCA) was performed
on a data matrix composed of either ON and OFF parasol or ON and
OFF midget cell autocorrelation functions, and projections onto the
first two principal components were analyzed (see Fig. 4E,G, insets).
To quantify the degree of separability between ON and OFF (parasol
or midget) spike train autocorrelation functions, a 2D support vector
machine was fitted to the projections onto the first two principal
components along with the corresponding cell type labels (L2 penalty
with a linear kernel). The learned optimally separating hyperplane (a 1D

line in the 2D space) was used to quantify the classification accuracy on
the training data. As above, cross-validation with held-out data was not
tested.

Responses to electrical stimulation. To identify the responses to elec-
trical stimulation of each recorded RGC, a current pulse was delivered to
each electrode on the array, in a random sequence across electrodes,
while recording RGC responses on all electrodes simultaneously (Jepson
et al., 2013; Grosberg et al., 2017). The pulse was triphasic, positive first,
and charge balanced (50 ms/phase; relative ratios, 2:–3:1). The current
amplitude range tested (second phase) was 0.1–4.1 mA (;40 amplitudes,
logarithmic scale), with each amplitude repeated 25 times. In all electri-
cal stimulation experiments, the electrode array with 30mm interelec-
trode spacing was used.

A

B

C D E F

Figure 2. LNP model comparison between raphe and peripheral RGCs. A, Example spatial component of the STA (top), STA time
course (middle), and contrast–response relationship (bottom) for each of the five numerically dominant cell types in a single raphe
preparation. B, Same as A but for a peripheral preparation. C–F, Comparisons of RF diameter (C), RF overlap (D; see Materials and
Methods), time of zero crossing of STA time course (E), and nonlinearity index extracted from the contrast–response relation (F;
see Materials and Methods) between raphe and peripheral ON and OFF parasol and midget cells. Each data point represents the
median value (61 median absolute deviation) from a single preparation.
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An automated spike-sorting method was used to identify RGC
responses to electrical stimulation. First, for each stimulating electrode,
RGCs were identified as candidates for electrically evoked activity if their
EIs (obtained during visual stimulation) exhibited peak amplitudes.0.5
times the SD of the recorded electrical noise on that electrode. Each
RGC was then assigned a set of significant electrodes from its EI record-
ing signals with power greater than two times the power of electrode
noise on each electrode to be used to determine responses. Cells that did
not have at least one electrode with signal power greater than two times
the power of the electrical noise threshold were excluded from analysis
because their signals could not be distinguished from noise. Then, for
each current amplitude, across all RGCs and their respective significant
electrodes, voltage traces recorded in the 3ms period following stimulus
application were grouped using unsupervised clustering. For each pair of
clusters, signals were subtracted, aligned, and averaged to obtain differ-
ences; typically, these difference signals reflect the firing of one or more
cells in one cluster but not the other. These residuals were iteratively
compared with each of the recorded spike waveforms obtained from the
EIs of all RGCs and their respective significant electrodes to identify the
set of RGCs contributing to the responses in each trial for each
amplitude.

This algorithm produces response probabilities as a function of cur-
rent level, for each RGC and stimulating electrode, which is in general
monotonically increasing (Hottowy et al., 2012; Jepson et al., 2013). The
relationship between current amplitude and response probability for
each RGC and stimulating electrode was then fitted by a sigmoidal curve

of the form pðaÞ ¼ 1
e�kða�bÞ, where pðaÞ is the probability of activation, a

is the current amplitude, and k and b are free parameters, using maxi-
mum likelihood estimation. The stimulation threshold (i.e., the current
amplitude required to elicit a response probability of 0.5) was extracted
from the fit (Jepson et al., 2013).

Analysis of activation thresholds. To determine activation the thresh-
old within each compartment, for each cell, electrodes recording somatic
and axonal signals were determined (see above) and the activation
threshold for each electrode was extracted from the sigmoidal fit. Then,
the minimum activation threshold was computed over somatic and axo-
nal electrodes, for each cell.

Identification of axon bundle activation thresholds. Axon bundle
activation thresholds on each electrode were determined by an auto-
mated method based on a previously described algorithm (Tandon et al.,
2021). The algorithm was modified to avoid bias resulting from differen-
ces in array geometries (the present work used a smaller, hexagonal
array, whereas the algorithm described in the study by Tandon et al.,
2021, was developed using a larger, rectangular array) and axon spike
amplitude differences between central and peripheral RGCs (see Fig.
4B). For each preparation, a threshold voltage was first determined to
identify electrodes that recorded significant axonal signals in response to
electrical stimulation, as follows. For each RGC recorded during white
noise visual stimulation, the electrodes recording axonal signals were
identified as described above, and the average axonal spike amplitude
was determined. The median axonal spike amplitude across all recorded
RGCs was computed and was taken to be the threshold voltage. Next, to
determine the axon bundle activation threshold, for each stimulus cur-
rent applied, electrodes were first identified as either recording a signal
or not, depending on whether the recorded signal was above the thresh-
old voltage. Activity on the array was identified as an axon bundle activa-
tion event when the collection of electrodes recording signals formed a
contiguous path reaching at least two nonadjacent edges of the electrode
array. The bundle activation threshold was then defined as the minimum
current level at which an axon bundle activation event was evoked.
Electrodes near the border of the array (outermost two rings of electro-
des) were excluded from analysis because their proximity to the edge
precludes the ability to unambiguously distinguish RGC activity from
axon bundle activity.

Analysis of selectivity. To summarize the selectivity of electrical stimu-
lation, a selectivity metric was computed for each ON and OFF parasol
cell. First, at each stimulating electrode, the response probability at each
current level below axon bundle activation threshold was determined

for the target cell (ptarget) and every other nontarget parasol cell
(pnontarget). Then, the maximum value over current amplitudes of
the quantity (ptarget) (1 – pnontarget) was determined. This was
repeated for each nontarget cell, and the minimum value of (ptarget)
(1 – pnontarget) over nontarget cells was determined at this stimulat-
ing electrode, to provide a worst case estimate of stimulation selec-
tivity for this cell, at this stimulating electrode. This was repeated
for each stimulating electrode, and the maximum value of (ptarget)
(1 – pnontarget) over stimulating electrodes was defined as the selec-
tivity index for the cell.

Inference of visual perception. To estimate the quality of restored
vision that could be achieved with the measured responses to electrical
stimulation, a recently developed stimulation algorithm (Shah et al.,
2019b, 2022) was applied in a data-driven simulation. This method
assumes that the brain reconstructs visual stimuli from RGC spike trains
linearly and optimally, and that responses from individual RGCs that
occur within a single “integration time window” of downstream visual
processing (e.g., tens of milliseconds) are summed linearly to produce
perception.

In this framework, an optimal linear reconstruction filter is associ-
ated with each RGC that quantifies its contribution to the image
reconstruction each time it fires a spike. To compute the optimal
reconstruction filter for each cell, parameters from the LNP model
were used to generate responses to white noise images displayed for
100ms. Specifically, the spike rate was simulated by taking an inner
product between the STA and the stimulus and rectifying the result.
The STAs were scaled such that the average parasol cell spike rate
matched that observed experimentally (approximately three spikes on
average per 100ms flash in the peripheral retina). The stimuli are
denoted by the matrix S 2 Rimages x pixels, and the responses in a matrix
R 2 Rimages x cells. A reconstruction matrix, W 2 Rcells x pixels, was com-
puted using linear least-squares regression, via the normal equations:
W ¼ ðRTRÞ�1RTS. In this framework, the brain reconstructs an esti-
mate of the true stimulus S from the RGC responses R by the linear
operation Ŝ ¼ RW (Warland et al., 1997). A single set of reconstruc-
tion filters was learned for a set of white noise images with varying
pixel sizes (352, 220, 176, 110, 88, and 55mm), using 10,000 training
images each (60,000 images total) to test performance at a range of
spatial frequencies. To produce linear reconstruction filters for natu-
ralistic stimuli (Brackbill et al., 2020), this procedure was repeated
with 60,000 grayscaled naturalistic images from the ImageNet data-
base (Fei-Fei et al., 2009).

