How Epigenetic Factors Influence Cell Behavior
The Power of Genes

“In cancer is a disease of genes,” says SCI member Howard Chang, MD, PhD, a Professor of Dermatology in the Stanford School of Medicine. So for healthy cells to turn malignant something must go wrong with their genes, right? Not necessarily.

Cancer is often caused by permanent alterations or damage to cells’ DNA—commonly referred to as genetic mutations—but mutations are not the entire story. There is another major component to genetic regulation called “epigenetics.”

“Cells choose to turn on some sets of genes and not other sets.”
— Howard Chang, MD, PhD

Broadly stated, epigenetics is a collection of processes within the cell nucleus that can control or modify gene behavior without damaging the genes themselves. Chemical interactions, and chain reactions, can change which genes are turned “on” in a cell and thereby change its activity or even what type of cell it becomes.

“All the cells in the body have the same genes, but of course your eye is not the same as your liver,” said Chang. “Cells choose to turn on some sets of genes and not other sets.”

Individual cell characteristics and behaviors are expressed as a consequence of genetic activation, i.e., which genes are turned on, which are turned off and when. Changing a cell’s genetic function, even without changing its genetic structure, can dramatically alter that cell’s behavior and fate.

See Epigenetics, page 4
Message from the Director
Showcasing SCI’s Many Facets

This edition of SCI News exemplifies the range of activities that our Institute supports and coordinates. We are proud to be an NCI-designated Comprehensive Cancer Center, and we embrace our mission of cancer prevention, research, treatment, education and training.

Our lead story is on the exciting topic of “epigenetics,” the myriad of factors that influence cell DNA and activity. Many talented SCI members are helping define this burgeoning field, perhaps none more than Howard Chang, MD, PhD, whose work is highlighted.

We also profile Elizabeth Anderson, the new leader of our Cancer Clinical Trials Office. Clinical trials are the indispensable proving ground for new cancer therapies, and Elizabeth’s skills and passion are perfectly suited for this pivotal role.

Breast cancer remains an important area of both research and clinical activity, and in this issue we provide an update on our outstanding breast cancer clinical program, with insights from the highly respected George Sledge, MD, our Division of Oncology Chief. We also review the 16th annual Bay Area breast cancer survivor’s conference hosted by our partners at the Cancer Prevention Institute of California.

Lastly, I encourage everyone to read the inspiring interview with cancer survivor and philanthropist Fran Codispoti, a beloved member of SCI’s volunteer Cancer Council of advisors. Fran recounts her history with Stanford and her unwavering belief in medical research. Through her words and example, she reminds us that giving back to our community ultimately enriches ourselves.

I want to again thank you, the members of our Stanford Cancer Institute community, for all that you do to help us reduce the burden of cancer.

Beverly S. Mitchell, MD
Director
In Profile
Elizabeth Anderson

The Stanford Cancer Institute is pleased to welcome Elizabeth Anderson as the new Executive Administrative Director of the SCI Cancer Clinical Trials Office (CCTO).

The CCTO provides comprehensive administrative, study management and regulatory services to SCI investigators involved in the design and conduct of cancer-related clinical trials. (Clinical trials are carefully designed studies to determine the safety and efficacy of experimental cancer treatments and protocols, either through direct interaction with patients or through the collection and analysis of blood, tissues or other samples.) At any given time, the CCTO is administering hundreds of ongoing trials.

“Through my industry experience, I have developed a business focus which is so important to bring to this position.” — Elizabeth Anderson

Asked to provide the focus of CCTO, Anderson was quick to reply, “First is protecting the safety and welfare of our trial subjects (cancer patients), and second is the integrity of our research data.”

Clinical research coordinators and medical staff administer interventions to participating patients, and closely monitor their health status and response to the interventions. They also meticulously gather and catalogue vast amounts of patient data, which is essential to determining each study’s outcomes.

Inclusion of underserved patients is an important part of the research mission, so the CCTO staff work to increase awareness of and enrollment in cancer clinical trials through community outreach initiatives, including multilingual educational materials and active engagement in minority communities (which tend to have lower participation rates in trials).

With CCTO’s approximately 180 employees engaged in a range of complex and highly regulated activities and programs, Anderson stressed the need for teamwork, mutual support and compassion. “We are all in this together; we all have the same goal of providing the best support for our patients,” she said.

