Stanford Cancer Institute Directory

Stanford Cancer Institute Profiles

Showing 91 - 100 of 472
    Associate Professor of Radiology (Pediatric Radiology)

    Bio

    My laboratory develops and implements ultrasonic beamforming methods, ultrasonic imaging modalities, and ultrasonic devices. Our current focus is on beamforming methods that are capable of generating high-quality images in the difficult-to-image patient population. These methods include general B-mode and Doppler imaging techniques that utilize additional information from the ultrasonic wavefields. We attempt to build these imaging methods into real-time imaging systems in order to apply them to clinical applications. Other projects in our laboratory include the development of novel ultrasonic imaging devices, such as small, intravascular ultrasound arrays that are capable of generating high acoustic output. These arrays are capable of generating radiation force in order to push on tissue to elucidate the mechanical properties and structure of vascular plaques.
    The J.G. Jackson and C.J. Wood Professor in Chemistry

    Bio

    Professor Dai’s research spans chemistry, physics, and materials and biomedical sciences, leading to materials with properties useful in electronics, energy storage and biomedicine. Recent developments include near-infrared-II fluorescence imaging, ultra-sensitive diagnostic assays, a fast-charging aluminum battery and inexpensive electrocatalysts that split water into oxygen and hydrogen fuels. Born in 1966 in Shaoyang, China, Hongjie Dai began his formal studies in physics at Tsinghua U. in Beijing (B.S. 1989) and applied sciences at Columbia U. (M.S. 1991). His doctoral work under Dr. Charles Lieber at Harvard U. (Ph.D. 1994) focused on charge-density waves and superconductivity. During postdoctoral research at Rice U. with Dr. Richard Smalley, he developed carbon nanotube probes for atomic force microscopy. He joined the Stanford faculty in 1997, and in 2007 was named Jackson–Wood Professor of Chemistry. Among many awards, he has been recognized with the ACS Pure Chemistry Award, APS McGroddy Prize for New Materials, Julius Springer Prize for Applied Physics and Materials Research Society Mid-Career Award. He has been elected to the American Academy of Arts and Sciences, AAAS and National Academy of Sciences. The Dai Laboratory has advanced the synthesis and basic understanding of carbon nanomaterials and applications in nanoelectronics, nanomedicine, energy storage and electrocatalysis. Nanomaterials The Dai Lab pioneered some of the now-widespread uses of chemical vapor deposition for carbon nanotube (CNT) growth, including vertically aligned nanotubes and patterned growth of single-walled CNTs on wafer substrates, facilitating fundamental studies of their intrinsic properties. The group developed the synthesis of graphene nanoribbons, and of nanocrystals and nanoparticles on CNTs and graphene with controlled degrees of oxidation, producing a class of strongly coupled hybrid materials with advanced properties for electrochemistry, electrocatalysis and photocatalysis. The lab’s synthesis of a novel plasmonic gold film has enhanced near-infrared fluorescence up to 100-fold, enabling ultra-sensitive assays of disease biomarkers. Nanoscale Physics and Electronics High quality nanotubes from his group’s synthesis are widely used to investigate the electrical, mechanical, optical, electro-mechanical and thermal properties of quasi-one-dimensional systems. Lab members have studied ballistic electron transport in nanotubes and demonstrated nanotube-based nanosensors, Pd ohmic contacts and ballistic field effect transistors with integrated high-kappa dielectrics. Nanomedicine and NIR-II Imaging Advancing biological research with CNTs and nano-graphene, group members have developed π–π stacking non-covalent functionalization chemistry, molecular cellular delivery (drugs, proteins and siRNA), in vivo anti-cancer drug delivery and in vivo photothermal ablation of cancer. Using nanotubes as novel contrast agents, lab collaborations have developed in vitro and in vivo Raman, photoacoustic and fluorescence imaging. Lab members have exploited the physics of reduced light scattering in the near-infrared-II (1000-1700nm) window and pioneered NIR-II fluorescence imaging to increase tissue penetration depth in vivo. Video-rate NIR-II imaging can measure blood flow in single vessels in real time. The lab has developed novel NIR-II fluorescence agents, including CNTs, quantum dots, conjugated polymers and small organic dyes with promise for clinical translation. Electrocatalysis and Batteries The Dai group’s nanocarbon–inorganic particle hybrid materials have opened new directions in energy research. Advances include electrocatalysts for oxygen reduction and water splitting catalysts including NiFe layered-double-hydroxide for oxygen evolution. Recently, the group also demonstrated an aluminum ion battery with graphite cathodes and ionic liquid electrolytes, a substantial breakthrough in battery science.
    Professor of Radiology (General Radiology) and, by courtesy, of Pediatrics (Hematology/Oncology)