To determine the reconstruction that could be achieved with the
responses to electrical stimulation, RGC response probabilities for each
cell–electrode pair, at current levels below the threshold for axon bundle
activation, were assembled in a matrix, D 2 Rcells x ðelectrodes x amplitudesÞ,
where the columns are distinct electrical stimuli and the rows are the
responses of each recorded cell. The electrical stimulus delivered at each
time step was chosen such that the change in the image reconstruction
due to the evoked responses of RGCs would maximally reduce the
expected mean-squared error (MSE) between the reconstructed image
and the target image (Shah et al., 2019b, 2022). The algorithm sequen-
tially chooses stimuli greedily at each time step to minimize the expected
MSE until no further reduction in error occurs. No two stimuli resulting
in a cellular response probability of.0.04 were delivered within 5ms of
each other to avoid the refractory period, and each stimulation pulse was
assumed to be 150 ms in duration, to be consistent with the experimental
data and hardware configuration. This method was applied to a total of
90 white noise images (15 for each pixel size) and 100 naturalistic stimuli
from the ImageNet database (Fei-Fei et al., 2009), all separate from the
images used for training the linear reconstruction filters.

To approximate the optimal reconstruction, or the reconstruction
that could be achieved with perfect control over the activity of each
RGC, a convex solver was used to solve for the optimal non-negative
responses under squared loss between the reconstruction and the true
stimulus. This response vector was then discretized by rounding each
floating point response to the nearest integer value. Then, for each stim-
ulus, the resulting response vector was applied to the reconstruction ma-
trix to produce the approximate optimal reconstruction.
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Convolutional autoencoder. To enhance reconstructions of naturalis-
tic images, a previously described convolutional autoencoder (CAE;
Parthasarathy et al., 2017) was applied to linear reconstructions. The
CAE was developed as follows. First, linear reconstruction filters were
learned for each cell using least-squares regression (see above) on a set of
60,000 training images from ImageNet (Fei-Fei et al., 2009). Then, line-
arly reconstructed images were generated for each image in the training
set using the LNP model generated responses and reconstruction filters.
This linear reconstruction was then passed through an eight-layer convo-
lutional neural network with four downsampling layers and four upsam-
pling layers. The Adam optimizer (Kingma and Ba, 2014) with MSE loss
and a learning rate of 0.0004 was used for model training. A validation set
of 1000 images from ImageNet unseen by both the linear model and the
CAE was used to evaluate model accuracy. Twenty training epochs with a
batch size of 32 were used, after which validation error did not substan-
tially decrease further.

Analysis of image reconstructions. To quantify the quality of the
white noise image reconstructions, two quantities were calculated. First,
the set of all relevant pixels was determined for each preparation, indi-
cating the regions covered by the RFs of all ON and OFF parasol cells.
Then, the normalized MSE (NMSE) was determined by calculating the
squared error between the reconstructed and original images over this
set of relevant pixels and normalizing by the squared L2-norm of the
original image within this set of pixels.

Next, the fraction of reconstructed pixels with polarities opposite
that of the original stimulus was calculated. A subset of the aforemen-
tioned set of relevant pixels was determined, indicating regions covered
by the RFs of ON and OFF parasol cells chosen to be stimulated by the
algorithm. Then, in each reconstructed image, the polarity of each pixel
in the reconstruction was compared with that in the original stimulus
and the fraction of pixels with opposing polarities was calculated. For
the naturalistic image reconstructions, in addition to NMSE, SSIM, a
perceptual similarity metric (Wang et al., 2004; Wu et al., 2022), was
used to quantify image quality in a way that takes image structure into
account. Note that in some of the peripheral preparations (see Fig. 7B),
SSIM was slightly larger for empirical naturalistic image reconstructions
compared with optimal reconstructions after (but not before) applying
the CAE. This is possible because the objective function for optimization
in training the CAE was MSE, rather than SSIM. Separately, unlike in
the raphe, the CAE had little effect on image reconstructions in some pe-
ripheral preparations because their respective linear reconstructions
were coarse, because of the relative low density of RGCs.

Simulated midget cell receptive fields and reconstruction filters. To
determine the extent of midget cell activation and the noise corruption
of reconstructions that would occur when targeting only parasol cells, a
raphe preparation with partial recordings of midget cells was used to
simulate the electrical stimulation and visual responses of complete pop-
ulations of ON and OFF midget cells (see Fig. 8A–C). First, RF centers
were generated from a hexagonal lattice. Ideally, the spacing of the lattice
would be informed by the typical neighbor distance distribution of the
midget cells. However, the midget cell populations from each raphe
preparation were too sparse to reliably estimate the typical neighbor dis-
tance (Fig. 1A; see also Fig. 7A). Since the typical neighbor distance is
proportional to the typical RF diameter (Gauthier et al., 2009b), the ON
(or OFF) midget cell typical neighbor distance was therefore estimated
by computing the median ON (or OFF) parasol typical neighbor dis-
tance and scaling this quantity by the ratio of median ON (or OFF)
midget cell receptive field diameter to the median ON (or OFF) parasol
cell receptive field diameter. This value was used to set the spacing of the
lattice. The lattice locations were then jittered by adding Gaussian noise
to each x and y coordinate independently, with mean 0 and SD equal to
10% of the original lattice spacing. Next, using the partial populations of
ON or OFF midget cells, kernel density estimates were fitted to distribu-
tions of the larger of the two (major) SD parameters from the Gaussian
fit to the RFs, the ratio of the major SD to minor SD parameters, and the
tilt of the receptive fields, across all ON or OFF midget cells. To avoid
extreme values, the kernel density estimate was fitted to the subset of the
data within the 30th and 70th percentile of each distribution. Receptive
fields were then generated by randomly sampling SD parameters and

tilts from the fitted kernel density estimates, resulting in simulated
receptive field mosaics (see Fig. 8B).

Next, STAs were generated using the Gaussian parameters from the
simulated receptive fields. As with the parasol cells above, the STAs were
scaled such that simulated responses to white noise resulted in, on aver-
age, three spikes within the simulated ON and OFF midget cell popula-
tion, consistent with empirical results from parasol and midget cells in
the periphery during flashed white noise visual stimulation (data not
shown). Using least squares, a set of white noise linear reconstruction fil-
ters was learned using 60,000 training images (10,000 from each pixel
size), and a set of naturalistic image reconstruction filters was learned
using 60,000 training images from the ImageNet database (Fei-Fei et al.,
2009).

Simulated midget cell responses to electrical stimulation. To estimate
responses to electrical stimulation, recordings during single-electrode
stimulation of the partial raphe midget cell populations were analyzed
similarly to the parasol cells (see above) by determining response proba-
bility as a function of current amplitude and fitting a sigmoid to the
resulting relationship, for each cell-electrode pair. For each cell–elec-
trode pair, the bivariate relationship between response probability and
soma distance from electrode and current amplitude was determined.
This was repeated for each cell–electrode pair, and the data were pooled
over all cell–electrode pairs. From the pooled data, the cell–electrode dis-
tances and current amplitudes were binned and the average response
probability within each bin was calculated, providing a lookup table for a
response probability, given a distance from the stimulating electrode and
current amplitude (see Fig. 8C).