“We could not be happier that Elizabeth is leading the CCTO,” said SCI Director Beverly Mitchell, MD. “She combines tremendous experience, infectious energy and true compassion for our patients.”

Anderson grew up in the Boston area. She earned biology and nursing degrees, and embarked on a career in public health. This experience led to a position as a clinical research coordinator, which in turn led to subsequent clinical research operations positions with biotech companies based in Massachusetts.

“Our goal is to have the strongest, most impactful clinical research portfolio available for our patients,” said Anderson. “That is going to help change the treatment of cancer, and that is why I do this every day.”
Epigenetics is a complex and rapidly growing field of cancer research, and many SCI members are incorporating it into their work. They study which epigenetic factors are involved in the different types of cancer, how they work, whether they can be manipulated or used as a target for therapeutic intervention.

Chang is an influential leader in the area, co-authoring many important publications and creating tools that aid other researchers. His work has been recognized with numerous awards, including the prestigious National Cancer Institute Outstanding Investigator Award, which provides significant support for his work for up to seven years. (Please see article on page 10.)

DNA is contained inside the cell nucleus, but it is not floating around randomly. The strands—which actually measure about two meters in length!—have to be incredibly tightly packed inside a protein-based wrapper called “chromatin,” the primary function of which is to compress the DNA into the familiar “X” and “Y” chromosome shapes. For this discussion, think of chromatin as part suitcase and part scaffolding. Since any one cell uses only a fraction of the 30,000 genes contained in its DNA, the chromatin condenses and packs away the sections of genetic material not being used (the suitcase) and it helps loosen up and expose the genes that are in use (the scaffolding).

The ATAC-seq assay is one hundred times faster and one million times more sensitive than previous tests.

Proteins in the chromatin, called “histones,” send chemical signals to the exposed genes, turning them on and off to perform cell functions. If the histone’s chemistry changes—and it does—the gene responds accordingly. This is a naturally occurring process, triggered by enzymes that reside in the nucleus. The change to the histone can cause behavioral changes in the genes, and these changes can be normal and necessary. For example, when cells divide they go through a precise sequence of steps that are orchestrated by specific enzymes, proteins and genes. But if the process goes awry it may contribute to the development of disease.

It is important to note that genetic mutations and epigenetics are not unrelated phenomenon. In fact they often have significant influence on each other. There has been much progress in the last ten years in sequencing the DNA of cancer cells, identifying some of the key mutations and the order in which they occurred. This work has discovered that a lot of the first mutations reside in genes involved with epigenetic processes. If a cell gets a faulty set of genetic instructions—even from perfectly normal genes—it can set the cell on a path to cancer.

Subsequent mutations may affect genes that control how fast the cell
divides (an important trait in many cancers). Mutations can also occur in the genes that support cells’ internal DNA damage repair mechanisms. (Understanding this latter process is useful, as there are cancer therapeutics that seek to inhibit the DNA repair system of cancer cells, thereby increasing the efficacy of chemotherapy.)

“\textit{It appears epigenetic factors are critical to leukemia development and propagation.”}\n\textendash\ Ravi Majeti, MD, PhD

There is currently a tremendous amount of interest in this the field of epigenetics. This is partly due to shear breadth and complexity of the various chemical processes at work. Another factor is that much of the activity in the nucleus is driven by enzymes, which are preferred targets for drug development. In fact, there are already a number of enzyme-inhibiting drugs on the market. As always in science, advances in computing, gene sequencing and other technologies have also helped propel the research. One of the biggest recent advances began at Stanford.

In 2013, Chang and his collaborator William J. Greenleaf, PhD, an Assistant Professor of Genetics and SCI member, developed a next generation procedure for scanning DNA for openings in the chromatin—the “unpacked” sections that suggest gene activity. Called ATAC-seq (Assay for Transposase-Accessible Chromatin with high throughput sequencing), the technique represented an astonishing technological leap, being one million times more sensitive, 100 times faster and needing only 1,000th the sample size of the previous chromatin-testing assay.

Chang describes the technique as essentially “spray-painting” the chromatin with a novel engineered enzyme that adheres only to the exposed genetic surfaces, and can be programmed to carry out a variety of tests. Chang and Greenleaf have since refined the technique to the point where they can now study single cells, which enables more exploration of the heterogeneous aspects of cancer tumors.

