Faster Pediatric Brain MRI

Samantha J Holdsworth

Lucas Center for Imaging, Department of Radiology, Stanford

Aim

- To deliver a ~5 minute motion-corrected protocol for pediatric imaging

Equipment

- 3T GE system and 8-channel head coil

Introduction: Problems in MRI

- MRI is slow
 - Total scan time at our institution (minutes)
 - Fast imaging sequences are needed to reduce scan times.

- MRI is prone to motion artifacts
 - Motion correction is necessary for accurate results.

Echo-Planar Imaging (EPI)

- EPI is excellent for correcting for motion in pediatric diffusion-weighted MRI
 - but EPI is limited for high-resolution anatomical imaging.

Readout-Segmented (RS)-EPI and Short-axis Propeller (SAP)-EPI

- pretty fast, and less distortion than EPI
 - RS-EPI
 - SAP-EPI
RS-EPI and SAP-EPI can also be corrected for motion.

SAP-EPI can be extended to 3D motion corrected can be done between blades (here only 2D motion correction is possible).

Using 3D SAP-EPI one can correct for motion in 3D.

Motion corrected can be done between blades (here only 3D motion correction is possible).

SAP-EPI can be extended to 3D

We are developing a rapid (~5 minute or less) motion corrected pediatric MRI protocol

Dual Echo DW-EPI

- DWI of Echo 2:
 - Used for lesion sensitivity
- ADC of Echo 1
 - for high maps

Dual-Echo DWI also gives us a R2 (1/T2) map

- R2 map sensitive for mineralization and blood products.
Fluid Attenuated Inversion Recovery (FLAIR) RS-EPI

5d seconds

(very) Preliminary data

1:42min 1:03min 1:45min

4-yr old patient (3T)

Total 5:42min

Dual echo DWI

Summary

- We are targeting a 5-minute motion-corrected protocol for pediatric imaging
 - Dual-Echo Diffusion-Weighted EPI (DW-EPI)
 - FLAIR RS-EPI
 - T1-w SAP-EPI
 - T2*-w SAP-EPI (with additional SWI processing)

Future work:
- Test motion-correction capability in patients
- Test clinically utility of SWI-processed T2*-w SAP-EPI
- Compare 5-minute protocol with current (~30-40 minute) protocol to determine if it can be a fast alternative protocol.

Acknowledgements: Stefan Skare, Kristen Yeom, Michael Moseley, The Lucas Foundation, Center of Advanced MR Technology at Stanford (P41-09784)