Estimation of midget cell noise. The electrical stimuli provided to the
parasol cells for the white noise reconstruction simulation (see Fig. 6A,
B) were then used to generate expected responses for each simulated
midget cell. Specifically, for each electrical stimulus and cell, the distance
from the electrode and the current amplitude were used to determine
the response probability (see Fig. 8C). Over the entire stimulation
sequence, the expected response for each midget cell would therefore be
the sum of the probabilities from each stimulus. The resulting expected
response vector was then passed as input to the linear decoder, yielding
the midget cell reconstruction. Finally, this resulting reconstruction was
summed with the parasol reconstruction to obtain an estimate of the
expected perception when midget cells are ignored during parasol cell
stimulation (see Fig. 8D).

Early stopping criterion. To reduce the magnitude of midget cell acti-
vation and consequent noise added to white noise reconstructions, an
early stopping procedure was developed based on an estimate of the
midget cell noise. In its original form, the stimulation algorithm used
here (Shah et al., 2019b, 2022) continues to provide electrical stimuli
greedily until no further reduction in expected MSE between the target
stimulus and the expected parasol cell reconstruction can be achieved. In
the modified procedure, the MSE between the target image and the
reconstruction with the midget noise added is calculated at each electri-
cal stimulus, and the “early stopping point” is defined as the stimulation
number at which the global minimum in MSE is achieved. The exact
optimal early stopping point is unknown, and its estimation is directly
affected by the estimate of the midget cell population, which is based on
the true population, but is simulated and stochastic. To minimize poten-
tial bias in the early stopping point, 10 distinct midget cell populations
were generated as above using 10 different seeds for the receptive field
and electrical stimulation response generation. Then, the early stopping
point for each midget cell population was determined for each of the 90
white noise stimuli, and the median stopping point across the midget
cell populations was calculated for each stimulus. Then, a distinct midget
cell population was used for evaluation (see Fig. 8B–D,F) using the early
stopping points determined from the separate “training” midget cell
populations.

Analysis of noise contributed by midget cells. To quantify the extent
of image corruption by the activation of midget cells, fractional error
was calculated as errorparasol1midget/errorparasol, where errorparasol1midget

is the error of the reconstruction with midget cell noise added to the par-
asol cell signals and errorparasol is the error of the reconstruction from
parasol cells only. For white noise images, error was either the root MSE
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(RMSE) or the fraction of incorrect pixels. For naturalistic images, error
was either RMSE or 1 - SSIM.

Experimental design and statistical analyses. In nearly all statistical
tests, a two-tailed Mann–Whitney U test was performed using the statis-
tics package in SciPy (Virtanen et al., 2020). In the statistical test compar-
ing the fraction of RGCs that could be activated with a probability of 0.5
without activating axon bundles (see Fig. 5B), a custom resampling proce-
dure was implemented. All p values� 1� 10�10 are reported as exact val-
ues; all others are reported as p, 1� 10�10.

Results
To understand the quality of vision restoration that could be
achieved with an electrical implant in the central retina, we per-
formed recording and stimulation ex vivo in the macaque mon-
key retina with large-scale multielectrode arrays and determined
how accurately visual stimuli can be represented in electrically
evoked RGC activity.

Identification of the major RGC types in the central retina
To determine the functional organization of major RGC types in
the central retina, light responses were obtained from regions of
macaque retina 1–4.5 mm from the fovea along the temporal
horizontal meridian, in the raphe region (Vrabec, 1966), where
few multielectrode recordings have been performed (Grosberg et
al., 2017). Recordings from the more commonly studied periph-
eral retina (temporal equivalent eccentricity, 5–12 mm) were also
obtained for comparison. The preparation was visually stimu-
lated with white noise while recording spikes from hundreds of
RGCs simultaneously, using an electrode array with 512 electro-
des and 30 or 60mm pitch (Litke et al., 2004). The spike-triggered
average (STA) stimulus was computed for each cell, summariz-
ing the spatial, temporal, and chromatic properties of the light
response (Chichilnisky, 2001; Chichilnisky and Kalmar, 2002).
Cell types were then classified by clustering based on the spatial
RF obtained from the STA, the time course of the STA (Fig. 1),
and the spike train autocorrelation function (Field et al., 2007;
Rhoades et al., 2019).

This approach revealed the five numerically dominant primate
RGC types: ON parasol, OFF parasol, ON midget, OFF
midget, and small bistratified (Fig. 1), which are readily
identified by their light response characteristics and densities
relative to other types (Dacey, 2004; Rhoades et al., 2019).
Recordings from ON and OFF parasol cells were consistently
nearly complete, as evidenced by the mosaic organization of
their RFs (Fig. 1). Recordings of ON and OFF midget cells
and small bistratified cells were less complete (Fig. 1), partic-
ularly in the raphe region (Fig. 1A). As expected, the spatial
densities of these five cell types in the raphe (Fig. 1A) were
higher than those of the corresponding cell types in the pe-
ripheral retina (Fig. 1B).

Neural code of the major RGC types in the central retina
Visual signals in RGCs are often modeled using a simple
cascade model, consisting of a spatiotemporal linear filter, a
nonlinearity, and Poisson spiking statistics (Rodieck, 1965;
Meister and Berry, 1999; Chichilnisky, 2001; Pillow et al.,
2008). To compare visual processing in the raphe and periph-
ery, this LNP model was fitted to RGC responses to white
noise (Chichilnisky, 2001; Chichilnisky and Kalmar, 2002),
and the spatial RF, response time course, and contrast–
response relationship from the fitted models were examined
(Fig. 2). The spatial RFs of RGCs in the raphe were on average
smaller than those of their peripheral counterparts for both

parasol (Fig. 2C, Mann–Whitney U test: ON and OFF, p, 1 -
� 10�10) and midget cells (Fig. 2C; Mann–Whitney U test:
ON and OFF, p, 1� 10�10), as expected from the smaller
dendritic fields and higher density in the central retina
(Watanabe and Rodieck, 1989; Dacey and Petersen, 1992). In
addition, the RF overlap (see Materials and Methods) of near-
est-neighbor ON and OFF parasol cells was significantly
higher in the raphe (Fig. 2D; Mann–Whitney U test: ON,
p = 0.002; OFF, p, 1� 10�10). The response time course was
slower in central than peripheral parasol cells (Fig. 2E; Sinha
et al., 2017), Mann–Whitney U test: ON and OFF, p, 1�
10�10) with a more pronounced ON–OFF asymmetry (Chichilnisky
and Kalmar, 2002). The time courses of central ON midget cells
were significantly slower than those of peripheral ON midget
cells (Fig. 2E; Mann–Whitney U test, p, 1� 10�10). However,
no significant difference between central and peripheral OFF
midget cell time courses was observed (Mann–Whitney U test,
p= 0.35), perhaps because of the small number of recorded OFF
midget cells in the raphe. The contrast–response relation-
ship was more linear (see Materials and Methods) in raphe
parasol cells (Fig. 2F; Mann–Whitney U test: ON and OFF,
p = , 1� 10�10) and midget cells (Mann–Whitney U test:
ON, p = 7.05� 10�10; OFF, p, 1� 10�10), with a weaker
ON–OFF asymmetry (Chichilnisky and Kalmar, 2002).

