In the early 1980s, a group of volunteers came together with the purpose of acquiring and hanging art on the then-empty walls of Stanford Hospital. What this group sensed about the power of art — that it could help improve healing — was proven later in studies suggesting that it can substantially affect health outcomes, such as blood pressure, anxiety, intake of pain medications and length of hospital stay.

Today, every new hospital includes art, said Connie Wolf, consulting director of the art program for the new Stanford Hospital: “Integrating art into the hospital environment allows us to think holistically about the healing of the mind, the soul and the spirit.”

The new facility, which will open this fall, places equal value on the restorative qualities of art and nature. It includes 4 acres of outdoor gardens and more than 400 works of original art — all either donated or acquired with private monetary donations.

It’s important for a hospital setting to nurture patients, their loved ones and the hospital staff, Wolf said. Her team asked themselves, “How can we

COMMUNITY MATTERS

New hospital continues long history of value-focused care

early nine decades ago, Stanford teamed with the City of Palo Alto to build a hospital for the growing community on the peninsula. The original Palo Alto Hospital — the building we now call the Hoover Pavilion — served as the major health care provider in the area until 1959, when the current Stanford Hospital opened its doors. The original Lucile Packard Children’s Hospital followed in 1991. Then, just two years ago, we completed a 521,000-square-foot expansion of our pediatric and obstetric hospital, specially designed to provide the latest medical technology in an environment of holistic healing.

Now, as we put the finishing touches on the new Stanford Hospital, we’re honored to begin the next chapter in our long history of collaborating with the community to provide value-focused care for people living on the peninsula and beyond.

Over the summer, we received important confirmation of our quality, service and standards. The American College of Surgeons reveri-
What parents should know about vaping

An interview with researcher Bonnie Halpern-Felsher

Hundreds of people in the United States have contracted a condition, newly termed vaping-associated pulmonary injury, and more than 25 have died from it. While it’s not clear what causes VAPI, public officials, health experts and parents fear that young people are especially susceptible, as nicotine vaping has become popular among teens. Bonnie Halpern-Felsher, PhD, professor of pediatrics at the Stanford School of Medicine, spoke with Stanford Medicine News about her research on young people’s perceptions of these products.

Why should parents be concerned about nicotine vaping devices?

In recent months, there have been hundreds of cases reported nationwide of a severe vaping-related lung disease that resembles pneumonia. The U.S. Centers for Disease Control is investigating, and my team has been following the news closely.

Every adolescent knows about e-cigarettes and is either at risk of using or is already using them. It’s concerning because adolescents’ developing brains are more likely to become addicted, and they are more likely to have learning issues and problems concentrating if they develop a nicotine addiction.

The nicotine content of e-cigarettes ranges from none to over 41 milligrams per pod, which is the amount in Juul, the product most youth are using. Forty-one milligrams is equivalent to one and a half to two packs of cigarettes — a tremendous amount of nicotine. For other e-cigarettes, the average is 25 to 36 milligrams, around a pack of cigarettes’ worth.

It’s not just the amount of nicotine that is hazardous. Juul uses salt-based nicotine, which produces a less painful “throat hit” than what is inhaled from a combustible cigarette. Youth find it easier to use salt-based nicotine in higher amounts, and thus become addicted to it more quickly and easily.

Your research on e-cigarettes and pod-based devices like Juul uncovered misunderstandings in teens’ perceptions of the devices. What did you find?

Adolescents do not recognize how much nicotine is in any e-cigarette, particularly pods. And they’re not aware of other ingredients, such as propylene glycol, benzoic acid and flavorants. Often, teens are using these products because of the flavors but don’t realize that the flavoring chemicals — such as vanillin, diacetyl and cinnamon aldehyde — can cause problems in the lungs. Recent Stanford research shows that flavor compounds in e-cigarettes harm cells lining our blood vessels.

Young people also tend to misperceive e-cigarettes as safe after being exposed to advertising claims that label these products as less harmful than combustible cigarettes. For adults who smoke combustible cigarettes, they may be less harmful, but we don’t have clear studies on that.

An important distinction is that today’s adolescents are not using or planning to use combustible cigarettes at all. Saying these products are “less harmful” is not true for youth. These products are far more harmful than not using nicotine at all.

How do teens perceive e-cigarette marketing?

