New Developments in CF Research

Steven M. Rowe MD MSPH
University of Alabama at Birmingham
Surface of a CF Trachea

Simel et al., Ped. Pathol. 2:47-64, 1984
Pathophysiology of Cystic Fibrosis

1. **CFTR gene defect**
2. **Abnormal CFTR protein**
3. **Defective ion transport**
4. **Depleted ASL Abnormal Mucus**
5. **Defective mucociliary clearance**

Cycle of Destruction
- **Infection**
- **Inflammation**
- **Mucus Obstruction**
- **Scarring**

End Stage Lung Disease
Development of CF Lung Disease and Possible Interventions

Basic Defect

Abnormal Gene

Abnormal Protein

Altered Ion Transport, Mucus Secretion

Infection & Inflammation, Tissue Destruction

Organ Destruction, Respiratory Failure

Gene Therapy

Protein Rescue

MCC, Ion Transport

Anti-Inflammatory, Anti-microbials

Transplantation

Associated Abnormalities
CFTR Mutation Classes

- > 1,900 mutations in CFTR identified

- Divided into six classes

- Class I caused by nonsense mutations (common minority)

- Class II defect most common (F508del CFTR)

- Class III include G551D (target for VX-770)

Therapeutic Approaches by Class

- **F508del CFTR Processing Corrector**
 - F508del, possibly others

- **CFTR Potentiators**
 - G551D, R117H, R1070W...

- **Translational Readthrough**
 - G542X, W1282X, R1162X, ...

Ultimate Goal:
Slow the Rate of Decline in FEV$_1$

Increase FEV$_1$ with same rate of decline = little effect on survival

Slow FEV$_1$ rate of decline = improves survival
FEV$_1$ % Predicted Absolute Change from Baseline

Treatment effect through Week 24
+ 10.6 %
$P < 0.0001$

Treatment effect through Week 48
+ 10.5 %
$P < 0.0001$

Time-to-First Pulmonary Exacerbation

Modified Fuchs’ criteria

Week 24
Hazard Ratio
0.40
P = 0.0016

Week 48
Hazard Ratio
0.46
P = 0.0012

Event-Free Rate At Week 48
0.41

Placebo
VX-770

Proportion of event-free subjects

Study day

Key secondary endpoint in gold

Ivacaftor Results in G551D CF Subjects Present a Road Map for Success

Adapted from Wilschanski et al., AJRCCM 2006 Oct 1;174(7):787-94
GOAL Study

Core Study Measures
- Clinical outcome
- Sweat chloride
- Quality of life
 - CFQ-R
 - SNOT-20
 - CFRSD
- Biomarker collection
 - Serum
 - Plasma
 - DNA
 - Urine
 - Sputum

Additional Sub-Study Measures
- MCC/Rheology – visits 2, 3, 4
 - Radionuclear mucociliary clearance
 - Micro-rheology
 - Bulk rheology
- Sweat Rate – visits 1 to 4
 - Sweat evaporimetry
 - Exploratory sweat outcomes
- Intestinal pH – visits 2, 3
 - Intestinal pH by radiofrequency transmitter
- Sputum Inflammation & Microbiome – visits 2, 5
 - Induced sputum
 - Inflammatory mediators
 - Sputum microbiome

Visit 1
- Decision made to start ivacaftor? (before end of study enrollment)
 - yes
 - Visit 2 → Day 1
 - Pre-Dose
 - First dose of ivacaftor
 - Visit 3
 - 1 month after Day 1
 - no
 - Ivacaftor not prescribed
 - Visit 1b

Visit 2 → Day 1 → Visit 3 → Visit 4 → Visit 5 → Visit 1b
Change in FEV$_1$% with Ivacaftor

Rowe et al., Am J Resp Crit Care Med, 2014
Change in *P. aeruginosa* Culture Rate

Percent with *Pseudomonas Aeruginosa* & 95% CI

- [-12, -6) months: 55% (N: 126)
- [-6, 0) months: 52% (N: 143)
- [0, 6) months: 34% (N: 122)
- [6, 12) months: 35%