To test whether the spike timing structure of central versus
peripheral RGCs differs, the autocorrelation function of the spike
train obtained during white noise stimulation was examined.
Peripheral ON parasol cells tended to have an early peak in the
autocorrelation at;2–5ms, indicative of frequent doublet firing
(Fig. 3A, left), compared with the more gradual increase over
tens of milliseconds for raphe ON parasol cells (Fig. 3A, left).
Compared with peripheral cells, the normalized early spike count
(1–25ms; see Materials and Methods) was significantly lower in
raphe ON parasol cells (Fig. 3B, left; Mann–Whitney U test,
p, 1� 10�10). Raphe and peripheral OFF parasol cell auto-
correlations exhibited the same general shape, but in the
raphe the autocorrelations had a significantly higher spike
rate within the range of 1–100ms (Fig. 3A, right), which
was captured by the higher normalized spike count (Fig. 3B,
right; Mann–Whitney U test, p, 1� 10�10; see Materials and
Methods). These findings reveal potential differences in intrinsic
excitability between central and peripheral parasol cells or their
synaptic inputs (see Discussion).

To test whether concerted firing between neighboring RGCs
differs in the central versus peripheral retina, cross-correlation
functions of spike trains obtained during white noise stimulation
were computed between homotypic pairs of nearest-neighbor
ON and OFF parasol cells (Mastronarde, 1983; Shlens et al.,
2006, 2009; Pillow et al., 2008; Trong and Rieke, 2008). Similar to
the peripheral retina, raphe ON and OFF parasol cell cross-
correlations exhibited a symmetric, smoothly decaying form
peaked at the origin (Fig. 3C). However, parasol cell cross-
correlations in the raphe were significantly wider (see Materials
and Methods) than those in the periphery, particularly for OFF
parasol cells (Fig. 3D; Mann–Whitney U test: ON and OFF,
p, 1� 10�10), likely reflecting slower response time courses (Fig.
2E; see Discussion).

In summary, the neural code of major RGCs in the raphe,
including light response properties (Fig. 2), spiking statistics
(Fig. 3A,B), and concerted firing of neighboring RGCs (Fig. 3C,
D), was largely similar to that in the peripheral retina, with some
systematic differences in RF density, kinetics, nonlinearity, and
firing statistics.
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Distinguishing major RGC types using intrinsic electrical
features
Reproduction of the neural code with electrical stimulation
requires identifying cell types in the absence of light responses
(which are degraded or absent during degeneration) as well as
measuring the sensitivity of each cell to electrical stimulation (Li
et al., 2015; Richard et al., 2016; Shah et al., 2019a; Zaidi et al.,
2022; Madugula et al., 2022a, b). To probe these properties, elec-
trical images, or the average spatiotemporal electrical footprint
of the spike of a cell (Litke et al., 2004; Petrusca et al., 2007), was
examined for the recorded RGCs. Electrical images of simultane-
ously recorded RGCs in the raphe revealed axons that projected
in one of two directions ;90° apart (Fig. 4A, left), consistent
with the unique anatomic structure of this region (Vrabec, 1966;
Grosberg et al., 2017), whereas in the periphery, the axons of
RGCs all projected in the same direction toward the optic disk
(Fig. 4A, right). Spike amplitudes were significantly smaller in
raphe compared with peripheral parasol cells in both somatic
(Mann–Whitney U test, p, 1� 10�10) and axonal (Mann–
Whitney U test, p, 1� 10�10) cellular compartments (Fig.
4B), likely reflecting the smaller cell bodies and axon diame-
ters in the raphe. Finally, the axon spike conduction velocity
(see Materials and Methods) was significantly lower in raphe
compared with peripheral parasol cells (Fig. 4C; Mann–
Whitney U test, p, 1� 10�10).

Raphe RGCs exhibited electrical image features and spike
train statistics that can support cell type identification. Parasol
cells exhibited significantly higher conduction velocities than
midget cells (Fig. 4D) and could be distinguished reliably on this
basis (94% classification accuracy; see Materials and Methods).
Next, within the parasol and midget cell classes, principal compo-
nents analysis (PCA) on the spike train autocorrelation functions
(Fig. 4E) revealed two clearly defined clusters corresponding to
the ON and OFF types (Fig. 4E, insets; 100% classification accu-
racy for ON vs OFF parasol cells; 94% classification accuracy for
ON vs OFF midget cells). The degree of cell type separability
using these features was comparable to that in the periph-
eral retina (Fig. 4F,G; 97% classification accuracy for

parasol vs midget cells; 98% classification accuracy for ON
vs OFF parasol cells; and 100% classification accuracy for
ON vs OFF midget cells).

Selectivity of electrical stimulation of central parasol cells
Because RGCs of different types are intermixed on the retinal
surface, accurately reproducing the cell type-specific patterns of
activity in the retinal neural code (Roska and Meister, 2013)
would typically require stimulation with single-cell resolution.
To test whether this is possible in the raphe, spikes were identi-
fied in recorded traces immediately after application of a brief
current pulse (triphasic, 0.15ms) at each electrode individually,
over a range of current levels (0.1-4.1mA), repeated 25 times (see
Materials and Methods), using the 512-electrode array with
30mm pitch. These small currents typically directly evoke a single
spike in one or more RGCs near the electrode (Sekirnjak et al,
2006, 2008; Jepson et al., 2013). For each recorded cell, the evoked
spike probability was calculated at each current level, and a sig-
moid fitted to response probability as a function of applied current
was used to estimate the activation threshold, i.e., the current that
produced a spike with probability 0.5. For each electrode, the axon
bundle activation threshold was also examined, using an algorithm
that identified bi-directional propagation of electrical activity to
the edges of the array, a distinctive signature of axon activation
(Grosberg et al., 2017; Tandon et al., 2021; see Materials and
Methods). Activation thresholds for individual parasol cells were
similar in the raphe and peripheral retina in both their somatic
and axonal compartments (Fig. 5A). In addition, a signifi-
cantly larger fraction of raphe RGCs (78%) could be activated
with probability 0.5 without activating axon bundles compared
with the peripheral retina (50%, resampled p, 1� 10�10;
Fig. 5B), consistent with a previous finding with more limited
data (Grosberg et al., 2017).

To summarize how precisely individual RGCs can be acti-
vated, a selectivity index was computed for each parasol cell rela-
tive to other parasol cells: ptarget(1 – pnontarget), where ptarget is the
probability of firing of the target parasol cell, and pnontarget is the
probability of firing of the most sensitive nontarget parasol cell,
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Figure 3. Spiking statistics and correlated firing in ON and OFF parasol cells in the raphe and the periphery. A, Mean (61 SD) spike train autocorrelation functions for ON (left) and OFF
(right) parasol cells in one peripheral and one raphe preparation. B, Probability of spike within 1–25ms for ON parasol cell autocorrelations (left) and 1–100 ms for OFF parasol cell autocorrela-
tions (see Materials and Methods). Each data point represents the median (11 median absolute deviation) value in a single preparation. C, Mean (61 SD) nearest homotypic neighbor spike
train cross-correlation functions for ON (left) and OFF (right) parasol cells in one peripheral and one raphe preparation. D, FWHM (see Materials and Methods) of nearest homotypic neighbor
cross-correlation functions. Each data point represents the median (61 median absolute deviation) value in a single preparation. In each box plot, the box denotes the interquartile range, the
dashed gray line denotes the median value of all points in the plot, and the bottom and top whiskers denote the first quartile minus 1.5 times the interquartile range and the third quartile
plus 1.5 times the interquartile range, respectively.
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across stimulating electrodes and current levels (see Materials
and Methods). An index of 1 indicates perfect selectivity for the
target parasol cell over all nontarget parasol cells that could be
stimulated by the same electrode used for the target parasol cell.
Across eight raphe preparations (Fig. 5C, top two rows), the av-
erage selectivity index of all ON and OFF parasol cells within the
preparation ranged from 0.59 to 0.79 (Fig. 5D, top two panels).
By comparison, the average selectivity in the peripheral retina
(Fig. 5D, bottom two rows) was significantly higher (Mann–
Whitney U test; ON and OFF parasol cells, p, 1� 10�10), rang-
ing from 0.84 to 1.0 across preparations (Fig. 5D, bottom two
panels). Greater selectivity in the periphery is expected from the
lower RGC density, and is consistent with previous findings
(Grosberg et al., 2017). In summary, activation of a single parasol
cell without activating other recorded parasol cells is often possi-
ble in the central retina, but is less frequently achieved than in
the peripheral retina.