While the assay is now in use in an enormous range of studies in laboratories throughout the world, plenty of exciting cancer applications remain at Stanford. For example, SCI member Ravi Majeti, MD, PhD, Associate Professor of Medicine (Hematology), and colleagues worked with Chang and ATAC-seq to create chromatin maps of normal blood stem cells and of the development stages as cells differentiated into the various types of mature blood cells. Their next project is to map leukemia cells and see how they differ from each other, in the hopes of creating a simple test to determine the aggressiveness of each patient’s leukemia, and to help identify new therapeutic targets.

“\textit{We have a biological system that we are interested in understanding, so it’s great to collaborate with Howard (Chang) and Will (Greenleaf) who have developed these amazing tools that we can apply to our system,”} said Majeti.

Majeti’s main area of study is Acute Myeloid Leukemia (AML), which has a huge number of mutated epigenetic factors. In fact, Majeti states that nearly all cases of AML contain some epigenetic mutations.

“It appears the epigenetic factors are critical to leukemia development and propagation,” he said. “We are excited to find out how they cooperate with the other known AML mutations, and if they can potentially be targeted.”

Like Majeti and Chang, many SCI members—and their counterparts throughout the global cancer research community—are working to discover more about the influence of epigenetic factors, and apply this knowledge to their particular areas of expertise. With enhanced tools, like the ATAC-seq assay and ever more powerful genetic profiling, researchers are confident that epigenetics will play an increasingly important role in the understanding and treatment of cancer. Continue to follow SCI News for updates.
In Conversation
Fran Codispoti

Fran Codispoti has a long and intensely personal relationship with cancer treatment at Stanford. A survivor, a mother and an engaged community member, she transitioned from the world of business to the world of philanthropy, and has been a stalwart advisor and supporter for the Stanford Cancer Institute. She is a long-serving leader on the SCI Cancer Council and an original member of the Under One Umbrella committee, which hosts an annual gala luncheon supporting the Stanford Women’s Cancer Center.

Originally from Brooklyn, New York, Codispoti travelled throughout her childhood as part of a military family. And while it may not have been the easiest childhood, she credits those early experiences with her resilient, no-nonsense and can-do approach to life and its myriad of challenges.

She and her husband Kenneth Schroeder, an executive with several Silicon Valley companies, including being CEO of KLA-Tencor, were involved in many philanthropic causes, including local non-profits concerned with housing, education, health and support of older adults.

Tragically, Schroeder succumbed to ALS in late 2016. Through it all Codispoti has remained a passionate believer in the importance of discovery research, and of applying a businessperson’s discipline to setting goals and creating good processes.

How did you get involved with Stanford Cancer Institute?
I was involved with Stanford before there was a Cancer Institute (laughs). In 1982 I was diagnosed with Hodgkin disease. It was a complete shock, not least because I was in my 30’s and Hodgkins is usually diagnosed in younger people. Plus I was too busy! I had just had my second child, had started a recruiting company and was going to night school at Santa Clara to get my MBA.

“You have to give back.”
— Fran Codispoti

When my doctor found the lump in my neck he immediately referred me to Stanford as the recognized leader in successfully treating Hodgkins. So off I went to Stanford.

What was the experience like?
Luckily, I didn’t have to have chemotherapy. But I did have three six-week courses of daily radiation, with short breaks between the courses. The whole process took six months, and although the procedure is painless, over time it takes quite a toll on your body and spirit. But I had to stay strong and soldier on because I had a baby and my son and I wanted to see them grow up.

Over the course of all those visits to Stanford—and the regular follow-ups for the next five years—I developed relationships and a connection to the people and the place. It proved to be a turning point in my life.

How so?
I had to stop my business and schooling during my treatment and recovery. As my energy came back I began to do fundraising for a local elementary school and I realized how I could bring my business experience to fundraising.

Thereafter, I helped raise funds for many organizations in our community, including Bay Area Cancer Connections, Housing Options for Teachers, and Avenidas to name a few.