The young people in our studies told us, “They’re clearly advertising these products for me.” The flavors appeal to young people, as do the beautiful, colorful advertisements, with bling, music, dancing. Our research shows that the fact that these devices are sleek, easy to hide and don’t have a traditional cigarette smell are also reasons teens use them.

The FDA and Congress are investigating how Juul’s marketing targets young people. Decades of traditional tobacco ads were aimed at adolescents, and there is great concern about those tactics being revived.

You’ve developed an online tool kit about vaping. What are its key messages?

Our Tobacco Prevention Toolkit, available at https://med.stanford.edu/tobaccocontroltoolkit, is a free resource for parents, educators and health care providers. We really try to illuminate the role that marketing plays in getting kids to use nicotine products. We want young people to understand that they’re being manipulated by manufacturers.

We also talk about the chemicals in e-cigarettes and vapes and the associated health risks, as well as the addiction risk for the developing brain.

And we discuss how to refuse these products. Teens brainstorm things they can say to avoid vaping: “I’ve tried it and I don’t like it”; “I’m allergic to it”; “I have asthma, so it’s not good for me”; or my favorite, “When I get home, I have to hug my parents. If I smell like blueberry or mango, they’ll know something is up.” Teens want to save face with their friends, and they do better in these situations if they can give a reason for saying no.

What can parents do if they think their teen is vaping?

Talk to your sons and daughters using open-ended questions. You can say, “I read an article about vaping products. I’m curious: What do you know about these?”

Then you can share your concerns: “If you’re using these products, I want to understand so I can get you some help. I’m not going to be mad.” You can also talk with your kids about how to refuse, helping them plan responses so that they feel ready to say no.
A second look

Stanford Medicine’s Second Opinion program helps patients around the world

After her March 2018 cancer diagnosis, Cami Evans was receiving treatment near her home in Atwater, in California’s Central Valley. But her oncologist wasn’t very knowledgeable about her type of cancer, sarcoma, which can spring up in various parts of the body.

She had heard about Stanford Health Care’s Kristen Ganjoo, MD, who specializes in treating sarcoma, and wanted to see her. But she lacked a referral or any personal connections to Ganjoo, so she typed “second opinion Stanford” into an internet search engine.

Up popped the Stanford Medicine Online Second Opinion program. Launched Nov. 1, 2018, the program allows people anywhere in the world, for a fee, to have their medical records reviewed by a Stanford physician who will make recommendations for care.

Evans, 41, provided her information and paid the fee. In about a month she heard from Ganjoo, who recommended that Evans continue with the chemotherapy she was receiving but also receive a scan to ensure it was working. She had several other recommendations, including a medication to prevent heart failure.

“Just reading through her report, I felt she was more versed in my options and in providing care,” Evans said. “I felt so much more comfortable working with her.”

A better way

Patients have always sought second opinions at Stanford, said Leslie Haas, digital strategy manager for Stanford Health Care. But before the Second Opinion program, they needed to do so through informal channels. If they had a personal connection to a physician at Stanford, they might contact him or her. Or they’d simply make an appointment. “For people far away, the program is a lot cheaper and more convenient than traveling here,” Haas said. “It lets people around the globe receive assistance from a Stanford physician.”

Peace of mind

For some patients who use the Second Opinion program, the information they receive provides peace of mind: The Stanford specialist confirms that the care they’re receiving is appropriate. Other patients are able to incorporate the suggestions into their care plan. Still others choose to visit the doctor who provided the second opinion — about a quarter of the Second Opinion users have become regular patients at Stanford, Haas said. More than 2,000 have used the program since it launched.

To enroll in the program, patients create an account online. If their medical records are in the United States, all they need to do is provide the names and locations of physicians who have provided care. They can upload medical records if they have them on hand — doing so will help Stanford physicians reply more quickly. If the medical records are outside the United States, they will need to send them to Stanford. A Stanford physician with the appropriate expertise will then review the patient’s record and respond with written recommendations in about two weeks.

Both physicians and patients are pleased with the program, Haas said. “Patients appreciate that we have expedited the process of receiving a second opinion. And physicians like receiving patient information in an organized, streamlined way.”

When Evans received Ganjoo’s recommendations, she brought them to her oncologist, who followed what he could of her treatment plan. Once Evans was able to switch her insurance to cover Stanford Health Care, she scheduled an appointment with Ganjoo, an associate professor of oncology at the School of Medicine.