*Change in *P. aeruginosa* Culture Rate*

- *p < 0.01*
- **p < 0.001 Wilcoxon sign test*

Beneficial effect of Ivacaftor on Sputum Microbiology

Heltshe S et al., Clin Infect Dis. 2015 Mar 1;60(5):703-12
MCC Imaging

Pre-drug

Post-drug

Scott Donaldson, Sub-study PI; Images courtesy Tim Corcorran, U Pittsburgh
Correction of F508del is an Important but Challenging Therapeutic Target

- F508del CFTR exhibits multiple defects:
 - Impaired cellular processing due to improper protein folding, resulting in degradation
 - Small amounts of F508del-CFTR that are delivered to membrane exhibit defective gating
 - Poor membrane half-life and increased turnover
Increased Activity of F508del Homozygous CFTR in Cell Cultures with Lumacaftor in Combination with Ivacaftor

F508del-CFTR Chloride Transport (% of normal CFTR)

- No drug
- Ivacaftor Alone (3 μM)
- Lumacaftor Alone (3 μM)
- Lumacaftor + Ivacaftor (3μM + 3μM)

+ CFTR corrector

+ CFTR potentiator

P=0.0189
P=0.0033
P=0.0288
P=0.0119
P=0.0189

Modified from Van Goor et al. PNAS 2011
Lumacaftor/Ivacaftor Combination Therapy: FEV$_1$ % predicted in F508del homozygous patients

![Graph showing change in absolute FEV$_1$ % predicted (mean ± 95%CI) for monotherapy and combination therapy over days 1 to 56.](image)

- **Monotherapy**
- **Combination**

- * $P<0.05$ within-group
- ** $P \leq 0.01$ within-group
- † $P<0.05$ vs placebo
- †† $P<0.01$ vs placebo

Study Design

- Two Phase 3, randomized, double-blind, placebo-controlled, parallel-group study. Patients who completed TRAFFIC/TRANSPORT were able to enter the PROGRESS (105) rollover study.
 - Conducted at 187 sites in North America, Europe, and Australia
 - TRAFFIC: Ambulatory ECG in a subset; TRANSPORT: Adolescent PK in a subset
- Key eligibility criteria:
 - Age ≥ 12 years, confirmed CF diagnosis
 - Homozygous for $F508del-CFTR$
 - Percent predicted FEV$_1$ ≥ 40 to ≤ 90 at screening
Percent Predicted FEV$_1$: Pooled TRAFFIC & TRANSPORT

Absolute Change from Baseline in Percent Predicted FEV$_1$

<table>
<thead>
<tr>
<th>Treatment Description</th>
<th>Treatment Difference vs Placebo (P-value)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LUM 600 mg qd + IVA 250 mg q12h</td>
<td>3.3 (P<0.0001)</td>
</tr>
<tr>
<td>LUM 400 mg q12h + IVA 250 mg q12h</td>
<td>2.8 (P<0.0001)</td>
</tr>
</tbody>
</table>

*As assessed by the average absolute change from baseline at Weeks 16 and 24 according to the prespecified statistical analysis plan.
Analysis of Pulmonary Exacerbations: Pooled

<table>
<thead>
<tr>
<th>Group</th>
<th>Number of Events (rate/ 48 weeks)</th>
<th>Rate Ratio vs Placebo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Placebo</td>
<td>251 (1.14)</td>
<td>--</td>
</tr>
<tr>
<td>LUM 600 mg qd + IVA 250 mg q12h</td>
<td>173 (0.80)</td>
<td>0.70, P=0.0014</td>
</tr>
<tr>
<td>LUM 400 mg q12h + IVA 250 mg q12h</td>
<td>152 (0.70)</td>
<td>0.61, P<0.0001</td>
</tr>
</tbody>
</table>
PROSPECT PART B

Cohort 3 (DF508) Part A
Visit 1 Visit 2 Visit 3
Day 0 Day 14 Month 3
Note: V3 would be skipped if Day 1 (and V4 are scheduled prior to V3 (Month 3) of Part A

Additional DF508 homozygous subjects allowed to enroll in PART B only

Decision made to start 809/770? (Anytime after V2)

Visit 4 Day 1 Visit 5 Visit 6 Visit 7 Visit 8
First dose of lumacaftor/ivacaftor 1 months after Day 1 3 months after Day 1 6 months after Day 1 12 months after Day 1

