My Dream Job: Science Writer
By: Ms. Cecil Benitez

Science writing: Communicates often arcane and complex discoveries or breaking news in science to the lay audience. Science fields can range from virology, neurology, to astrology. This scientific information often has to be put into political, historical and social context.

Ways of communicating science or science journalism
• Science writer for journals (science, popular science, ScienceNOW etc.)
• Science writer for large organizations (Universities, NSF, NIH)
• Science writer for museums and zoos
• Freelance (sell your articles)
• Writer for instruction manuals (technical writing)
• Writing research articles for large corporations (technical writing)

Science writing is no longer confined to print but also includes production for blog posts, podcasts, and website design. The goal is to use technology to best communicate and interact with audiences.

Profile of a science writer:
Likes to communicate ideas to the general public.
Enjoys science but gets bored with details (likes more broad learning)
Enjoys learning about different topics and writing about those topics.
Even enjoys sitting down to write emails.

Job Titles:
Science staff writer, health communication specialist, science journalist

Qualifications: Experience in writing and science background (PhD helps)

Challenges:
• Newspapers, etc. can have very short deadlines and have frequent travel
• Decline in newspapers and magazine circulation decreases jobs for writing for these organizations.

Salary Range ($40k to 100k depending on expertise on organization)
• Entry jobs at small newspapers, magazines, radio and TV start with a salary of $40,000/year
• Larger newspapers and with a lot of experience it may be $80,000/years. PhD boosts earning potential but these jobs are declining.
• Science correspondents for national radio and TV ($100,000/year)
• Freelance writers- more variable and less stable with average pay of $54,000 for experienced freelancer. Many hold other job and do freelance on the side.
• Writers for large organizations such as universities and governments, or corporate laboratories (i.e. Genentech) can start at $60-70,000/year with a science background. Experienced employees can make $100,000/year or more

Process of writing scientific articles
• Background information on the topic (journals, government records, blogs, news releases, etc)
• Interview scientists in the field, attend conferences and do not afraid to ask “stupid” questions (It is often harder to write in your own field than outside)
• Get good editing

Ways to prepare yourself while in graduate school
1) Write, write, and write some more! (For schools newspaper, newsletters, look for internships and fellowships)
2) Find a good editor that will improve your writing.
3) Formal training through the UCSC science communication program.
4) Develop multimedia and social media skills. Learn how to use photo and video editing software, and understand how to manage a blog, podcasts and Facebook and Twitter posts.
5) Read science articles like ScienceNOW and Science blogs
6) Join writing societies
7) Read job descriptions and arrange informational interviews with people in the field.

Internship Ideas:
Radio stations, Museums, Zoos, nonprofit organizations, Nature news (daily online news published by Nature), Newspapers, ScienceNOW, Campus newspapers, Wired.com, etc

Resources
Society of Technical Communication
http://www.stc.org/

National Association of Science Writers (NASW)
http://www.nasw.org/

Council for the Advancement of Science Writing (CASM): Have guide to careers in science writing and other resources
http://casw.org/

Northern California Science Writers Association (NCSWA)
http://www.ncswa.org/

Science Blogs
http://scienceblogs.com/

Stanford University News Service,
http://news.stanford.edu/

Stanford University School of Medicine Public Affairs
http://mednews.stanford.edu/

Stanford’s Program in Writing and Rhetoric (PWR)
Currently hiring PhD in sciences to teach and they will train you to write.
http://pwr.stanford.edu

UC Santa Cruz Science Communication Program: Specializes in science journalism. It is a year long program that has an internship component. It requires that applicants have a degree in science and research experience.
http://scicom.ucsc.edu/

AAAS Mass media Science and Engineering Fellows Program- 10 week program during the summer as reporters, researchers and production assistants in mass media organizations nationwide such as in radio, television, newspapers, and magazines.