The Second Opinion program “made the transition to becoming her patient so much smoother,” Evans said. “It kept me from having to go through the whole process of becoming a patient, going through all the back history. They could just take everything I already had and work with that.”

Ease of use

Ganjoo said that the Second Opinion program is especially helpful for patients with rare conditions such as sarcomas. Oncologists in smaller organizations may encounter only two or three a year, she said, and they’re usually glad to receive advice from experts who treat the condition more frequently.

“It’s a great program,” Ganjoo said. “The information is so organized, it takes me an hour to develop an opinion. I can just click a button and send a message to the patient, or to their oncologist.”

In June, Evans underwent surgery at Stanford Hospital to remove tumors from her liver. Afterward, as she was recovering in the hospital, she received visits from a harpist, a massage therapist and a support dog — all of whom eased her stress and helped her heal.

“The surgery was very successful,” said Evans, who continues to see Ganjoo for her cancer treatment. “It’s been a huge blessing to have been able to work with the doctors and surgeons at Stanford. I’m just really grateful for the program.”

For adult patients: Enroll in the Second Opinion program at https://stanfordhealthcare.org/second-opinion/overview.html. Currently, specialists in cardiovascular services; oncology; orthopedics; neurology; neurosurgery; and ear, nose and throat are available to provide second opinions.

For pediatric patients: Enroll in the program at https://www.stanfordchildrens.org/en/landing/second-opinion. Specialists in orthopedics and sports medicine; brain tumors; epilepsy; neurosurgery; heart transplant and heart failure; ear, nose and throat; and cardiothoracic surgery are available to provide second opinions.

More pediatric and adult specialties are expected to be available soon.
Stanford hospitals reverified as Level I trauma center

American College of Surgeons gives Stanford the highest possible ranking

Stanford Health Care and Lucile Packard Children's Hospital Stanford have been reverified as a Level I adult and pediatric trauma center through May 2022 by the American College of Surgeons.

As Level I is the highest possible ranking for trauma centers, the verification confirms the hospitals’ dedication to providing the best possible care for all injured patients. Stanford Health Care has been recognized as a Level I trauma center for more than 20 years.

Packard Children’s, one of only five pediatric trauma centers in California verified as Level I by the American College of Surgeons, receives pediatric trauma patients from as far north as the Oregon border to as far south as Bakersfield. It is the only Level I pediatric trauma center on the San Francisco Peninsula.

Verified hospitals must provide a full spectrum of care to address the needs of all injured patients and must provide access to the following:

■ Coordinated, timely response from all necessary specialty medical staff
■ 24-hour availability of trauma surgeons and emergency medicine doctors, including pediatric surgeons
■ Operating rooms that are equipped and ready at all times
■ Neurosurgical and neurological care for severely injured patients

“Stanford is proud to be recognized as the singular and most comprehensive Level I adult and Level I pediatric trauma resource on the peninsula.”
— David Spain, MD, chief of trauma and critical care surgery at Stanford Health Care and professor of surgery at the Stanford University School of Medicine

“Stanford is proud to be recognized as the singular and most comprehensive Level I adult and Level I pediatric trauma resource on the peninsula.”
— David Spain, MD, chief of trauma and critical care surgery at Stanford Health Care and professor of surgery at the Stanford University School of Medicine

The ACS is a scientific and educational association of surgeons founded in 1913 to raise the standards of surgical education and practice and to improve the care of surgical patients.

Caring for our neighbors

And our dedication to the community goes beyond our devotion to the highest-caliber clinical care. In 2018 alone, Stanford Health Care invested more than $378 million and Stanford Children’s Health invested more than $244 million in services and activities to improve the health of our neighbors through charity care, health education, community health improvement programs and more. For example, through our public health campaign Stop the Bleed, members of our trauma services team teach local community members how to control life-threatening bleeding to save lives. Our Stanford Health Library also provides free scientifically based medical information to help people make informed decisions about their health and health care.

Driven by rigorous standards, empathy and compassion, and guided by feedback from our patients, families and other members of the community, we’ve spent years focusing on countless details because we know that even the smallest touches can make a meaningful difference to our patients.

Though much has changed since the Hoover Pavilion’s early days as the original Palo Alto Hospital, Stanford Medicine’s commitment to providing the highest-value health care for our community keeps going strong.
Packard Children’s patients learn and make friends at hospital school

Kids keep up with their studies

For most children and teenagers, “normal life” means attending school. When a serious illness puts them in the hospital, kids may be upset.