Inference of high-fidelity visual signal reproduction in the
central retina
To determine whether electrical stimulation in the raphe can
reproduce high-fidelity visual signals, the ability to reconstruct a
visual image from RGC signals was evaluated (Shah et al., 2019b,
2022) in a simulation based on recorded electrically evoked
responses. First, to perform efficient image reconstruction, LNP
model responses to flashed white noise images were generated,
and linear reconstruction filters for each RGC were computed
using least-squares regression between the images and model
responses (see Materials and Methods; Warland et al., 1997;
Brackbill et al., 2020). Then, using the measured electrically
evoked responses of each cell at each stimulating electrode and
each current amplitude below axon bundle activation threshold
(Fig. 5), a spatiotemporal dithering strategy was used to select a
pattern of electrical stimulation that would maximally decrease
the expected mean-squared error (MSE) between the target
image and the image reconstructed from the electrically evoked
responses (Shah et al., 2019b, 2022). The simulation produces
stochastic RGC responses, and therefore, stochastic reconstruc-
tions. In this analysis, the expected reconstruction was examined
(see Discussion).

Application of this method revealed substantial differences in
reconstruction performance between the raphe and peripheral
retina. Compared with the peripheral retina, the optimal recon-
structions (i.e., the reconstructions that could in principle be
achieved with perfect control over RGC activation) and the empir-
ical reconstructions (i.e., the reconstructions that could be
achieved, on average, with measured activation probabilities)
in the raphe were both systematically higher quality than those
in the peripheral retina, with sharper edges and more distinct
regions that more closely matched the structure of the original
image (Fig. 6A). This was evident over a range of pixel sizes
(Fig. 6B). Although image reconstruction was less faithful at
smaller pixel sizes in both the central and peripheral retina
(Fig. 6B), image quality in the central retina was still higher at
each pixel size examined.

The reconstructed image quality was measured by computing
the normalized MSE (NMSE) (see Materials andMethods) between
the reconstruction and original image, and the fraction of pixels
with incorrect polarities in the reconstruction. In the central retina,
both NMSE and the fraction of incorrect pixels were significantly
lower compared with the peripheral retina, for each pixel size exam-
ined (Fig. 6C; Mann–Whitney U test; NMSE and fraction incorrect,
pooled across all pixel sizes, p, 1� 10�10). However, the difference

in reconstruction quality between the optimal and empirical recon-
structions was significantly larger in the raphe (Mann–
Whitney U test; pooled across all pixel sizes, p, 1� 10�10).
These findings suggest that despite the fact that stimulation is
less selective in the central retina (Fig. 5C,D), it is still suffi-
cient to produce higher quality visual signals than in the pe-
ripheral retina.

Reconstruction of naturalistic images
The statistics of images in the natural visual world are very differ-
ent from those of the white noise images tested above. To test how
effectively the perception of naturalistic stimuli could be restored
in the central retina using electrical stimulation, naturalistic images
were reconstructed from evoked activity using a more sophisti-
cated nonlinear reconstruction approach, as follows. Responses to
flashed naturalistic images from the ImageNet database (Fei-Fei
et al., 2009) were generated using the LNP model, and were
used to compute optimal linear reconstruction filters. A con-
volutional autoencoder (CAE) was then trained to denoise
the linear reconstructions generated from the filters (linear-
CAE; see Materials and Methods; Parthasarathy et al., 2017).
Using the same stimulation algorithm and procedure as
above (Fig. 6; Shah et al., 2019b, 2022), expected reconstruc-
tions were then obtained from simulated electrically evoked
responses, based on measured single-electrode stimulation
data (Fig. 5), and were enhanced using the CAE. Several
aspects of the naturalistic images (distinct shapes, textures,
and high spatial frequency content) were more accurately
captured by the raphe reconstructions than by the peripheral
retina reconstructions (Fig. 7A), indicating that important
features of naturalistic images can be restored in the raphe. The
image quality (measured by NMSE and by SSIM, a perceptual sim-
ilarity metric; Wang et al., 2004) was significantly higher in raphe
preparations (Fig. 7B; Mann–Whitney U test; NMSE and SSIM,
p, 1� 10�10). In addition, similar to the white noise images (Fig.
6C), the error gap between the optimal and empirical naturalistic
image reconstructions was significantly larger in raphe compared
with peripheral preparations (Mann–Whitney U test; NMSE and
SSIM, p, 1� 10�10), highlighting the need for further improve-
ment to the specificity of electrical stimulation in the central ret-
ina (see Discussion).

Estimation of midget cell activation
Although the majority of midget cells were not reliably identified
in raphe recordings (Fig. 1A), electrical stimulation targeting
parasol cells probably also activates many midget cells, because
their activation thresholds are similar (Jepson et al., 2013;
Madugula et al., 2022a). This inadvertent activation could intro-
duce noise into any aspect of visual perception that is based on
both parasol and midget cell signals. To estimate the extent of
noise corruption, a raphe recording with partially complete ON
and OFF midget cell populations (Fig. 8A) was used to simulate
complete populations of ON and OFF midget cells, including
their light and electrical stimulation response properties (Fig. 8B,
C; see Materials and Methods). Then, using these properties (Fig.
8B,C) and the electrical stimulus sequence targeting parasol cells
(Figs. 6, 7), the expected midget cell reconstruction was deter-
mined (see Materials and Methods) and summed with the
expected parasol cell reconstruction to estimate the average
performance of the reconstruction with added noise, for both
white noise and naturalistic images. For the naturalistic image
reconstructions, the same trained CAE used above (Fig. 7) was
applied to denoise the reconstructions. In this simulation, the

Gogliettino et al. · Visual Reconstruction in the Central Retina J. Neurosci., June 21, 2023 • 43(25):4625–4641 • 4633



recorded responses to electrical stim-
ulation of midget cells were not used
in optimizing electrical stimulation—
a worst-case analysis.

Not surprisingly, inadvertent activa-
tion of midget cells added significant
high-spatial frequency noise to both
white noise and naturalistic image
reconstructions (Fig. 8D–G). For white
noise image reconstructions, to reduce
the magnitude of the midget cell noise,
a modification of the stimulation algo-
rithm was implemented. Normally, the
algorithm chooses electrical stimuli
until no further reduction in expected
MSE between the parasol cell recon-
struction and the target image is possible
(Shah et al., 2019b, 2022). However
implementation of an early stopping cri-
terion that takes into account an esti-
mate of the midget cell noise (see
Materials and Methods) resulted in a
smaller number of electrical stimuli,
strongly reducing the midget cell noise
contribution (Fig. 8D,F), and thus
increasing the quality of the final recon-
structed image, although a significant
noise corruption from midget cell acti-
vation still remained (6–56% increase in
RMSE; 14–240% increase in fraction
incorrect pixels; Fig. 8F). For naturalistic
image reconstruction, application of
the CAE to the linear parasol and
midget cell reconstruction removed
much of the high-spatial frequency
noise contributed by midget cells,
leaving only a small amount of noise
in the final image (4% increase in
RMSE and 1 - SSIM, Fig. 8E,G).