Applicants must be enrolled in college or university or have completed a degree in the natural, physical, health, engineering, computer, or social sciences or mathematics. Graduate and doctoral students are welcome to apply. If you graduated must be within 1 year to apply. You get a weekly stipend of $450 a week.

http://www.aaas.org/programs/education/MassMedia/program.shtml

AAAS Science and Technology Policy Fellowships: One or two-year fellowship where participant is matched to a federal agency (NSF, State of department, NIH, etc). Yearly stipend ranges from $74,872 to $99,829. Must have PhD at the time of application. Very competitive.
http://fellowships.aaas.org/01_About/01_index.shtml

Health Communications Internship program (HCIP)- One year program that is sponsored by NCI, for qualified graduate students and recent graduate degree recipients to participate in health communications and science writing.
https://hcip.nci.nih.gov/hcip/

Christine Mirzayan Science and Technology Policy Graduate Fellowship Program- two month long program similar to the AAAS fellowship only less formal.
http://sites.nationalacademies.org/pga/policyfellows/

Job posting Example for Health Communications Specialist through the CDC
http://www.usajobs.gov/GetJob/ViewDetails/315925600
CIA (Central Intelligence Agency)
Mei-Hsin Cheng

• What does the CIA do?
 o They do not do policy. Their primary role is to inform the president.

• General Information about CIA careers.
 o Many people stay there for their entire career. 3% attrition rate.
 o “Need to know philosophy”
 o Flexibility comes from internal externships. (different CIA departments)
 o Loan forgiveness program
 o Mostly entry level jobs

• CIA Organization: Directorates
 o Directorate Intelligence
 ▪ Analysts- write reports.
 ▪ President daily brief 6 days/week.
 ▪ Skills: write, read, speak, work well
 o National Clandestine Service
 ▪ James Bond/spies
 ▪ Field – 75% on tours (2 years)
 ▪ Headquarters- 25 to 30% of the time
 o Science and technology
 ▪ “Q”/Tech support
 ▪ They look more for engineers
 ▪ Bioterrorism, genetics for identifying disease risk and identifying people
 o Support
 ▪ Admin, public affairs, doctors/medical services, librarians, business
 o Director (not a directorate but office)

• Where do PhDs fit in?
 o https://www.cia.gov/careers/index.html
 o Scientists: counter intelligence, terrorism, weapons
 o Engineers: Science and Technology

• Application process
 o https://www.cia.gov/careers/application-process/index.html
 o Online application. You can apply to up to four different, but the positions you apply for should make sense.
 o Attachments to the app are just more info. Doesn’t give you an advantage
 o After you submit online app, there is a 45 day review period.
 ▪ Hear nothing ➔ not hiring for a position suitable to you or you are not best fit. You can reapply in 9-12 months.
 ▪ If you hear something:
 • NCS- phone interview
 • DI- They will ask for writing samples and you will take tests.
Interview process: if you do well conditional offer for employment
You will still need to pass security/medical test- background check, polygraph.
This is repeated every X years.
Whole process: 9-12 months

Skills Valued
- Languages.
 - They also support learning languages and people get compensated for learning languages. They want language to be at the “PhD level” for tests
- Good to have worked or traveled abroad.
- Communication is key. People need to write to intelligent lay people.
- People need to work well with others.

Government Regulatory Agencies
- Congressional Budget Office (CBO)
 - Neutral/no spin agency.
 - They calculate the congressional budget.
 - CBO structure
 - Director
 - Branch heads
 - Analysts
- Centers for Disease Control and Prevention (CDC)
- Food and Drug Administration (FDA)
 - ISTJ= likely to succeed here.