At the same time Ken and I were making small donations to Stanford, but after a few years I wondered if there was a way to be more specific in our giving. You see, ever since my diagnosis, I had been curious about how I got Hodgkins Disease, and I wondered if research could provide any answers for me and others. Hearing my interest in research, my radiation oncologist, Dr. Richard Hoppe, introduced me to Dr. Amato Giaccia (the Jack, Lulu and Sam Willson Professor, Professor of Radiation Oncology and SCI’s Associate Director of Basic Science) and I became fascinated by the work he was doing.
This is another aspect of philanthropy, by the way. You are provided opportunities to be exposed to all this exciting research, and you are constantly learning.

Did you learn any insights into your diagnosis?

Maybe too many cookies because of the sugar (laughs). No, no, over time I recognized that I probably wouldn’t get that answer, but along the way I had learned so much about what Stanford was doing to study and treat cancer that I remained interested and motivated to help.

So in the 90’s, when they invited me to join the Cancer Council, I was happy to do so. In the beginning, each meeting included a cancer researcher giving a presentation about their work. It was really interesting, but it was not obvious as to why the council needed our help. Since the early days, the council has evolved into a more cohesive group with specific fundraising goals.

You have seen a lot of change during your tenure.

Serving on the Cancer Council has been a joy for me; it’s really fun because we are moving forward on the Transforming Cancer Care Initiative for patients.

Bev (Mitchell, MD, SCI Director) has been a superb leader, guiding the group towards many accomplishments, recruiting new people, achieving the NCI Comprehensive designation and making progress in so many other areas. Bev brought in Sri Seshadri (Stanford Health Care Vice President of Cancer Services), who developed the New Patient Care Model, which has helped transform a patient’s experience when navigating the complex issues facing patients.

In addition, my experience has taught me that basic research is absolutely paramount for medicine to advance. We must support research even if we are not guaranteed to get the result we want. That passion is still very strong within me, and I continually try to emphasize the point.

What else do you tell others who are interested in philanthropy?

I keep a quote on my desk from an unknown author, and it reminds me that, “every human life is precious” and that “to whom much is given much is required.”

When you get so much from your community, you have an obligation to give back in some way. Whether you are donating time or money, you become part of something larger than yourself, and that is uplifting for your spirit. It’s just human nature that it makes you feel better to help others in any way that you can. Once you give—and I mean give of yourself—you will see the difference it makes in you. ■
The Current Breast Cancer Landscape in the Bay Area

CPIC Holds 16th Annual Conference

Hosted by the Cancer Prevention Institute of California (CPIC), the conference aims to help breast cancer survivors understand their options and make more informed decisions about their health. The informative, and often inspiring, day includes a wide range of community-based organizations sharing educational resources for patients and families.

The conference also features a series of speakers covering aspects of breast cancer research and treatment advances. SCI member Allison W. Kurian, MD, MSc, an Associate Professor of Medicine and Health Research and Policy, delivered the keynote address on “Progress and Challenges in Reducing the Burden of Breast Cancer.”

SCI member Pamela Ratliff, MPA, manager of SCI’s Community Engagement Program, was among the panel of experts participating in “Networking to Address Breast Cancer Disparities: Learning from Researchers, Community Partners and Advocates, and Survivors.” This popular session identified critical research questions to address in underserved populations along with recommendations to promote collaboration across different segments of the breast cancer community.

Kerry Kingham, MS, LCGC, a licensed genetic counselor with Stanford, led a breakout group on “Genetics and Family Risk.” Darla Watanabe, BSN, RN, PHN, director of supportive care programs, held a session on “Supportive Care: Why it is Important to Care for Your Mind, Body, and Soul.”

SCI was one of several organizations providing community-oriented educational and reference resources on breast cancer services offered in the Bay Area and beyond.

More information about the conference, including some video highlights, can be found through the CPIC website at http://www.cpic.org/events/Breast-Cancer-Conference.
Research Advances Enable Individualized Patient Care
SCI’s Clinical Breast Cancer Program

About 250,000 women are diagnosed with breast cancer each year in the US, and about 40,000 women die of the disease. While no one would suggest that any two of these women are the same, until the early 2000s their disease was considered to be one-size-fits-all.

When diagnosed, the vast majority of patients in the past received a treatment schedule based on the extent of their disease (the tumor size and whether or not the tumor had spread to the lymph nodes): surgery usually followed by radiation and/or chemotherapy. It was an aggressive strategy to combat a lethal disease, and it saved and prolonged countless lives. But while the patients were treated the same, not all responded the same to the therapy. Why not?