    Bio

    Heike Elisabeth Daldrup-Link is a clinician-scientist in the Department of Radiology at Stanford University with subspecialisation in pediatric radiology, pediatric oncology imaging, and molecular imaging. Dr. Daldrup-Link trained at the University of Münster and the Technical University of Munich, Germany. She worked as an Assistant and Associate Professor at the University of California, San Francisco from 2003 to 2010, before joining Stanford Radiology in 2010. Her research interest focuses on the development of novel pediatric molecular imaging techniques, which interface observations of living cells with nanoparticle development and multimodality imaging technologies: Dr. Daldrup-Link developed several novel concepts for pediatric oncology imaging, such as tumor characterization through the EPR effect (US6009342-A), MR imaging of tumor associated inflammation with iron oxide nanoparticles (Clin Ca Res 2011), image-guided cancer therapy without side effects through tumor-enzyme activatable theranostic nanoparticles (Small 2014) and radiation-free whole body staging of children with cancer (Lancet Oncology 2014). Dr. Daldrup-Link’s cellular imaging studies also yielded several new and patented ideas for in vivo imaging of stem cell transplants establishing immediately clinically applicable technologies for: in vivo stem cell tracking with FDA-approved nanoparticles (US14/161,315), in vivo imaging of stem cell rejection processes with immune-cell targeted tracers, and MRI-detection of stem cell apoptosis with enzyme-activatable contrast agents (ACS Nano 2015). Over the past 10 years, Dr. Daldrup-Link's team has received 77 honors and awards for innovative cellular imaging research.
    Professor of Otolaryngology - Head and Neck Surgery (Laryngology) at the Stanford University Medical Center
    Professor of Radiology (Body Imaging)
    Associate Professor of Medicine (General Medical Disciplines) at the Stanford University Medical Center

    Bio

    I am a family doctor and physician scientist interested in translational research to improve preventive health and public health strategies to improve population health. My research focuses on the integration of clinical and translational research into nicotine dependence using genomic and neuromaging investigations to identify and validate biomarkers for smoking cessation, to reduce health disparities in cardiovascular disease and cancer, and to employ community engagement and clinical implementation science approaches to fill critical gaps in preventive medicine. Recent work includes the identification of a genome-wide significant genetic marker for smoking intensity in African Americans that is associated with pharmacogenetic treatment response for smoking cessation and risk of lung cancer in African Americans. I am also an investigator in the GWAS and Sequencing Consortium of Alcohol and Nicotine Use (GSCAN) and the NHLBI Trans-Omics for Precision Medicine (TOPMed) Consortium and the Stanford Precision Health for Ethnic and Racial Equity (SPHERE) Transdisciplinary Collaborative Center. Current and future research is translating evidence in systematic reviews and meta-analyses to evidence-based guidelines, investigations of publication bias and proposed reforms to improve the fidelity of research through open science, clinical implementation sciences for precision health, and training the primary care workforce in core competencies of genetic medicine to enable precision health for all. Born and raised in Seattle, I love the west and Pac-12 football, fishing, sailing, marathon running and rowing.
    The Burt and Marion Avery Family Professor
    Professor of Biochemistry and of Genetics
    Adjunct Clinical Associate Professor, Medicine - Hematology