How to get these positions
- Networking
- Internships

General Government Career Trends
- Important to demonstrate your fit/how you can apply your transferable skills.
- In these careers, you won’t necessarily be using the “facts” you learned at a PhD student but you will be applying your skills (asking good questions, critical thinking, problem solving, etc.)
- People like mobility. You will move up faster if you leave and come back and/or go between different agencies.
- Government jobs are stable but payment is usually lower than industry.
- Always bureaucracy. It takes a while for someone to get hired.
- Hard to do inter agency collaborations

Networking Tips
- Get business cards and linked in.
- Write brief notes on people right after you meet them on the back of their card.
• Keep in touch periodically and not just when you need a job or internship.
I would like to be … a PI at the NIH
Laura Sanman

What is the job like?
• Much like being a PI in academia except…no worrying about grants!
• More bureaucracy and acronyms, no undergraduate presence

What is the typical path to becoming a PI at the NIH?
• There is no ‘typical’ path, but exposure to NIH at any point is helpful, such as:
 • Graduate Partnerships Program (https://www.training.nih.gov/programs/gpp)
 • Postdoctoral Program
 • Research Fellows Program

Principle Investigator Positions:
• Tenure-Track
 o While Tenure-Track, undergo review by the Board of Scientific Counselors at least every 4 years to ascertain progress in science and mentoring
• Tenured
 o Transition from Tenure-Track to Tenured comes from review by the Central Tenure Committee; not all get sent there or even pass

What are key skills I can develop during my time at Stanford?
• Communication skills: publish, apply for grants, present posters and talks
• Mentorship skills: take on an undergrad or younger graduate student, volunteer
• Be relatable: they are hiring a colleague, not just a brilliant scientist

More About the NIH

Facts and Figures:
• $32 billion budget
• 10% of budget is intramural research, 80+% is extramural research
• 3800 postdocs, 900 senior investigators, 240 tenure track investigators, 500 graduate students
• Main campus in Bethesda, MD; branches in Rockville, Frederick, and Baltimore MD, Hamilton MT, Phoenix AZ, Research Triangle NC, Detroit MI, Framingham MA

Organizational Structure:

NIH Director’s Current Research Emphases:

• High Throughput Analysis of –omics Scale Data
• Translational Science
• Health Care Reform
• Global Health

Institutional Goals:
• Foster scientific discovery and innovation to protect and improve health
• Develop and maintain human/physical resources to ensure disease prevention
• Expand the medical and scientific knowledge base to enhance the Nation’s economic well-being
• Exemplify and promote scientific integrity, accountability, and responsibility

Useful Links:
• http://intramural.nih.gov/search/index.html
• https://www.training.nih.gov/career_services/postdoc_jobs_nih
• https://www.training.nih.gov
What is Science Diplomacy?

- Using science to build bridges between countries and to promote scientific cooperation as an essential element of foreign policy
- Science opens doors for communication when politics are challenging and official relationships are unstable, to paraphrase Henry Kissinger’s own words, “there is nothing more international than science.”
- “Scientific partnerships are based on disciplines and values that transcend politics, languages, borders, and cultures.” (Robert D. Hormats; served as the U.S. Under Secretary of State for Economic Growth, Energy, and the Environment since 2009.)

History and the Future:

- President Richard Nixon’s historic visit to China in 1972: In the Shanghai Communiqué, science was noted as one of the areas for future cooperation between the United States and China - now it is one of our largest cooperative programs
- In 1985 President Ronald Reagan stated, “We can find, as yet undiscovered, avenues where American and Soviet citizens can cooperate fruitfully for the benefit of mankind In science and technology, we could launch new joint space ventures and establish joint medical research projects.”
- In 1999 a science adviser to the secretary was appointed and there was a 15 fold increase in the number of PhDs working in the State Department.
- In Cairo, Obama announced that the United States would “open centers of scientific excellence in Africa, the Middle East and Southeast Asia, and appoint new science envoys to collaborate on programs that develop new sources of energy, create green jobs, digitize records, clean water, and grow new crops.”

Who is involved?