Part B Core Procedures
- Specimen Collection for Banking:
 - Serum/Plasma/Buffy Coat
 - Urine
- Nasal Epithelial Cell Procurement (at selected sites)
- Sweat Chloride
- Clinical Labs:
 - CBC w/diff
- Spirometry
- Sputum induction:
 - Inflammatory mediators
 - Microbiome
 - Bank

Part B Sub-Studies
- MBW/FENO Sub Sites (N= 10)
 - MBW (V 4,5,6,7,8)
 - FENO (V4,5,7)
- MBW/FENO Sub Subjects (N= 68)
- MCC Sub Sites (N= 4)
 - MCC Sub Subjects (N=44)*
 - Sub-set of MBW/FENO subjects
 - MCC (V4,5)
- GIFT Sites (N= 30)
 - GIFT Subjects (N=75)
 - Fecal Collection (V 5,6)
 - Breath Test (V 4,5)
 - HbA1C (V4,7,8)
 - 2 HR OGTT (V4,5,7,8)
 - glucose/insulin/c-peptide (0, 30, 60, 90, 120 min)
- pH Pill Subjects (N=20)*
 - Sub-set of GIFT subjects
 - V (4, 5)
Mapping Pharmacological CFTR Response Onto Genotype-Phenotype Relationship

Adapted from Wilschanski et al., AJRCCM 2006
Solving the F508del Problem Will Likely Require Multi-agent Therapy

- CFTR correction of F508del for single agents is still inherently inefficient
- The next challenge is to develop corrector and potentiator combinations that achieve near normal processing and function
- New discoveries pinpointing F508del-induced defects are providing precise molecular targets and a new path for discovery
- However, there are challenges:
 - Agents may interact in negative fashion
 - Need means to predict efficacy on an individual level
Major ‘Shots on Goal’ for CF therapy in the next few years

- New companies with potentially advantageous CFTR modulators
 - Potentiators, correctors, **translational readthrough agents**
- Multi-agent corrector therapy
- Circumventing CFTR by other ion transport agents
 - ENaC blockers, TMEM agonists
- **Tools for individualizing CFTR-directed therapies**
- Targeting CF mucus itself
Premature Termination Codons (PTCs) Frequently Cause Human Disease

Transcription

mRNA

Translation

Truncated Protein (non-functional, unstable)
Molecular Mechanism of Translation Termination

Translation Termination: ~99.9%

Translation Elongation: ~0.1%
(Readthrough)

Polypeptide Release Factors

Near-Cognate tRNA

UAG

AUA

Truncated Protein
1600 clinically approved compounds

- TECC assay
 - FRT G542X cells (10 μM)
 - 58 hits
 - 30 removed (Specificity)
 - 28 hits
 - 29 removed (Repeat, n=3, Gt)
 - 8 Lead hits
 - 6 removed (Specificity, Gt)
 - 5 removed (Poor efficacy)
 - Dose Response in TECC Dual Luciferase HRP assay
 - Isc on HBE ΔF508/G542X cells
 - Herbal agent ESCIN

- Dual Luciferase assay
 - QXN UGAC & CFTR G542X (10 point dose response)
 - 115 hits
 - 90 removed (Repeat & medicinal properties)
 - 25 hits
Hits identified from the primary high throughput screens

Hits identified from Luciferase assay (SR)

Hits identified from TECC assay
Major ‘Shots on Goal’ for CF therapy in the next few years

- New companies with potentially advantageous CFTR modulators
 - Potentiators, correctors, *translational readthrough agents*
- Multi-agent corrector therapy
- Circumventing CFTR by other ion transport agents
 - ENaC blockers, TMEM agonists
- **Tools for individualizing CFTR-directed therapies**
- Targeting CF mucus itself
Nasal Cells from a CF Donor
μOCT capabilities ex vivo

Available metrics:

- Airway surface liquid thickness
- Periciliary liquid thickness
- Ciliary beat frequency
- Mucociliary transport rate