    Bio

    Bruno C. Medeiros, MD is associate professor of medicine and director of the inpatient hematology service. He is also director of Cancer Center ITA services at Stanford Comprehensive Cancer Center. Dr. Medeiros graduated from the Universidade Federal do Parana with a medical degree, in 1998. He completed his post-graduate training at the University of Colorado in Denver and the Princess Margaret Hospital in Toronto (Acute leukemia fellowship). Dr. Medeiros’ clinical interests include management of advanced hematologic malignancies, including AML, ALL, MDS and CML. His clinical research interest focuses on the development of novel therapeutic regimens for patients with acute leukemia, with special interest in the development of novel therapeutic strategies for patients with acute myeloid leukemia. He is the leader in several institutional investigator initiated clinical trials, active investigator in collaborative multi-institutional clinical studies and an active member of the SWOG acute leukemia panel. Dr. Medeiros has authored more than 120 peer-reviewed manuscripts. Dr. Medeiros has served as the track leader for ASCO meeting Leukemia, Myelodysplasia and Transplantation scientific review subcommittee, he functions as the Associate Editor of the Leukemia Panel for Cancer.Net, he is a member of the editorial board for Leukemia Research and serves as a reviewer for several specialized journals, such as Blood, Leukemia, Haematologica and Cancer, among others.
    Professor of Radiology (Canary Cancer Center) and, by courtesy, of Electrical Engineering

    Bio

    Dr. Demirci is currently a Professor at Stanford University School of Medicine with tenure at the Canary Center for Early Cancer Detection. Prior to his Stanford appointment, he was an Associate Professor of Medicine at Brigham and Women's Hospital, Harvard Medical School and at Harvard-MIT Division of Health Sciences and Technology serving at the Division of Biomedical Engineering, Division of Infectious Diseases and Renal Division. He leads a group of 20+ researchers focusing on micro- and nano-scale technologies. He received his B.S. degree in Electrical Engineering in 1999 as a James B. Angell Scholar (summa cum laude) from University of Michigan, Ann Arbor. He received his M.S. degree in 2001 in Electrical Engineering, M.S. degree in Management Science and Engineering in 2005, and Ph.D. in Electrical Engineering in 2005, all from Stanford University. The Demirci Bio-Acoustic MEMS in Medicine Lab (BAMM) specializes in applying micro- and nanoscale technologies to problems in medicine at the interface between micro/nanoscale engineering and medicine. Our goal is to apply innovative technologies to clinical problems. Our major research theme focuses on creating new microfluidic technology platforms targeting broad applications in medicine. In this interdisciplinary space at the convergence of engineering, biology and materials science, we create novel technologies for disposable point-of-care (POC) diagnostics and monitoring of infectious diseases, cancer and controlling cellular microenvironment in nanoliter droplets for biopreservation and microscale tissue engineering applications. These applications are unified around our expertise to test the limits of cell manipulation by establishing microfluidic platforms to provide solutions to real world problems at the clinic. Our lab creates technologies to manipulate cells in nanoliter volumes to enable solutions for real world problems in medicine including applications in infectious disease diagnostics and monitoring for global health, cancer early detection, cell encapsulation in nanoliter droplets for cryobiology, and bottom-up tissue engineering. Dr. Demirci has published over 120 peer reviewed publications in journals including PNAS, Nature Communications, Advanced Materials, Small, Trends in Biotechnology, Chemical Society Reviews and Lab-chip, over 150 conference abstracts and proceedings, 10+ book chapters, and an edited book. His work was highlighted in Wired Magazine, Nature Photonics, Nature Medicine, MIT Technology Review, Reuters Health News, Science Daily, AIP News, BioTechniques, and Biophotonics. He is fellow-elect of the American Institute of Biological and Medical Engineering (AIMBE, 2017). His scientific work has been recognized by numerous national and international awards including the NSF Faculty Early Career Development (CAREER) Award (2012), the IEEE-EMBS Early Career Achievement Award (2012), Scientist of the year award from Stanford radiology Department (2017). He was selected as one of the world’s top 35 young innovators under the age of 35 (TR-35) by the MIT Technology Review at the age of 28. In 2004, he led a team that won the Stanford University Entrepreneur’s Challenge Competition and Global Start-up Competition in Singapore. His work has been translated to start-up companies including DxNow, KOEK Biotechnology and LEVITAS. There has been over 10,000 live births in the US, Europe and Turkey using the sperm selection technology that came out of Dr. Demirci's lab. He has been cited over 2500 times within the last two years (H index, 48).

Affiliations

Organizations