“They say, ‘I’m not going to be in school, be with my friends or graduate with my class,’” said Kathy Ho, a teacher at the hospital school at Lucile Packard Children’s Hospital Stanford. “When you take that away, it’s almost more devastating than bad news about their health.”

Fortunately, Ho and her colleagues are ready to help. Together, the team of four teachers run the K-12 hospital school, which is part of the Palo Alto Unified School District. Every year, they work with several hundred children, who may receive instruction for a few days, many weeks or the entire year. The school helps patients keep up with their coursework and acts as an oasis of learning, friendship and fun inside the hospital.

“Providing the opportunity for our students to stay on par with their peers at home means giving them hope that things are going to be normal again,” Ho said.

Excited and engaged

Shortly after patients arrive at the hospital, the teachers assess their needs.

“Some are too sick and are not ready for any school,” Ho said. “For those who are well enough, we judge what they’re able to do and what they want to work on.”

Pupils in kindergarten through fifth grade receive instruction in English, language arts and math. For older students, the teachers coordinate with a counselor at their usual school to determine if the students can work on assignments while they are away. For patients who will be hospitalized for several months, enrollment can be transferred to Palo Alto. The teachers also evaluate whether pupils are well enough to go to the hospital’s two classrooms or if they need bedside lessons.

Teaching in a hospital has challenges. Ho’s team used to struggle to offer science experiments, for example, since they couldn’t use dangerous materials such as Bunsen burners or living specimens.

In 2008, Ho tapped a local resource: Stanford scientist Andrew Spakowitz, PhD, associate professor of chemical engineering and of materials science and engineering. Ever since, Spakowitz has recruited Stanford undergraduate and graduate students to design biology, chemistry, physics and engineering experiments that fit California curriculum standards.

“The Stanford students come up with clever ways to develop new labs suitable for the hospital environment,” Spakowitz said, noting that they’ve created more than 30 lab activities, each using cheap, safe, easily available materials.

To get around the restriction on bringing living specimens into the hospital, one biology lab uses Stanford students as guinea pigs: While they jog in place, the hospital students measure variables such as heart rate and breath volume. An engineering lab asks kids to evaluate the good and bad features of hospital gowns. In an optics lab, students point inexpensive handheld lasers through Jell-O to see how the material bends light.

The labs get rave reviews from young pupils. “Science gets kids excited and engaged,” Ho said. “They can forget for a while that they’re in the hospital.”

Extracurricular activities

The hospital school also provides extracurricular activities such as art and drama. And any student who has attended classes at the hospital during the school year is invited to the spring prom, an evening of fun, games, food and dancing.

In addition to school activities, students bond over their medical experiences.

“They may not have the same diagnoses, but they help each other talk through things,” Ho said. “A kid who has had a heart transplant may be empathizes with a kid with cancer.”

The older students mentor the younger ones as well, with high schoolers sometimes befriending kindergarteners. “It’s so fun to watch,” Ho said.

The school is a meaningful part of the Palo Alto community, she added. “Being able to offer this service to any child who needs it because they are temporarily hospitalized in Palo Alto is incredibly important,” Ho said. “We’re lucky that we can provide all of these children with a dynamic, really vibrant school environment.”
create an environment that supports the patients’ healing and well-being, provides comfort to their families, and offers relief from the complex and challenging work of the staff?”

Experiencing art

Stanford Health Care’s dedicated art committee reviewed all works for the new Stanford Hospital and commissioned seven new pieces. Committee members aimed to find works that are not only uplifting, beautiful and inspiring, but also have depth, complexity and layers of meaning.

Patients and families can spend long periods of time at the hospital, said Linda Meier, who serves on the Stanford Health Care board of directors and led the committee. “We want them to be able to come back to the work and experience something different every time,” she said.

The centerpiece of the new hospital’s entrance plaza is a sculpture titled *Buckyball*, a 30-foot metal structure lined with light-emitting diode strips programmed to create a pattern of twinkling lights each evening. Best known locally for transforming the Bay Bridge and the San Francisco skyline with his *Bay Lights* installation, artist Leo Villareal said that *Buckyball* was inspired by the geodesic dome popularized by architect and inventor Buckminster Fuller.