Functional Consequences of Cystic Fibrosis

WT

Non-CF HBE cells 0.0000 sec

CF HBE cells

WT

CF

n=8 derived from 4 donors each
μOCT Imaging of G551D/F508 HBE

N=10 measures

Forskolin + VX-770

Forskolin

10μm G551D Frame rate: 32 fps Time: 0.03 s
Effect of Ivacaftor on G551D/F508del HBE Viscosity
Effect of CFTR modulators on mucus viscosity
In vitro ion transport predicts in vivo sweat chloride whereas in vitro MCT predicts clinical response.
ASL \[\mu m\]

frequency [lines]

filter

cells

MCT \[\mu m/\text{second}\]

frequency [images]

HAE normal Frame rate: 32 fps Time: 0.83 s

ASL [microns]

MCT [microns/second]
μOCT probe (outer tube removed)
Swine \textit{in vivo} 50 \mu m

- Adult swine trachea
- 5-10 second balloon inflation time
- 40 fps ASL

Time

CBF

PCL

MCT

ASL
Development of Nasal Cell Organoids as a Tool for Precision Medicine

J Guimbellot
An inherent mucus abnormality contributes to CF Pathogenesis

- A hypothesis regarding abnormal CF mucus has gained significant traction since it links the mucus defect in the respiratory and other organs, such as the pancreas or GI tract.

- This could also explain CF severity as opposed to other diseases of mucociliary clearance.

- A new treatment for abnormal mucus would address serious unmet medical need.
CF: The ‘Mucoviscidosis’
Mucin Reactions Post-Release: An electrostatically driven reaction?

\[\text{Ca}^{2+}\text{-Mucin} + 2\text{Na}^+ \rightleftharpoons 2\text{Na}^+\text{-Mucin} + \text{Ca}^{2+} \]
PAAG may be a Mucolytic and ‘Adhesiolytic’ by electrostatic interactions

\[
\text{Ca}^{2+}\text{-Mucin} + \text{PAAG} + 2\text{Na}^+ \leftrightarrow \text{PAAG-Mucin} + 2\text{Na}^+ + \text{Ca}^{2+}
\]
PAAG Reduces CF Sputum Viscosity and Elasticity

![Graph showing the reduction of sputum viscosity and elasticity with PAAG treatment compared to PBS.](image-url)
PAAG Increases Particle Diffusion

PBS Control

PAAG (500 µg/ml)

500 nm PEG coated fluorescent nanoparticle

Viscosity at Frequency 0.6 Hz

- PBS
- PAAG (250 µl/ml)
- DNase (250 µl/ml)
- PAAG+DNase
PAAG In Situ: Effects on Viscosity and Functional Microanatomy

*P<0.05, ****P<0.0001
A Personalized Era of CF Therapeutics

- From discovery to proof of concept to clinical approval and wide use in select patients
- Ivacaftor is effective at treating a variety of CF individuals with ‘responsive’ CFTR mutations
- Combination corrector-potentiatior therapy improves CFTR function and clinical outcomes even to the relatively challenging F508del CFTR mutation
- Future multi-agent corrector or other combination therapies may improve outcomes further
- New tools are emerging to test drug responsiveness and improve biomarkers of responsiveness
- New concepts including addressing abnormal CF mucus itself
Acknowledgements

- Cystic Fibrosis Foundation Therapeutics
 - Elizabeth Joseloff (CFF Program Manager)
- GOAL Study Sub-Study PIs:
 - Tanja Gonska (Sweat Rate)
 - Scott Sagel (Sputum Inflammation/Microbiome)
 - Drucy Borowitz/Daniel Gelfond (pH Pill)
 - Scott Donaldson (MCC Rheology)
- TDNCC:
 - Nicole Hamblett (TDNCC PI)
 - Jill VanDalfsen (Director of Clinical & Network Operations)
 - Sonya Heltshe (Lead Biostatistician)
 - Umer Khan (Biostatistician)
- Investigators/Research Coordinators at participating sites
- CF patients and families

- Rowe Laboratory
 - Susan Birket
 - Courtney Fernandez
 - Jennifer Guimbellot
 - Brett Turner
 - G. Martin Solomon
- Industry Partners
 - Vertex Pharmaceuticals
 - PTC Therapeutics
- UAB Center for CFTR Detection
 - Heather Hathorne
 - Ginger Reeves
 - Bo Liu
- Tearney Laboratory, Wellman Center for Photomedicine
 - Gary Tearney
 - Ken Chu