- **AAAS: American Association for the Advancement of Science**
 - International Office http://www.aaas.org/programs/international/
 - Quarterly Magazine http://www.sciencediplomacy.org
 - AAAS S&T Policy Fellowships: Diplomacy, Security, & Development Program Area
 - USAID, Department of State, Fogarty, Foreign Agricultural Service

- **USAID: U.S. Agency for International Development**
 - Partnerships for Enhanced Engagement in Research (PEER) program w/NSF:
 - Where scientific research meets global development challenges

- **U.S. Department of State:**
 - Under Secretary for Economic Growth, Energy and the Environment
 - Bureau of Oceans and International Environmental and Scientific Affairs
 - **Genya Dana, Ph.D.** works on biodiversity issues at the international level
 - Office of the Science & Technology Adviser (see Izumi’s Section)
Sandra Laney, Ph.D. works on NeXXT Scholars Program: increase opportunities for young women to earn undergraduate degrees at US institutions in STEM fields

Office of Science and Technology Cooperation

Jeffrey Margolis, Ph.D. Helps developing countries build their science and technology programs (Stanford M&I Alum)

Office of the US Global AIDS Coordination

Mission is to lead implementation of the U.S. President's Emergency Plan for AIDS Relief (PEPFAR) http://www.pepfar.gov/about/index.htm

Mamadi Yilla, Ph.D. Senior Public Health Advisor for Sustainability and Integration

Post-Doc @ MIT then started her public health career as a **Center for Disease Control (CDC)** Research Fellow

NIH: National Institute of Health

Mission: The Fogarty International Center is dedicated to advancing the mission of the National Institutes of Health by supporting and facilitating global health research conducted by U.S. and international investigators, building partnerships between health research institutions in the U.S. and abroad, and training the next generation of scientists to address global health needs.

Some Institutes (see Laura’s section) have their own international component.

U.S. Department of Agriculture (USDA) Foreign Agricultural Service

NGO: Non-governmental Organization

US National Academies of Science (NAS) connects with Iran

University Collaborations: Syracuse University and Kim Chaek University of Technology in North Korea

What skills make science diplomats successful?

- Communication and interpersonal skills
 - writing, speaking, brevity, and patience
- Flexibility and Adaptability
- Leadership and Confidence
- Organized, Dependable and Punctual

What can I do now to better my skills and get experience?

During Grad School:

- NSF GRFP: Study abroad options
- Attend international conferences
- Set up international collaborations
- Volunteer for a range of activities
- Take a leadership role in an organization
- Take advantage of international events on campus
- Learn a foreign language or enhance your abilities
- Stanford Graduate Summer Institute Courses

Post-Grad:

- Peace Corps
- International Fellowships/Internships
- AAAS Science & Technology Policy Fellowship
- International Post-doc
Science and Technology Adviser
Izumi Hinkson

What is STEM Policy?
- Laws/regulations on scientific issues. Ex) environment, health care, bio/nuclear weapons

What is Policy for STEM?
- Laws/regulations for scientific research. Ex) NIH funding, stem cell research

Who is involved?
- Department of State's Office of Science and Technology Adviser to the Secretary of State (STAS)
 - Provides scientific and technical advice and resources to bureaus and offices at the U.S. Department of State, building upon the Secretary of State's emphasis on utilizing "smart power," "economic statecraft," and "whole-of-society" approaches.
 - Reporting to the Under Secretary for Economic Growth, Energy, and the Environment (E), E/STAS promotes science, technology, and engineering as integral components of U.S. diplomacy.

Approved May 2012
- William Colglazier, Ph.D.
 - Science and Technology Adviser to the Secretary of State (STAS)
- Sandra Laney, Ph.D.
 - Senior Adviser, Office of STAS
 - AAAS S&T Fellow
- Genya Dana, Ph.D.
 - Life Science Officer, Office of Ecology and Conservation
 - AAAS S&T Fellow
- Brian Patten, Ph.D.
- Program Specialist, International Communications and Information Policy/Multilateral Affairs
 - AAAS S&TP Fellow
- Christopher Hofmann, Ph.D.
 - Foreign Affairs Officer, Office of Policy and Public Outreach
- Mamadi Yilla, Ph.D., MS
 - Director for Sustainability and Integration, Office of the US Global AIDS Coordinator

