In 1955 most children with CF did not live long enough to go to school.
• Median survival is over 40 years of age
• One half of all patients are now adults
• Nine CF therapies have been FDA approved
• One CF therapy treats the basic defect and more are likely
How did this happen?
Cystic Fibrosis Foundation: Enabling Success
Pathogenesis of CF Lung Disease

- Mutant CFTR
 - Depleted ASL
 - Defective mucociliary clearance

- Infection
- Obstruction
- Inflammation

Progressive, irreversible lung damage

Adapted from Chmiel et al. Clin Rev Allergy Immunol 2002
Symptom-based CF Therapies
What was the impact of these new symptom-based therapies and quality improvement?
Median Survival Age of Patients with Cystic Fibrosis

Source: Cystic Fibrosis Foundation, National Patient Registry
• CFF Therapeutic Development Program (TDP) started in 1998

 – Created to encourage industry and academia to focus on CF and CFTR as drug target

 – Components of TDP

 – Financial assistance

 – Research tools and scientific advice

 – Well organized clinical trial network
Vertex Screening Strategy

- Orally bioavailable drugs
- Two CFTR targets:

Potentiators:
Increase opening (gating) of CFTR channels

- G551D
- VX-770

Correctors:
Increase number and function of CFTR channels at the cell surface

- F508del
- VX-809
Ivacaftor Phase 3 Results (Sweat Chloride)

Change in sweat chloride concentration
mmol/L (mean, 95% CI)

-60
-55
-50
-45
-40
-35
-30
-25
-20
-15
-10
-5
0
5

Placebo
Ivacaftor

Estimates are model-based. Points and 95% CI are unadjusted (raw)
Phase 3 Results (G551D)

FEV1

PEx

CFQ-R

wt

Phase 3 Results of CF Therapies

Relative Change in FEV₁ % Predicted from Baseline (with 95% CI)

- **ivacaftor**
- **inhaled tobramycin**
- **dornase alfa**
- **azithromycin**
2012 - FDA Approves Ivacaftor
What else can we learn from G551D patients who will be treated with ivacaftor?
Effect of Ivacaftor on Small Bowel pH

Clinical Implications:
- Improved exogenous pancreatic enzyme efficacy
- Reduced GI symptoms and improved nutrition
- Early use: preserve endogenous exocrine function?

Data courtesy of Dr. Daniel Gelfond and the GOAL pH Pill Sub-study Team
Effect of ivacaftor on pancreatic function in G551D Age 2-5: Evidence of partial rescue
Mucociliary Clearance: *The Movie*

Baseline

Ivacaftor - 3 months

Trachea

Stomach

Courtesy of Dr. Tim Corcoran, U. Pittsburgh
P. aeruginosa Culture Rate

Data courtesy of Dr. Steve Rowe and the GOAL Study Team
Ivacaftor Lung Function Benefit Persists

See: McKone et al. NACFC 2013
Effect of Decreased Rate of Decline in FEV_1

- **G551D With Ivacaftor**
- **F508del/F508del**

Lung Transplant
CFTR Potentiator (Ivacaftor)
Could work in 15% of CF population
Clinical trials are ongoing to enable FDA approval
Ivacaftor Expansion Timeline

<table>
<thead>
<tr>
<th>Year</th>
<th>Mutation Description</th>
<th>Population %</th>
<th>% Population (cumulative)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2012</td>
<td>G551D</td>
<td>4%</td>
<td>4%</td>
</tr>
<tr>
<td>2013</td>
<td>other gating mutants</td>
<td>5%</td>
<td>9%</td>
</tr>
<tr>
<td>2014</td>
<td>R117h</td>
<td>8%</td>
<td>17%</td>
</tr>
</tbody>
</table>

Predicted:

<table>
<thead>
<tr>
<th>Year</th>
<th>Description</th>
<th>Population %</th>
<th>% Population (cumulative)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2015-2016</td>
<td>residual function</td>
<td>15%</td>
<td>26%</td>
</tr>
</tbody>
</table>
What About the Most Common Mutation - F508del?

50% of US patients have F508del mutations on both alleles

90% of US patients have at least one F508del mutation
• Orally bioavailable drugs
• Two CFTR targets:

Potentiators: Increase opening (gating) of CFTR channels

Correctors: Increase number and function of CFTR channels at the cell surface
Phase 3 Study Design

Screen Day -28 to Day -1
Randomize 1:1:1 on Day 1

Phase I: 24-Week Dosing Period

- **N=167**
 - Lumacaftor 400 mg Q12H + Ivacaftor 250 mg Q12H
 - Lumacaftor 600 mg QD + Ivacaftor 250 mg Q12H
 - Placebo + Placebo

SAFETY FOLLOW UP
- At Week 28
- OR
- BLINDED (ACTIVE) ROLLOVER Up to 96 Weeks

Study VX12-809-105

Homozygous F508 subjects
Lumacaftor/Ivacaftor Improved FEV₁

Absolute Change from Baseline in Percent Predicted FEV₁

- **Placebo**
- **LUM 600 mg qd / IVA 250 mg q12h**
- **LUM 400 mg q12h / IVA 250 mg q12h**

* P<0.025

Ramsey, Boyle, Elborn...Wainwright et al. Poster #250 NACFC 2014
Symposium 10.3, Wainwright, Friday 11:30 AM
• FEV1 absolute improvement- 3%
• Pulmonary exacerbations reduced by 30-40%
• Weight gain

• Next steps: NDA to be submitted this year
What about patients that only have one copy of F508del?