The fact that the parasol signal is still
recognizable in the reconstructions (Fig.
8D,E) suggests that inadvertent midget
cell activation, while significant, may not
be a major problem, particularly when
algorithmic modifications such as early
stopping are implemented or when nat-
ural image priors are taken into account,
as with the CAE (see Discussion). This
analysis was repeated with a second
raphe recording (data not shown),
showing similar results, as follows:
1–13% increase in RMSE, 21–275%
increase in the fraction of incorrect
pixels for white noise images; and,1%
increase in RMSE and 1 - SSIM for nat-
uralistic images.

Discussion
We examined the quality of visual signals
that can be restored in the raphe region of the central macaque ret-
ina with epiretinal electrical stimulation. The functional organiza-
tion and light response properties of major RGC types in the raphe

were similar to those of the peripheral retina (Figs. 1-3), with some
notable differences, and the four numerically dominant cell types
could be distinguished using their recorded electrical features alone
(Fig. 4D). Despite less precise control over electrical activation in
the raphe compared with the peripheral retina (Fig. 5C,D), the

soma axon

raphe periphery
A

B C

D

F

0 20 40 60 80 100
0.00

0.05

0.10

0.15

0.20

Δt (ms)

PC1

P
C

2

0.50 0.75 1.00 1.25 1.50 1.75
0.0

0.1

0.2

0.3

spike conduction velocity (m/s)

re
la

tiv
e 

fr
eq

ue
nc

y

0.50 0.75 1.00 1.25 1.50 1.75
spike conduction velocity (m/s)

0.0

0.1

0.2

0.3

re
la

tiv
e 

fr
eq

ue
nc

y

ON parasol

OFF parasol

ON midget

OFF midget

0 20 40 60 80 100
0.0

0.1

0.2

Δt (ms)

sp
ik

e 
co

un
ts

 (
no

rm
.)

0 20 40 60 80 100
0.0

0.1

0.2

0.3

Δt (ms)

PC1

P
C

2

PC1

P
C

2

60 μm

parasolE

0 20 40 60 80 100
Δt (ms)

0.0

0.2

0.4
sp

ik
e 

co
un

ts
 (

no
rm

.)

0 20 40 60 80 10

PC1

P
C

2

midgetraphe

periphery parasol midgetG

sp
ik

e 
am

pl
itu

de
 (

μ
V

)

raphe periphery

0.8

1.0

1.2

1.4

1.6

sp
ik

e 
co

nd
uc

tio
n 

ve
lo

ci
ty

 (
m

/s
)

sp
ik

e 
co

un
ts

 (
no

rm
.)

sp
ik

e 
co

un
ts

 (
no

rm
.)

sp
ik

e 
am

pl
itu

de
 (

μ
V

)

raphe periphery

100

200

300

400

raphe periphery
20

40

60

80

Figure 4. Electrical images and distinguishing cell types from intrinsic spiking and electrical features in the raphe. A, Example
electrical images of four simultaneously recorded RGCs in a raphe and peripheral recording. The black points denote the locations
of individual electrodes on the multielectrode array. The collection of dots of a single color denotes the electrical image of a single
cell, with the size of each dot being proportional to the peak recorded voltage on that electrode during the spike of that cell. B,
Maximum recorded spike amplitudes within somatic and axonal compartments within the electrical image of each parasol cell.
Each data point denotes the median (61 median absolute deviation) value in a single preparation. C, Spike conduction velocities
of parasol cells obtained from axonal electrodes on the electrical image (see Materials and Methods). Each data point denotes
the median (61 median absolute deviation) value in a single preparation. In each box plot, the box denotes the interquartile
range, the dashed gray line denotes the median value of all points in the plot, and the bottom and top whiskers denote the first
quartile minus 1.5 times the interquartile range and the third quartile plus 1.5 times the interquartile range, respectively. D,
Axon spike conduction velocities of ON parasol, OFF parasol, ON midget, and OFF midget cells in a single raphe preparation. For
visual clarity, fitted kernel density estimates evaluated on the range of the spike conduction velocity histogram of each cell type
are plotted. E, Spike train autocorrelation functions for ON and OFF parasol (left) and ON and OFF midget cells (right) in a single
raphe preparation. Projections onto the first two principal components from PCA of the ON and OFF parasol (left) and ON and
OFF midget cell (right) autocorrelation functions are shown as insets. Axon spike conduction velocity (D) and spike train autocor-
relation functions (E) can together distinguish four of the five numerically dominant cell types. Note that a different raphe prepa-
ration was used to show separability using the spike train autocorrelation function. F, Same as D but in the peripheral retina. G.
Same as E but in the peripheral retina. A single peripheral preparation was used to show separability with axon spike conduction
velocity and spike train autocorrelation function.
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unwanted activation of axons was lower in the raphe (Fig. 5B), and
the estimated quality of restored visual signals in parasol cells was
higher (Fig. 6A), over a range of spatial scales (Fig. 6B), and with
naturalistic images (Fig. 7). These findings support the viability of
targeting the raphe area for vision restoration with a high-fidelity
epiretinal implant.

Image reconstruction with parasol cell signals in the raphe
The differences in visual reconstruction from electrically evoked
signals in the raphe and periphery could not have been easily
predicted on first principles alone, and thus required direct mea-
surement. In particular, despite reduced stimulation selectivity
(Fig. 5C,D), the fidelity of visual reconstruction was higher in
the raphe (Figs. 6, 7), because of the greater reconstruction re-
solution afforded by more cells per unit area and because of the
reduced activation of axon bundles. However, the difference in

performance between the optimal and empirical reconstruc-
tions was systematically larger in raphe preparations for white
noise (Fig. 6) and naturalistic (Fig. 7) images, reflecting the
reduced selectivity of stimulation relative to the peripheral ret-
ina (Fig. 5C,D).

Most raphe preparations exhibited higher-quality recon-
structions with naturalistic images compared with peripheral
preparations (Fig. 7). However, one raphe preparation in par-
ticular exhibited substantially lower performance (measured by
NMSE) compared with other preparations (Fig. 7B), approach-
ing the quality of some of the peripheral preparations. This is
likely because of the poor selectivity of stimulation in this prep-
aration (Fig. 5C, rightmost raphe preparation). Multielectrode
stimulation strategies (Townshend and White, 1987; Sweeney
et al., 1990; Bonham and Litvak, 2008; Martens et al., 2011) can
be used to augment single-electrode stimulation, which may
potentially enhance reconstruction performance. These methods

A B

C D

Figure 5. Electrical stimulation in the raphe and peripheral retina. A, Minimum somatic and axonal activation thresholds in ON parasol and OFF parasol cells. Each data point denotes the
median (61 median absolute deviation) value in a single preparation. B, Minimum activation threshold versus bundle activation threshold at each electrode. Each data point denotes the me-
dian (61 median absolute deviation) value in a single preparation. C, ON parasol cell and OFF parasol cell RFs for eight raphe (top two rows) and eight peripheral retina (bottom two rows)
preparations. The RF of each cell is colored according to its selectivity index (see Materials and Methods). RFs colored gray were excluded from electrical stimulation analysis because their
evoked signals could not be distinguished from noise (see Materials and Methods). D, Average selectivity index values within each cell type and preparation.
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have been applied previously in the peripheral retina for mini-
mizing inadvertent neighboring RGC activation (Jepson et al.,
2014a; Fan et al., 2019) as well as distant RGC activation
(Nanduri, 2011) by the active avoidance of axonal stimulation
(Vilkhu et al., 2021), using biophysical models of cellular activa-
tion as a theoretical basis (Rattay, 1986, 1999; Rattay and Resatz,
2004).