The same geodesic structure was discovered in a carbon molecule by nanotechnologists, Villareal said: “I thought it would be interesting to take something that you could never see with the naked eye and expand it on this monumental scale.”

For artist Jinnie Seo, the new hospital’s interfaith chapel provided inspiration for the mural *Rays of Hope*. Featuring 12 different shades of metallic paint with a high-gloss finish, the piece shimmers in the chapel’s natural light.

“We want people to walk in, feel welcome and know they are in a place where their health and spirit matter.”

— Connie Wolf, consulting director of the art program

More than 10,000 people of all ages streamed through the new Stanford Hospital during an open house here in mid-September. The event featured tours of the 824,000-square-foot hospital, during which participants walked in the path of a fictitious patient who was injured in a bicycle accident and taken to the new emergency department. The open house also featured a street fair that was particularly popular with children, who stuffed 1,500 teddy bears and dressed them in little hospital T-shirts. Some youngsters also had their faces painted and played “doctor” in various simulation games; many adults, meanwhile, snapped photos of the beautiful new grounds. The new hospital will be open to patients later this fall.

Healing gardens

Wolf said that together, the art and gardens at the new Stanford Hospital were designed to create a positive mood.

The facility’s gardens include five interconnected rooftop terraces, with walking paths and...
Banking biology

Next-generation biobanking bridges the gap between research and patients

There’s a new bank at Stanford that scientists are using to store some of their most coveted resources — and it has nothing to do with money. This is a biobank, a repository of biological research specimens, such as tissue, saliva, blood and stool.

The facility holds data from nearly 200 research projects, all of which harness biological samples to probe the molecular roots of disease, understand disease progression or develop treatments.

Biobanks are not new, but in 2017 Stanford revamped its approach, adding new on- and off-campus freezer storage, and streamlined sample tracking systems that capture clinical data annotations in real time. Another addition: a secure portal allowing scientists to share and access data from different samples and freely apply it to their research. For now, only Stanford scientists can access the samples and data, which are stripped of personal patient information to protect privacy.

It’s an unconventional approach for academic medical organizations, said Rohit Gupta, who co-founded the biobank with Mark Cullen, MD, professor of medicine, biomedical data science and health research policy.

Aiding research

“The new biobank is right at the crossroads of patient care and molecular data,” said Gupta, who has since begun serving as chief biobank officer at UC San Francisco. “The goal is to bridge the gap between clinical care and research.”

The Stanford biobank allowed Anne Chang, MD, associate professor of dermatology, to pursue a new avenue of investigation. She runs the high-risk skin cancer clinic, and in her work, she takes samples of patients’ skin to monitor their conditions. But she wanted to get a more precise sample analysis by sussing out the molecular details of single cells.

“With many of those skin cancer biopsies just sitting around, there was a big missed opportunity for a deeper understanding,” she said.

Ansuman Satpathy, MD, PhD, had co-developed a tool that enabled her research with graduate student Kathryn Yost in the lab of Howard Chang, MD, PhD, professor of cancer genomics and of genetics. Anne Chang and Satpathy wanted to apply the technology to her samples, but neither had labs and personnel to conduct that work.

Valuable resource

“It wasn’t feasible for one lab to get the samples from the clinic and process them day and night as patients come in — especially in a way that enables smooth downstream analysis,” said Satpathy, who is now an assistant professor of pathology at Stanford.

Biobank staff helped with that, making possible the examination of hundreds of samples to reveal more about how immune cells infiltrate skin cancer tumors and respond during immune-based treatments.

Dozens of other scientists entrust the facility with the seeds of their research. For example, Jennifer Frankovich, MD, associate professor of pediatrics, uses blood samples to understand pediatric acute-onset neuropsychiatric syndromes, which can change the personality and behavior of a child within days.

“It’s almost like you’re working with another academic lab,” said Satpathy. “It’s that type of true collaboration, with both parties equally invested, and that’s what makes this biobank such a valuable resource.”

Valuable resource

“With many of those skin cancer biopsies just sitting around, there was a big missed opportunity for a deeper understanding,” she said.

Ansuman Satpathy, MD, PhD, had co-developed a tool that enabled her research with graduate student Kathryn Yost in the lab of Howard Chang, MD, PhD, professor of cancer genomics and of genetics. Anne Chang and Satpathy wanted to apply the technology to her samples, but neither had labs and personnel to conduct that work.