It is now clear that breast cancer is not a single disease, but in fact a family of related diseases. The different forms of the disease—often referred to as intrinsic sub-types (based on pioneering research at Stanford which utilized gene “chip” array technology)—feature unique genetic and behavior characteristics, as well as differing risk factors, which require more nuanced treatments strategies.

In response, Stanford takes a team approach to treating breast cancer. Every new patient is seen by a multidisciplinary group of experts who work together to develop an individualized care plan. The treatment continuum begins with breast imaging—typically a mammogram, but there are also ultrasound and MRI imaging techniques—performed by a radiologist trained in breast imaging techniques. When a mass is found a biopsy is performed by the radiologist or by a surgeon. The tissue sample is sent to expert pathologists specializing in breast cancer who identify its sub-type, and levels of aggressiveness and extent of any spread to lymph glands.

The imaging and pathological data are then collectively reviewed by a committee of medical oncologists, surgeons, radiation oncologists, geneticists, psychosocial specialists and others who work together to develop an initial course of treatment. Stanford’s breast cancer group holds weekly meetings to evaluate cases. Their considerations also include the relevant details of each patient’s health status and even family history (ie, does she have any relatives who have had breast cancer?).

“Having the multidisciplinary team allows us to make those decisions about what represents the most appropriate and most effective therapy for each individual patient,” said renown breast cancer specialist George Sledge, MD, Professor, and Chief of Stanford’s Division of Oncology.

For example, if the pathology report shows that a tumor is estrogen sensitive, meaning that estrogen helps fuel its growth, then that patient’s treatment may begin with an estrogen-blocking drug to inhibit tumor growth before moving on to other therapies. Similarly, women diagnosed with larger tumors will often begin their treatment with chemotherapy to shrink the size of the tumor to increase the odds of effective surgery, and to preserve healthy breast tissue.

Another important benefit of this individualized approach is that it reduces patients’ exposure to toxic treatments. It has long been observed that some tumors do not respond to chemotherapy, but because they didn’t know which ones, doctors were compelled to give chemotherapy to all their patients. Years of research has identified which sub-types or individual cases will not respond to chemotherapy, and thus spared many women from undergoing rigorous treatment which yields no benefit.

See Breast Cancer Program, page 10
Two SCI Members Receive Long-term Grants from the National Cancer Institute

Levy and Chang Named NCI Outstanding Investigators

SCI members Ronald Levy, MD, and Howard Chang, MD, PhD, each earned prestigious Outstanding Investigator awards from the National Cancer Institute (NCI). The grants award up to $7 million over six years to advance their cancer research projects.

The awards provide funding to investigators with outstanding records of productivity in cancer research. Recipients receive up to $600,000 each year for seven years to pursue or extend research projects of unusual potential.

“This is a great honor and I am delighted to have this opportunity,” said Chang. “We plan to use this award to investigate how a class of genes called long noncoding RNAs are involved in human cancers. We are particularly interested in how long noncoding RNAs may make each cell within the cancer different from one another — a property that makes cancer difficult to treat — and also how specific chemical changes alter the meaning of long noncoding RNAs in cancer.”

Levy is investigating ways to train the immune system to attack and eradicate cancer cells.

“We are combining the discoveries that stimulate the immune system with new knowledge about the Achilles’ heels of cancer cells,” said Levy, who is the Robert K. and Helen K. Summy Professor in the School of Medicine. “Great strides have been made in these fields and we hope to bring them together to help patients.”

“The NCI Outstanding Investigator Award addresses a problem that many cancer researchers experience: finding a balance between focusing on their science while ensuring that they will have funds to continue their research in the future,” said Dinah Singer, PhD, director of NCI’s Division of Cancer Biology. She added that providing seven years of uninterrupted funding gives investigators the opportunity to fully develop ambitious cancer research programs.

Chang and Levy are both members of Bio-X and SCI. Chang is also a core investigator at the Parker Institute for Cancer Immunotherapy, the Child Health Research Institute, Neurosciences Institute and ChEM-H.

Breast Cancer Program, continued from page 9

“One of the biggest advances in breast cancer in the last ten years is that we are able to use much less chemotherapy,” said Sledge.

Another important advance is the increased understanding of how specific genetic mutations, particularly BRCA1 and BRCA2, contribute to breast cancer incidence. SCI members have been leaders in laboratory and clinical research in this area, and were part of a recent study showing that a new combination drug therapy was effective in women with BRCA-related breast cancer.