Contribution of midget cell signals
Although analysis of ON and OFF parasol cells (Figs. 5–7) pro-
vides an indication of the visual image that can be encoded by
electrical stimulation, it is not a complete representation of the
visual neural code. Parasol cells constitute ;15% of the overall
RGC input to the brain (Dacey, 2004) and a lower percentage in
the central retina (Marshak, 2009). Midget cells (;50%) mediate
high-acuity vision in primates, and color vision is thought to be
mediated primarily by midget and small bistratified (;5%) cells
(Dacey, 2004; Field et al., 2007, 2010). Most midget and small
bistratified cell spikes were not reliably identified in the raphe
recordings (Fig. 1A), so their exact impact on reconstruction
could not be measured. Instead, a data-driven simulation of
inadvertently evoked midget cell responses to electrical stimulation
when targeting the parasol cells was used to reveal a high-spatial
frequency noise component that increases the error (Fig. 8D–G).
However, particularly when an early stopping criterion was imple-
mented for white noise images (Fig. 8D,F) or when natural image
priors were imposed for naturalistic images (Fig. 8E,G), much of
the reconstruction from parasol cell signals was still recognizable,
suggesting that unwanted midget cell activation may not be a
severe problem. Nevertheless, improved spike sorting for reliably

identifying spikes from all cell types, particularly the very numer-
ous midget cells, is an important direction for future work.

The density of peripheral midget cells is comparable to that of
raphe parasol cells (Fig. 1). Thus, with respect to spatial resolu-
tion, it may be that targeting central parasol cells provides
a visual signal of comparable resolution to that from targeting
peripheral midget cells. However, there are at least two other
considerations. First, it may be that targeting the central ret-
ina, which a normally sighted individual uses to scan the scene
with eye movements, is intrinsically important for perception.
Second, midget cells could potentially subserve a different kind
of perceptual experience than parasol cells. Although it is not
presently clear whether peripheral midget or central parasol cells
are more useful for vision restoration, future in vivo work in pri-
mates could be used to target the raphe parasol and peripheral
midget cells separately and independently to fully understand
their respective contributions to perception.

Light response properties of raphe RGCs
Relatively little is known about differences in light response
properties and intrinsic electrical properties between central
and peripheral RGCs. Previous in vivo studies in the macaque
retina have examined several chromatic, spatial, and temporal
response properties in parafoveal and central RGCs (Lee et al.,
1989a, b, 1990; Passaglia et al., 2002). In particular, differences
in responses to stimuli of varying temporal frequencies were
reported between central and peripheral RGCs (Lee et al., 1990;
Solomon et al., 2002). A more recent ex vivo study of macaque
RGCs (Sinha et al., 2017) directly compared differences in
response kinetics between central and peripheral RGCs and

Figure 6. Inference of visual perception in the raphe and peripheral retina with white noise. A, Example linear reconstruction based on evoked RGC responses in individual raphe and periph-
eral preparations for a single white noise image (pixel size, 110mm). Each row is a distinct retinal preparation for each retinal location (two preparations per row). The first column shows the
original image; the second column shows the optimal reconstruction (i.e., that achievable with perfect control over the firing of each RGC); the third column shows the reconstruction that is
achievable by optimized stimulation based on recorded evoked responses (Shah et al., 2019b, 2022; see Materials and Methods); the fourth column shows the pixels that were incorrectly recon-
structed relative to the original image (red, incorrect; blue, correct). Columns 5–7 show the same as columns 2–4, but in the peripheral retina. B, Reconstruction of white noise images with dif-
ferent pixel sizes (352, 220, 176, 110, and 55mm) in an example raphe and peripheral preparation. Each row is for a distinct white noise image. Columns show the same as in A. C, NMSE (the
squared error normalized by L2-norm of target image squared) in the optimal reconstructions (left), the empirical reconstructions (middle), and the fraction of incorrectly reconstructed pixels in
the empirical reconstructions (right). Each data point denotes the average of 15 images at each pixel size examined for a single preparation.
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reported that central cells have slower light responses, likely
as a result of differences in cone photoreceptor kinetics. While
the overall functional organization and light response proper-
ties appear to be similar in the central and peripheral retina
(Figs. 1, 2), the differences observed here build on prior work
and reveal ON–OFF asymmetries—namely, slower response
kinetics and a more nonlinear contrast response in OFF versus
ON cells—as well as how they compare to the asymmetries in
the peripheral retina (Fig. 2E,F; Chichilnisky and Kalmar,
2002).

Spiking and electrical properties of raphe RGCs
The precise origin of differences in doublet firing tendency in
ON parasol cells and spike rate in OFF parasol cells between

raphe and peripheral RGCs (Fig. 3A,B) is uncer-
tain. Although it is possible that central versus
peripheral parasol cells have differences in
intrinsic excitability, differences in response
kinetics and contrast response (Fig. 2E,F) could
produce differences in spiking statistics during
visual stimulation. Future work could more
thoroughly probe the origin by analyzing sponta-
neous activity. Differences in the width of cross-
correlations (Fig. 3C,D) between homotypic near-
est-neighbor central and peripheral parasol cells
are likely because of response time course differen-
ces (Fig. 2E): there was a positive correlation
between the width of cross-correlations and the
time of zero crossing in the time course across
preparations (data not shown). Future work could
analyze spontaneous recordings or responses to
repeated white noise stimuli (Trong and Rieke,
2008; Greschner et al., 2011) to better understand
circuit-level versus stimulus-driven components
of correlated firing.

Spike amplitude differences between raphe
and peripheral parasol cells (Fig. 4B) may
reflect differences in the sizes of both somatic
and axonal compartments (Bestel et al., 2017),
which increase with eccentricity (Rodieck et al.,
1985; Sanchez et al., 1986; Watanabe and
Rodieck, 1989; Walsh et al., 2000; FitzGibbon
and Taylor, 2012). The smaller axon diameters
also may contribute to the slower axon spike
conduction velocities in raphe parasol cells (Fig.
4C; Hodgkin, 1954), as has been demonstrated
previously in the primate and cat retina (Hsiao
et al., 1984; Fukuda et al., 1988).

Spiking statistics and electrical properties were
sufficient to distinguish ON and OFF parasol and
midget cells in the raphe (Fig. 4D,E), as has been
demonstrated previously in the peripheral retina
(Fig. 4F,G; Richard et al., 2016; Madugula et al.,
2022a; Zaidi et al., 2022). However, it is unclear
how effective this method will be in a degenerated
retina. Previous work in rat models of photore-
ceptor degeneration reported altered sodium and
potassium channel expression in RGCs (Chen et
al., 2013), which may affect spike conduction ve-
locity, potentially diminishing the ability to distin-
guish parasol from midget cells. However, a prior
investigation revealed that cell type differences in
spike waveforms were preserved during photore-
ceptor degeneration in rats (Yu et al., 2017), sug-

gesting that electrical properties, and potentially spike conduction
velocity, can still be leveraged to separate distinct cell types during
degeneration. In addition, previous studies have shown differences
in intrinsic RGC excitability between healthy and degenerated rat
retinas (Sekirnjak et al., 2011; Ren et al., 2018). Although it was
reported that differences in spiking statistics between ON and
OFF cells in the rat retina increased during degeneration
(Sekirnjak et al., 2011), implying increased ability to distinguish
OFF cells from ON, it is unknown whether this will apply to the
primate retina or to specific cell types within the broad ON and
OFF categories.