Valuable resource

“It wasn’t feasible for one lab to get the samples from the clinic and process them day and night as patients come in — especially in a way that enables smooth downstream analysis,” said Satpathy, who is now an assistant professor of pathology at Stanford.

Biobank staff helped with that, making possible the examination of hundreds of samples to reveal more about how immune cells infiltrate skin cancer tumors and respond during immune-based treatments.

Dozens of other scientists entrust the facility with the seeds of their research. For example, Jennifer Frankovich, MD, associate professor of pediatrics, uses blood samples to understand pediatric acute-onset neuropsychiatric syndromes, which can change the personality and behavior of a child within days.

“It’s almost like you’re working with another academic lab,” said Satpathy. “It’s that type of true collaboration, with both parties equally invested, and that’s what makes this biobank such a valuable resource.”

Banking biology

Next-generation biobanking bridges the gap between research and patients

Valuable resource

“It wasn’t feasible for one lab to get the samples from the clinic and process them day and night as patients come in — especially in a way that enables smooth downstream analysis,” said Satpathy, who is now an assistant professor of pathology at Stanford.

Biobank staff helped with that, making possible the examination of hundreds of samples to reveal more about how immune cells infiltrate skin cancer tumors and respond during immune-based treatments.

Dozens of other scientists entrust the facility with the seeds of their research. For example, Jennifer Frankovich, MD, associate professor of pediatrics, uses blood samples to understand pediatric acute-onset neuropsychiatric syndromes, which can change the personality and behavior of a child within days.

“It’s almost like you’re working with another academic lab,” said Satpathy. “It’s that type of true collaboration, with both parties equally invested, and that’s what makes this biobank such a valuable resource.”

Banking biology

Next-generation biobanking bridges the gap between research and patients

Valuable resource

“It wasn’t feasible for one lab to get the samples from the clinic and process them day and night as patients come in — especially in a way that enables smooth downstream analysis,” said Satpathy, who is now an assistant professor of pathology at Stanford.

Biobank staff helped with that, making possible the examination of hundreds of samples to reveal more about how immune cells infiltrate skin cancer tumors and respond during immune-based treatments.

Dozens of other scientists entrust the facility with the seeds of their research. For example, Jennifer Frankovich, MD, associate professor of pediatrics, uses blood samples to understand pediatric acute-onset neuropsychiatric syndromes, which can change the personality and behavior of a child within days.

“It’s almost like you’re working with another academic lab,” said Satpathy. “It’s that type of true collaboration, with both parties equally invested, and that’s what makes this biobank such a valuable resource.”
Karina Torres was worried last year when she learned she had papillary thyroid cancer, and it didn’t help to hear that surgery to treat the condition would leave a scar on the front of her neck. “A scar on the neck — that’s something you can’t really cover up,” she said.

Torres, 44, traveled from her home in Fresno, California, to Stanford Hospital to receive a second opinion about her tumor from Dana Lin, MD, assistant professor of surgery at the School of Medicine. Lin told her that the tumor was small, so Torres was a candidate for a new type of surgery: transoral thyroidectomy, or removal of the thyroid through the mouth, which wouldn’t leave a visible scar.

“I offered it to her and explained that she would be our first patient,” Lin said. “She was excited about it and wanted to pursue it.”

In a first at Stanford Hospital, Dana Lin, MD, removed part of Karina Torres’ thyroid without leaving a scar on her neck.

‘Minimal pain’

Torres “did fantastic postoperatively,” Lin said. “She had minimal pain and discomfort and was discharged the next day.”

The benefit of having a transoral thyroidectomy is mostly the lack of scarring, Lin and Suh said. They added that data show the procedure is at least as safe as the traditional, through-the-neck route. The transoral procedure may have other benefits, such as decreasing the risk of nerve injury, which can affect a patient’s voice, and causing less pain after surgery, but more study is needed.

Lin said the procedure is especially beneficial for patients who develop keloid or hypertrophic scars, which are red, raised and more noticeable. Transoral thyroidectomy will not work for patients who have large tumors or goiters, as they won’t fit through the surgical ports.

Recovering at home after the surgery, Torres said she was a little sore but felt relieved that the surgery went well. “I’m very grateful to not have a scar,” she said. “I can’t see myself wearing scarves all the time, especially in hot Fresno.”