Their F508del response should be approximately one half that of homozygous patients.
Lumacaftor/Ivacaftor does not improve FEV$_1$ in F508del Heterozygotes
Effect of 28 days of VX-661/ Ivacaftor on FEV$_1$ in F508del Homozygotes

CFTR Corrector: VX-661

- Works with similar mechanism to lumacaftor to traffick F508del-CFTR to cell surface
- Longer Half-life; Less drug-drug interactions than lumacaftor; No evidence of early chest tightness

Donaldson, Pilewski....Rodman, et al. ECFS 2014
Overview of VX-661-Ivacaftor

- In F508del-CFTR homozygous subjects, VX-661-ivacaftor demonstrates statistically significant and clinically meaningful improvement in lung function
 - Absolute percent predicted FEV1 improvement = 4.5-4.8%
 - Relative percent predicted FEV1 improvement = 7.5-9.0%

- In F508del/G551D heterozygous subjects, lung function is significantly increased when VX-661 is added to a physician-prescribed Kalydeco regimen
 - Absolute percent predicted FEV1 increased 5.2%
 - Relative percent predicted FEV1 increased 8.4%
VX-661-Ivacaftor Proposed Pivotal Studies

- F508/F508 pivotal (VX14-661-106)
 - Placebo-controlled study of 24 week duration enrolling approx. 500 subjects

- F508/non-responsive pivotal (VX14-661-107)
 - Placebo-controlled study of 12 week duration enrolling approx. 280 subjects

- F508/residual function pivotal (VX14-661-108)
 - Placebo-controlled and ivacaftor monotherapy controlled study; 8 week cross-over design, enrolling approximately 300 subjects

- F508/gating pivotal (VX14-661-109)
 - Ivacaftor monotherapy controlled study of 8 week duration (4 week run-in with ivacaftor alone), enrolling 150 subjects

- Program-wide Open Label Extension (OLE) study (VX14-661-110)
 - For participants of any pivotal study and study VX13-661-103
Ongoing Efforts to Identify the Next Generation F508del CFTR Correctors
The Next Generation of CFTR correctors will target different parts of F508del-CFTR to further stabilize CFTR folding and dramatically increase the amount of CFTR trafficked to the cell surface.
New Screening Program Highlights

• A large diversified chemical space is being screened
 – Strategically diverse chemical libraries
 – Millions of compounds screened last year

• Novel screens are being performed
 – Primary screens in human bronchial epithelial cells
 – Screens with CFTR domains (NBD1 stability)
 – Airway surface liquid maintenance

• Goal is to have efficacy greater than that seen with Kalydeco in G551D patients

• Timeline
 – Clinical trials could start next year
 – Projected approvals: 2019-2023
Goal of Second Generation Program on CFTR Activity

![Bar chart showing CFTR Activity for G551D and F508del/F508del variants with different treatments: Untreated, Kalydeco, VX-809, VX-809 + Kalydeco, VX-809 + Kalydeco + 2cd Corrector.](image)
CFTR Modulators and US CFTR Genotype Distribution

Our Goal is CFTR Modulation for 100% Patients!
Potential Pulmonary Treatments For The Last 5% of Patients

• Nonsense mutations (3%)
 – New novel screening programs underway
 – Ataluren

• Mutations unlikely to respond to small molecules (2%)
 – DNA transfer
 – mRNA transfer
 – Restore airway surface liquid
 • ENaC inhibition
 • Alternative chloride channel activation
 • Novel delivery of hypertonic saline solutions
 – Mucus rheology altering agents
Personalized CF Regimens

• Maximize CFTR function
 – Initially based on the patient’s CFTR mutations
 – Ultimately a personalized response may be used

• Symptomatic therapies will be utilized as needed
 – Infants and young children with excellent CFTR restoration may not need other therapies
 – Understanding impact of various levels of CFTR restoration will help us determine what additional therapies are needed to maintain health
 – Older patients with established disease will probably continue to need other therapies
Long-term Issues

- Cost of therapies
- Burden of therapies
- Access to therapies
- Adherence to therapies

- Is there a better way?
Thank you!

PRESTON W. CAMPBELL, III, M.D.
Executive Vice President for Medical Affairs