- Executive Office of the President’s Office of Science and Technology Policy
 - John P. Holdren
 - Assistant to the President for Science and Technology
 - Divisions
 - Science
 - Technology
 - Environment and Energy
 - National Security and International Affairs
 - National Science and Technology Council (NSTC)
 - Chaired by the President, the membership of the NSTC is made up of the Vice President, the Director of the Office of Science and Technology Policy, Cabinet Secretaries and Agency Heads with significant science and technology responsibilities, and other White House officials. The Council prepares research and development strategies that are coordinated across Federal agencies to form investment packages aimed at accomplishing multiple national goals. The work of the NSTC is organized under five primary committees: Environment, Natural Resources and Sustainability; Homeland and National Security; Science, Technology, Engineering, and Math (STEM) Education; Science; and Technology.
 - President’s Council of Advisors on Science and Technology
 - PCAST is an advisory group of the nation’s leading scientists and engineers who directly advise the President and the Executive Office of the President. PCAST makes policy recommendations in the many areas where understanding of science, technology, and innovation is key to strengthening our economy and forming policy that works for the American people.

How can I get involved?
- Networking!
- School of Medicine Career Center (http://med.stanford.edu/careercenter/)
 - Stephanie Eberle
- Bechtel International Center (http://icenter.stanford.edu/)
 - Diane Murk
 - Manager, Overseas Resource Center
 - Overseas Scholarships (http://icenter.stanford.edu/orc/scholarships.html)
- Fellowships
 - American Association for the Advancement of Science (AAAS) Science and Technology Policy Fellowships Program (http://fellowships.aaas.org/)
 - Scientists and engineers with Ph.D.-level credentials and experience to work in congressional offices and executive branch agencies for one or two years. The aim is to foster scientifically informed, evidence-based policy and practice by engaging scientists and engineers from a broad range of disciplines, backgrounds, and career stages to directly contribute their knowledge and analytical skills to the federal government.
 - Richard Weibl
 - Director, Project on Science, Technology and Disability, Center for Careers in Science and Technology
 - Jason Feser, Ph.D.
 - Science and Technology Policy Fellow, National Science Foundation Division of Undergraduate Education
• AAAS S&TP Fellow
 Jennifer Shieh, Ph.D.
 • Health Scientist, National Canter Institute Small Business Innovation Research Development Center
 • AAAS S&TP Fellow
 • Mirzayan Fellow (former)

Christine Mirzayan Science and Technology Policy Graduate Fellowship (http://sites.nationalacademies.org/PGA/policyfellows/index.htm)
 designed to engage its Fellows in the analytical process that informs U.S. science and technology policy. Fellows develop basic skills essential to working or participating in science policy at the federal, state, or local levels.
 • Graduate and professional school students and those who have completed graduate studies (degree awarded) within the last five years may apply. Areas of study may include any social/behavioral science, medical/health discipline, physical or biological science, any field of engineering, law/business/public administration, or any relevant interdisciplinary fields.
 • Jennifer Shieh, Ph.D.

• Professional Science and Engineering Society Fellowship Program
 • American Institute of Physics (AIP)
 • Institute of Electrical and Electronics Engineers (IEEE)

Jefferson Science Fellowship Program (http://sites.nationalacademies.org/PGA/Jefferson/index.htm)
 Jefferson Science Fellows are tenured faculty members in scientific disciplines at U.S. universities who work at the Department of State or the U.S. Agency for International Development for one year, and then remain available as consultants after returning to their academic careers.

William C. Foster Fellows Visiting Scholars Program (http://www.state.gov/t/avc/c40184.htm)
 The Foster Fellows program affords tenured and tenure-track academic faculty the unique opportunity to bring their research and expertise to the Department of State to assist in policy and programmatic development in arms control, nonproliferation, and disarmament activities.

