Can Germs Help?

David N. Cornfield, M.D.
Anne T. and Robert M. Bass Professor of Pulmonary Medicine
Director-Center for Excellence in Pulmonary Biology
Division of Pulmonary Medicine
Stanford University School of Medicine
biological diversity and the importance of microbes

— most genetic diversity in the tree of life occurs among microbes
— this diversity exists in polymicrobial communities, and is difficult to access (dark matter)
 — < 1% of microbes have been grown in the lab
— microbes run Earth’s biogeochemical cycles, and outnumber human cells in the body
 — much of the human microbiome remains uncultivated
— cultivation-independent techniques like metagenomics and single-cell approaches are needed to study microbial systems
— work on microbes in the lung has focused on pathogens cultured from states of disease
— cystic fibrosis (CF) is a common autosomal recessive disorder (30,000 patients in US)
 — caused by mutations in the gene encoding the CF transmembrane conductance regulator (CFTR)
 — among the manifestations of CF, mucociliary clearance is disrupted, leading to chronic lung infection
 with microbial biofilms
— recently, metagenomic studies identified complex microbial communities in the CF lung
 — what is the health impact of these organisms?
Bacteria in lungs of CF patients by age

Germs Found in the Lungs of People with CF by Age, 2012

*P. aeruginosa includes people with MDR-PA.
**MDR-PA is multi-drug resistant Pseudomonas aeruginosa (P. aeruginosa).
\(S. \text{ aureus} \) includes people with MRSA.
\(MRSA \) is methicillin-resistant Staphylococcus aureus (S. aureus).

CFF Registry, 2012
Paradigms of Pulmonary Infection

conventional paradigm of microbial ecology in CF

healthy

CF-early life/stable

CF-later life/exacerbated

pathogenesis
Paradigms of Pulmonary Infection

Does a healthy pulmonary microbiome exist?
- clinical cultures for pathogens often negative, (although reports of bacterial rRNA sequences exist)
- Human Microbiome Project: no pulmonary sampling

- Are we missing the big picture in microbial ecology of the lung?

“. . . but virtually nothing is known about the microbiome of the lung. Indeed, the presence of a lung microbiome in normal individuals has yet to be established conclusively.”
- abstract of a recently funded NIH R01
Lung Study: subject and sample characteristics

Deeply probe pulmonary microbial population using 16S ribosomal gene sequencing
— 454 DNA pyrosequencing of the V4 region, \(10^3 \) – \(10^5 \) sequences per subject
— each 16S read serves as a phylogenetic ‘name tag’ for the source organism

Induced sputum collected from 9 healthy control individuals (CT) & 16 CF patients

<table>
<thead>
<tr>
<th>Table 1. Summary of CF subject characteristics.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age in years (mean ± SD)</td>
</tr>
<tr>
<td>Gender</td>
</tr>
<tr>
<td>FVC (mean ± SD) Liters</td>
</tr>
<tr>
<td>%-Predicted</td>
</tr>
<tr>
<td>FEV$_1$ (mean ± SD) Liters</td>
</tr>
<tr>
<td>%-Predicted</td>
</tr>
<tr>
<td>CFTR genotype Δ/Δ</td>
</tr>
<tr>
<td>Δ/other</td>
</tr>
<tr>
<td>Other/Other</td>
</tr>
<tr>
<td>Sweat Chloride (mmol/L)</td>
</tr>
</tbody>
</table>

— Methodology:
— DNA extraction: bead beating, enzymatic digestion, DNeasy
— prep PCR with barcoded 454 fusion primers (454A-barcode-515F, 454B-1391R)
— quantification by the ultrasensitive and accurate digital PCR method*
— classified quality-filtered sequences using Ribosomal Database Project tool

CF study: Blainey, Milla, Cornfield, & Quake, Science Translational Medicine 2012
Phylum-level classification

- CF cohort not dominated by cultured pathogens (mostly Proteobacteria)
 - (Pseudomonas, Haemophilus, Burkholderia)
Phylum-level classification

- CF cohort not dominated by cultured pathogens (mostly Proteobacteria)
 - (Pseudomonas, Haemophilus, Burkholderia)
- healthy individuals harbor a complex, endemic, pulmonary microbiome
- control cohort appears richer, more even
- control enriched for Bacteriodetes ($p = 0.04^*$)
- CF enriched for Actinobacteria ($p = 0.01^*$)

*p-values are Bonferroni-corrected for multiple testing

Blainey, Milla, Cornfield, & Quake, Science Translational Medicine 2012
Cohort analysis: Phylum level