Finally, several technical limitations of this study could be
addressed in future work.

Figure 7. Inference of visual perception in the raphe and peripheral retina with naturalistic images. A,
Reconstruction of naturalistic images from the ImageNet database (Fei-Fei et al., 2009) in an example raphe (left)
and peripheral (right) preparation after image enhancement with a CAE (Parthasarathy et al., 2017; see Materials
and Methods). Each row corresponds to a distinct image. The first column shows the original image; the second col-
umn shows the optimal reconstruction (i.e., achievable with perfect control over the firing of each RGC); the third
column shows the reconstruction that is achievable by optimized stimulation (Shah et al., 2019b, 2022; see
Materials and Methods). Columns 4 and 5 are the same as columns 2 and 3, but for an example peripheral prepara-
tion. Scale bar, 250mm (visual angle, 1.25°). B, Optimal and empirical NMSE (squared error normalized by L2-norm
of target image squared; left) and SSIM (right; Wang et al., 2004) averaged over 100 naturalistic images from the
ImageNet database for each raphe and peripheral preparation. Note that in some of the peripheral preparations, the
average SSIM for the empirical reconstructions is slightly higher than for the optimal reconstructions, which is possi-
ble because the CAE is trained to minimize MSE (see Materials and Methods).
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1. White noise visual stimulation for light response modeling
(Fig. 2) is limited because its statistics differ greatly from
the statistics of naturalistic stimuli, and could elicit RGC
responses that are much different from what would be
observed in natural viewing conditions (Heitman et al.,
2016). Thus, future work could focus on performing natural-
istic image stimulation for response modeling in the central
retina (Heitman et al., 2016; McIntosh et al., 2016), which
may require models that take into account additional proper-
ties such as cell–cell interactions (Mastronarde, 1983; Pillow

et al., 2008) and spatial nonlinearities (Hochstein and
Shapley, 1976; Shah et al., 2020).

2. Pixel-wise MSE, although a standard and intuitive objective
function to minimize loss between target and reconstructed
images, does not fully capture the quality of image recon-
struction relevant for vision (Wandell, 1995). Future work
could optimize the perceptual similarity of reconstructed
images (Shah et al., 2019b, 2022) using metrics such as SSIM
(Wang et al., 2004; Parthasarathy et al., 2017; Wu et al.,
2022).

Figure 8. Estimation of midget cell activation. A, Receptive fields (2s boundary from a Gaussian fit to the spatial component of the STA) of nearly complete ON parasol and OFF parasol cell
populations and partial ON midget and OFF midget cell populations, in a single raphe preparation. B, Receptive fields of simulated complete populations of ON midget and OFF midget cells in
the same preparation as A (see Materials and Methods). C, Response probability as a function of distance from stimulating electrode and applied current (see Materials and Methods). This rela-
tionship was determined using all of the electrical stimuli and responses from recorded midget cells in A. D, White noise reconstructions from parasol cells and the resulting reconstruction
from the activation of simulated midget cells, in a single raphe preparation (A–C; pixel sizes shown, 352, 220, 110, and 55mm). The first column shows the original image; the second column
shows the optimal reconstruction (i.e., achievable with perfect control over the firing of each RGC); the third column shows the empirical reconstruction that is achievable by optimized stimula-
tion based on recorded evoked responses (Shah et al., 2019b, 2022; see Materials and Methods); the fourth column shows the pixels that were incorrectly reconstructed relative to the original
image (red, incorrect; blue, correct); the fifth column shows the reconstruction (third column) summed with the simulated midget cell noise (see Materials and Methods); the sixth column
shows the reconstruction summed with the simulated midget cell noise that can be achieved using an early stopping criterion (see Materials and Methods); the seventh column shows the
pixels that were incorrectly reconstructed relative to the original image using the early stopping criterion (red, incorrect; blue, correct). E, Naturalistic image reconstructions from parasol
cells and the resulting reconstruction from the activation of midget cells in the same preparation as D. The first column shows the original image; the second column shows the optimal
reconstruction after application of the same trained CAE as in Figure 7; the third column shows the empirical reconstruction after application of the CAE; the fourth column shows the lin-
ear empirical parasol cell reconstruction (linear portion of column 3) summed with the linear simulated midget cell noise; the fifth column shows the resulting image after applying the
CAE to the image in column 4. F, Fractional error (see Materials and Methods) between the white noise empirical parasol cell reconstruction (column D3) and the empirical parasol cell
reconstruction summed with midget cell noise, after full stimulation (column D5) or after early stopping (column D6). Each data point denotes the average fractional error over 15 images
at each pixel size. G, Fractional error between the naturalistic image empirical parasol cell reconstruction and the empirical parasol cell reconstruction summed with the midget cell noise.
Fractional error was calculated using both the linear reconstructions as well as the linear reconstructions enhanced by the CAE (see Materials and Methods). The bar plots denote the aver-
age fractional error over 100 naturalistic images.
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3. Linear reconstruction (Warland et al., 1997; Brackbill et al.,
2020), although simple and computationally tractable, is likely
too simple an approximation for how the visual system
extracts information from RGC spike trains to produce visual
perception and behaviors. Future work could apply more so-
phisticated nonlinear reconstruction methods for optimizing
visual perception (Parthasarathy et al., 2017; Zhang et al.,
2020; Kim et al., 2021; Wu et al., 2022), such as the CAE used
to enhance the naturalistic image reconstructions here
(Parthasarathy et al., 2017; Fig. 7, 8E) or denoisers trained on
naturalistic images (Wu et al., 2022).

4. In each reconstruction analysis, the expected value of the
parasol cell reconstruction (Figs. 6, 7) and simulated midget
cell noise contribution (Fig. 8) were analyzed. A single trial
of the parasol reconstruction resulting from the stimulation
algorithm is similar to the expected value because of the var-
iance penalty used in optimization (Shah et al., 2019b, 2022).
However, a single trial of the simulated midget cell noise
tends to be larger in magnitude than the expected value (data
not shown) because there is no regularization possible when
considering responses post hoc. Future work could include
modifications to the stimulation algorithm to minimize
reconstruction error introduced by inadvertent midget cell
stimulation on a single trial.

5. Several assumptions were made about how parasol and
midget cell signals and natural image priors are combined
to produce reconstructions. Reconstruction filters for para-
sol and simulated midget cells were learned separately.
However, previous work has demonstrated that the cell
types included when learning filters using least-squares
regression strongly influence the features of the filter of
any given cell (Brackbill et al., 2020). Indeed, when the par-
asol and simulated midget cell filters were learned together,
the strength of the parasol cell filters was suppressed sub-
stantially relative to that of the simulated midget cells com-
pared with when the filters were learned separately (data not
shown). Also, the CAE was trained only on linear recon-
structions obtained from parasol cells (Fig. 8E,G). When the
CAE was instead trained on parasol and simulated midget
cell signals together, the fidelity of the denoised parasol cell
reconstruction with added midget cell noise was lower (data
not shown). Future work could further explore how the rela-
tive weighting of signals from different cell types and image
priors influences image reconstruction.
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