Franklin Fellows Program (http://www.careers.state.gov/ff)
 The Franklin Fellows Program is a unique and innovative executive development vehicle which enables approved organizations to promote public service by their professionals. Experts with a minimum of five years of relevant, professional-level experience may perform a year of public service as Franklin Fellows at the Department of State or USAID. The goal of the program is for Fellows to provide valuable and pertinent advice, views, opinions, alternatives or recommendations on foreign policy and development issues facing the nation, while participating in the implementation of those policies.

Dean John A. Knauss Marine Policy Fellowship (http://www.seagrant.noaa.gov/knauss/)
 The National Sea Grant College Program Dean John A. Knauss Marine Policy Fellowship, established in 1979, provides a unique educational experience to students who have an interest in ocean, coastal and Great Lakes resources and in the national policy decisions affecting those resources. The program matches highly qualified graduate students with “hosts” in the legislative and executive branch of government located in the Washington, D.C. area, for a one year paid fellowship.

Fulbright Scholars Program (http://www.cies.org/Fulbright/)
 The Fulbright Program offers grants to study, teach and conduct research for U.S. citizens to go abroad and non-U.S. citizens to come to the United States.

Student Internship Programs (http://careers.state.gov/students/)
The U.S. Department of State offers a number of internship and fellowship opportunities for high school, undergraduate, graduate students.

What skills do I need?
- Communication
- Leadership/Interpersonal
- Flexibility
- Critical thinking/Problem solving

How can I develop these skills?
- Communicate science to the lay audience
 - Talk about your research to your family
 - Stanford at the Tech – 1 year waiting list
 - Teaching
 - TA courses
 - Mentor an undergraduate
 - Teach science at the grade school level
 - Give research presentations
 - Departmental seminars/retreats
 - Attend conferences
 - D-school courses
 - Stanford’s Summer Institute for Entrepreneurship (SIE)
 - Stanford Graduate Summer Institute (SGSI)
- Leadership
 - Mentoring
 - Mentor an undergraduate
 - Rotation students
 - Student organizations
 - Leadership Labs, VPGE (http://vpge.stanford.edu/students/leader_labs.html)
- Critical thinking/Problem solving
 - Get a Ph.D. in science, duh.
 - Internships
 - Post doc, if you want.
 - Experience in academia or industry
My Dream Job: Professor at a Minority Serving Institution (MSI) and Community Science Education-Initiative(s) Organizer
Tiffany R. Williams

WAIT, what is an “MSI”?!

According to the National Center for Education Statistics institutions are classified as "minority-serving" based on either one of two separate criteria:

“legislation or the percentage of minority student enrollment. In Title III of the Higher Education Act of 1965, Congress identified a specific set of accredited institutions that had been founded prior to 1964 and whose primary mission was the education of African Americans as Historically Black Colleges and Universities (HBCUs)...Tribal Colleges and Universities (TCUs) are also designated by law. They include institutions cited in Section 532 of the Equity in Educational Land-Grant Status Act of 1994, any other institution that qualifies for funding under the Tribally Controlled Community College Assistance Act of 1978, and Diné College, authorized in the Navajo Community College Assistance Act of 1978. Most of these institutions are chartered by tribes themselves and serve American Indian students on reservations, although a few have been chartered by the federal government to serve American Indian populations. Both HBCUs and TCUs are defined by law, and therefore cannot increase in number unless Congress acts to designate additional institutions as HBCUs or TCUs....For the most part, institutions that enroll at least 25 percent of a specific minority group are designated as “minority-serving” for that group.”

This includes HBCUs; Black-serving non-HBCUs (where Black students are at least 25 percent of student population and all other minority groups are less than 25 percent of student enrollment); Hispanic-serving institutions; Asian-serving institutions; American-Indian serving institutions; and other minority-serving institutions.