- Higher diversity at phylum level in healthy control cohort
- Greater abundance of ‘dark matter’ (uncultivated organisms) in healthy control cohort
 - uncultured phyla are enriched TM7 ($p = 0.01^*$), and SR-1 ($p < 0.001^*$)

* p-values are Bonferroni-corrected for multiple testing

personal pulmonary microbiomes

- Both cohorts show strong inter-individual variability—how to look for characteristic patterns?
 - PCA transforms high-dimensional data to a new set of coordinates
 - allows representation of the dataset variation in a smaller number of dimensions
 - reveals hidden or composite control variables

100 bootstraps of 1000 sequences are plotted for each subject to sample error distribution.

principal components analysis (PCA) of microbial family abundances (96% seqs classified with confidence >80%)

- CF cluster holds in PC1-PC3
- microbial ‘signature’ of CF microbiome identified, despite inter-individual variation
- healthy subjects are more diverse on an individual bases, AND more distinct from one another

Blainey, Milla, Cornfield, & Quake, Science Translational Medicine 2012
— microbial ‘signature’ of CF microbiome identified, despite inter-individual variation
— healthy subjects are more diverse on an individual bases, AND more distinct from one another

Blainey, Milla, Cornfield, & Quake, Science Translational Medicine 2012
— microbial ‘signature’ of CF microbiome identified, despite inter-individual variation
— healthy subjects are more diverse on an individual bases, AND more distinct from one another

— microbial ‘signature’ of CF microbiome identified, despite inter-individual variation

— healthy subjects are more diverse on an individual bases, AND more distinct from one another

Blainey, Milla, Cornfield, & Quake, Science Translational Medicine 2012
principal components analysis (PCA) of microbial family abundances

100 bootstraps of 1000 sequences are plotted for each sample to show statistical placement margins

— microbial ‘signature’ of CF microbiome identified, despite inter-individual variation
— healthy subjects are more diverse on an individual bases, AND more distinct from one another

dark matter index = 1
families with cultured ‘CF pathogens’
CF-associated families lacking known CF pathogens

—

—

Blainey, Milla, Cornfield, & Quake, Science Translational Medicine 2012
principal components analysis (PCA) of microbial family abundances

- microbial ‘signature’ of CF microbiome identified, despite inter-individual variation
- healthy subjects are more diverse on an individual bases, AND more distinct from one another

100 bootstraps of 1000 sequences are plotted for each sample to show statistical placement margins

dark matter index = 1
families with cultured ‘CF pathogens’
CF-associated families lacking known CF pathogens

Table 1. Summary of CF subject characteristics.

Characteristic	Mean ± SD	Percentage (%) of Predicted
Age in years (mean ± SD)	28.14 ± 7.23	85.65 ± 8.9
Gender	Male: Female: 10:6	
FVC (mean ± SD) Liters	3.88 ± 0.60	71.89 ± 12.70
FEV1 (mean ± SD) Liters	2.72 ± 0.54	
CFTR genotype	Δ/Δ Δ/other Other/Other	7:4:2
Sweat Chloride (mmol/L)	97.40 ± 29.29	
Chronic Antibiotic Therapy (not mutually exclusive)		
Oral Azithromycin	9/15	
Inhaled Tobramycin	8/15	
Inhaled Colistin	5/15	
Oral Dicloxacillin	1/15	
Oral Levofloxacin	1/15	
No Antibiotic	3/15	

CF pulmonary microbiome/clinical correlates

• microbial diversity declines over life course of CF patients (Lynch et al, Pone, 2010)
• within our adult cohort, phylum-level diversity correlates significantly with inflammation, decreased diversity, increased inflammation
 – not with pathogens, antibiotic treatment status, or patient age
 – this association suggests a possible link between microbial ecology and etiology of CF
 ⇒ use as diagnostic/prognostic tool?
• healthy pulmonary microbiome more diverse than that CF pulmonary microbiomes
Part I: conclusions

• contrary to conventional wisdom, each of us has a complex & personal pulmonary microbiome
 – biological dark matter is abundant in healthy and CF lungs
• a focused microbial ‘signature’ of CF exists, characterized by a patterns of microbial diversity
 – new targets for antimicrobials
 – new candidate taxa for probiotic therapy
• microbial diversity is associated with inflammation in our adult cohort
future work: investigating *Rothia*-*Pseudomonas* interaction

- *Rothia* species seem to be overlooked players in CF (abundant & disease-associated)
- significant negative correlation between *Rothia* and *Pseudomonas* ($r = -0.56$)
- cultured *Rothia* and *Pseudomonas* species are known to form biofilms
 - parse competition between these organisms using microscopy and RNA-sequencing