SCI members are leading and participating in numerous ongoing breast cancer clinical trials, and details can be found through the Cancer Clinical Trials Office and the Stanford Women’s Cancer Center.

“Research cures cancer; it’s only a disease,” said Sledge, a self described ‘pathological optimist.’ “It won’t be easy, but human knowledge, experience and willingness to try new things will ultimately prevail.”
SCI Development Update
Cancer Philanthropy Takes Many Forms

Private philanthropy is more important than ever in ensuring the Stanford Cancer Institute’s continued leadership in discovery research and patient care. Charitable investments in SCI provide the resources needed to develop new therapies, prevention strategies and methods of early detection that reduce the occurrence and burden of cancer.

Contributions of any size can truly make a difference, and all of our donors become part of the SCI community. As was so eloquently stated by SCI Cancer Council member Fran Codispoti, “you become part of something larger than yourself, and that is uplifting for your spirit.” (Please see “In Conversation” on Page 6.)

Your support enables us to advance promising new research and treatment programs, train future generations of physicians and scientists, expand vital patient support services and share our knowledge with the community. Philanthropic investments can take many forms and be targeted toward either general or specific purposes. Below are some examples, and you can always contact the professionals on the Medical Center Development team at 650.725.2504.

The **Cancer Discovery Fund** is SCI’s indispensible source of general funding to support every aspect of our mission. Your contributions enable us to provide our researchers and physicians with shared resources, to recruit and retain the most talented faculty, and to rapidly respond to new ideas and opportunities in the drive to understand and eliminate cancer. The Discovery Fund enables the SCI to provide grant support to novel new research projects, critical training opportunities and the hard work of translating laboratory discoveries into new treatments for patients.

Your gifts can also designate a specific purpose – such as patient care, research, education or cancer prevention. Or you may choose to support the work of a particular physician, scientist or clinical specialty area.

Tribute Gifts may be made in memory or in honor of a loved one or friend, or to celebrate a special occasion. This is a thoughtful way to show your support for our cancer programs, and you can choose to have your designate informed that a gift has been made in their honor.

Endowed Gifts create a legacy for the donor and provide a predictable resource pool for the SCI. Examples of endowment support include:

- **An Endowed Faculty Scholar Fund** honors outstanding young faculty members early in their careers. Such awards typically last for three or four years—a period long enough to complete a significant segment of work, but short enough to make the funds available to other qualified candidates.

- **Endowed Professorships** are the highest honor Stanford bestows on its faculty, awarded to physicians and scientists whose work represents excellence in cancer medicine.

Tax benefits can be realized through **Planned Gift** donations from your estate, gifts of retirement plan assets, real property or other complex assets, including some that can pay you income for life. Planned gifts can be carefully tailored to meet your needs.

A **Bequest Gift** through your will or trust is entirely free from federal estate taxes. You may make a bequest and retain the ability to change it at any time.

Life Income Gifts are created when you transfer cash, securities, real estate or other assets to Stanford. The University invests those assets, and you or your beneficiary receives an income stream for life, after which the principal stays with Stanford.

Lastly, many companies offer **Matching Gifts** for their employees’ donations to non-profit organizations. Company websites and human resources professionals can confirm if your employer offers a matching gift policy.

Thank you again for all your generous support, and please to not hesitate to contact the Medical Center Development team at 650.725.2504 to learn about more giving options and to make your contribution.
SCI Supports African American Breast Cancer Conference

On Saturday May 6, the SCI Community Partnership Program held its 6th Annual Conference: Breast Cancer & African Americans (BCAA) at the South San Francisco Conference Center. This very special event focuses on eliminating breast cancer disparities in African Americans through the dissemination of high quality, timely and culturally tailored health information and resources.

The agenda offered dialogue with health professionals, researchers, cancer survivors, advocates and other key stakeholders in the African American community. This year’s keynote speaker was award-winning health journalist, television personality and author Dr. Rovenia Brock, commonly known as “Dr. Ro.”

One key message was the importance of people of color participating in clinical trials. African Americans and other minorities are consistently under-represented in cancer studies.

More information on SCI’s community engagement efforts is available at: http://med.stanford.edu/cancer/about/community.