I heard that the NSF provides funding opportunities for professors interested in starting research programs at their MSI...is that true? Who’s the NSF anyway?

The NSF - or the “National Science Foundation” (http://nsf.gov/) - was established in 1950. It is an independent agency, and the Director and Deputy Director are Presidentially appointed. The NSF provides pre-kindergarten to career science education support as well as basic science research across Science, Technology, Mathematics and Engineering (STEM). A new NSF initiative, ONE NSF, encompasses a partnership with science, engineering and education communication, and identifies policies, strategies and practices to foster culture and a workplace based on cooperation across disciplines. I will highlight a few of the funding opportunities through ONE NSF.

- CREST - or Centers for Research Excellence in Science and Technology. CREST is a program that provides funding for resources to enhance undergraduate research at MSIs and to increase diversity in STEM.
- MSP - or Math and Science Partnership - funding to improve k-12 education by uniting scientists, schools, and students.
● ADVANCE - Institutional transformation to support leadership paths for women in STEM. Since 2001, the NSF has poured over $130 million to support ADVANCE projects at over 100 institutions of higher ed and STEM-related not-for-profit organizations across the US, District of Columbia, and Puerto Rico.

For a more extensive list of funding opportunities available for undergraduate research, check out the following link in your “free time.” On the website, you will also have access to the recently funded organizations and institutions and their abstracts!

http://www.nsf.gov/funding/education.jsp?fund_type=1

The NSF also provides funding for junior faculty - check out the CAREER Program!

● The CAREER Program is an NSF-wide activity offering their most prestigious awards that support junior faculty who “exemplify the role of teacher-scholars through outstanding research, excellent education and the integration of education and research within the context of the mission of their organizations.”

● women, underrepresented minorities and persons with disabilities are especially encouraged to apply

● provides $500,000 over 5 years

● For more information check out this link:
http://www.nsf.gov/funding/pgm_summ.jsp?pims_id=503214

Well, the NSF sounds kinda cool...but, I'm not sure I'm interested in teaching...or, I'm thinking about taking a sabbatical - what opportunities are available for me through the NSF now???

So glad you asked...

First, know that the NSF seldom hires for permanent positions to people pre-tenure. However, let's quickly examine some fellowship opportunities available through the NSF....

1. Einstein Fellowship - wait, I'm not a theoretical physicist...*sad face*... - this fellowship is actually for accomplished K-12 educations in the STEM and provides them with a unique opportunity to serve in the national education arena. Fellows spend 11 months working in a Federal agency or in a U.S. Congressional Office and provide their extensive first-hand knowledge of the classroom to education program and/or policy efforts. Host agencies have included the NSF and the DOE, NASA, NIH, ED (Department of Education), etc...For more information, check out this link: http://www.trianglecoalition.org/einstein-fellows

2. “Rotators” - Rotators are temporary NSF hires from academia or industry who come to serve at the NSF for 1-4 years
 a. On the trip, I had the pleasure of meeting a “rotator,” an assistant professor at a Southwestern state university who requested an extended leave from his Dean to serve as a rotator. He continues to run a lab, and is provided from the NSF 50 days/year of Individual Research Development, paid leave where he returns to his university to conduct research and work with his students.
He currently serves in the capacity of Program Officer at the NSF, working on education programs.

3. Science Assistant Program - rotation program for master students; do a lot of data analysis, data mining, etc - after program completion, most go back to complete their PhD

4. AAAS Science and Technology Fellow - refer to Izumi

Any overseas opportunities?
Well, I do know of the Partnerships for Enhanced Engagement in Research (PEER), which provides competitively awarded grants to build science and engineering in developing countries. An awardee is provided an overseas research grant. This is a new initiative through the U.S. Agency for International Development (USAID) and the NSF that was launched Summer 2011. For more information, you’ll have to check out the link! http://www.nsf.gov/news/news_summ.jsp?cntn_id=124068

Whew, I’m all NSF-ed OUT!

Me too...