Neuroimaging Predictors of Response to Pivotal Response Treatment

Presented by John P. Hegarty II, Ph.D.
Stanford Autism Update, March 17, 2018
Children with ASD can have difficulty developing language or communication skills.

Children with ASD may:
- be non-verbal or minimally verbal
- use scripted language
- exhibit delays in using and understanding language
- show deficits in social and non-verbal communication

Therapies to target language development and communication skills exhibit variable effects across individuals.
- Treatment prediction markers could help clinicians determine the most appropriate intervention and reduce the time until patients receive the most beneficial treatment.
Pivotal Response Treatment

- PRT uses core “pivotal” areas, such as motivation, to target skill development (Koegel, 2011)

- Targeting pivotal areas is accomplished with the combination of:
 - 1) ABA based behavioral strategies
 - 2) Motivational techniques such as reinforcement
 - 3) Child-directed/play-based approaches

- Parents/caregivers can be trained to apply PRT in natural settings, resulting in increased treatment intensity during daily routines (Minjarez et al., 2011)
PRT to Target Language Development and Improve Communication

- PRT can improve language abilities and communication skills in young children with ASD (Koegel et al., 1998; Koegel et al., 2014)
 - improved speech intelligibility, increased question asking/conversation, and more play/social initiations

(Mohammadzaheri et al., 2014)

<table>
<thead>
<tr>
<th></th>
<th>ABA group</th>
<th>PRT group</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MLU</td>
<td>SD</td>
</tr>
<tr>
<td>Pre-intervention</td>
<td>2.77</td>
<td>.5</td>
</tr>
<tr>
<td>Post-intervention</td>
<td>2.79</td>
<td>.5</td>
</tr>
</tbody>
</table>
Language Regions in the Brain and ASD

- Language regions, such as the IFG (Broca’s) and STS (Wernicke’s), and connections between them (arcuate) are affected in ASD (Amaral et al., 2008)

- Properties of language regions in the brain may be related with an individual’s response to treatments targeting language
Neuroimaging Predictors of Treatment Response
Preliminary Studies

- Young children with autism were recruited from trials of PRT
 - Participants exhibited significant language delay (not HFA)

- Structural MRI scans were obtained before PRT treatment

- Size of language regions and measures of white matter quality between language regions were examined

<table>
<thead>
<tr>
<th>Demographics</th>
<th>Count</th>
<th>Key</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gender</td>
<td>9/2</td>
<td>M/F</td>
</tr>
<tr>
<td>Race</td>
<td>6/1/4</td>
<td>Asian/Black/White</td>
</tr>
<tr>
<td>Mean</td>
<td>4.2</td>
<td>Age (years)</td>
</tr>
<tr>
<td>SD</td>
<td>1.1</td>
<td>Full Scale IQ</td>
</tr>
<tr>
<td>Min</td>
<td>2.7</td>
<td></td>
</tr>
<tr>
<td>Max</td>
<td>6.2</td>
<td></td>
</tr>
<tr>
<td>45.8</td>
<td>Full Scale IQ</td>
<td></td>
</tr>
<tr>
<td>14.0</td>
<td># of Utterances</td>
<td></td>
</tr>
<tr>
<td>19.0</td>
<td>29.4(19.8)</td>
<td></td>
</tr>
<tr>
<td>67.5(36.3)</td>
<td>Baseline</td>
<td></td>
</tr>
<tr>
<td>5.3</td>
<td>Post-PRT</td>
<td></td>
</tr>
<tr>
<td><0.001**</td>
<td>t</td>
<td></td>
</tr>
</tbody>
</table>

Table 1. Pilot Sample
Size of Broca’s area

- Smaller left IFG at baseline was associated with a greater increase in the number of utterances following PRT.
Smaller STS at baseline was associated with a greater increase in the number of words the child could understand/produce following PRT.

![Graph showing the relationship between left STG volume and change in number of words](image)
Lateralization of Broca’s area

- Language function is (typically) localized more in the left hemisphere & reduced/reversed. ‘lateralization’ is associated with language impairments (Szaflarski et al., 2005)

- Lateralization of language regions was associated with a greater increase in the number of utterances following PRT
Quality of WM Connections

- Better white matter quality connecting language regions was associated with a greater increase in the number of utterances following PRT.

![Graph showing the correlation between left SLF fractional anisotropy and change in number of utterances. The correlation coefficient is r = 0.75*.](attachment:graph.png)
Summary

- The size of language regions could help indicate who is most likely to respond to treatments targeting language development
 - *Children with ASD may exhibit hyper-expansion of the brain early in development* (Carper & Courchesne, 2005)
 - *Children with ASD may show abnormal lateralization of language regions* (Lindell & Hudry, 2013)

- Quality of connections between regions could help indicate who is most likely to respond to treatments targeting language development
 - *Children with ASD may have reduced quality of connections between brain regions* (Fletcher et al., 2010)
Take Home Message

- Non-invasive (no radiation) neuroimaging may be able to help predict which children will most benefit from specific interventions
 - Early intervention is very important because the brain is most responsive to change
 - Can these techniques be applied for other treatments or symptoms?

- More research is necessary to further examine these relationships
 - We are currently recruiting for an MRI study
 pick up a flier in the lobby or
 email: autismresearch@stanford.edu
Acknowledgements

This research was possible with contributions from:

- Antonio Hardan
- Grace Gengoux
- Robin Libove
- Estefania Milan
- Mira Raman
- Serena Tanaka
- Kurtis Young
- Alexandra Ishak
- Shweta Karve
- Maggie Rosenthal
- Madison Hegarty

Pilot funding was provided by:

- Stanford Bio-X

Stanford Autism and Developmental Disorders Research Program