Definitions and Equations

<table>
<thead>
<tr>
<th>BMI = weight (kg) / height² (m²)</th>
</tr>
</thead>
</table>

WHO BMI Classification

<table>
<thead>
<tr>
<th>Definition</th>
<th>BMI 30-40 kg/m²</th>
<th>BMI ≥ 40 kg/m²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Obese Class I and II (obese)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Obese Class III (morbidly obese)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Body Weight Equation

<table>
<thead>
<tr>
<th>ITW (kg)</th>
<th>Equation*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male: 50.0 + 2.3 x (number of inches over 5 ft)</td>
<td></td>
</tr>
<tr>
<td>Female: 45.5 + 2.3 x (number of inches over 5 ft)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ABW (kg)</th>
<th>Equation*</th>
</tr>
</thead>
<tbody>
<tr>
<td>IBW + C x (TBW – IBW)</td>
<td></td>
</tr>
<tr>
<td>C = either 0.3 or 0.4 (ABW⁰.³ or ABW⁰.⁴)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LBW₂⁰₀⁵ (kg)</th>
<th>Equation*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male: 9270 x TBW + 6680 + 216 x BMI</td>
<td></td>
</tr>
<tr>
<td>Female: 9270 x TBW + 8780 + 244 x BMI</td>
<td></td>
</tr>
</tbody>
</table>

LBW (for anti-tuberculosis medications):
- Lean Body Weight (men) = (1.10 x Weight(kg)) - 128 x (Weight²/(100 x Height(m))²)
- Lean Body Weight (women) = (1.07 x Weight(kg)) - 148 x (Weight²/(100 x Height(m))²)

Table 1. Recommended Antibiotic Dosing in Obesity (BMI ≥ 30 kg/m²)

<table>
<thead>
<tr>
<th>Drug</th>
<th>Maximum Dose*</th>
<th>Study Type</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amoxicillin</td>
<td>No Data</td>
<td></td>
<td>- Consider upper limit of normal dosing in severe infections; e.g. up to 1g PO TID</td>
</tr>
<tr>
<td>Ampicillin</td>
<td>Insufficient data</td>
<td></td>
<td>- Consider upper limit of normal dosing in severe infections; e.g. up to 2g q4h</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- Single study with 6 patients: higher V₄ but decreased Vd/kg TBW, CL unchanged²</td>
</tr>
<tr>
<td>Nafcillin</td>
<td>Insufficient data</td>
<td></td>
<td>- Single case report in critically ill, obese patient⁶: consider upper end of normal dosing in severe infections; e.g. up to 2 g q4h</td>
</tr>
<tr>
<td>Piperacillin-tazobactam⁴,¹⁴</td>
<td>Up to 4.5 g q8h (prolonged infused over 4 hours) or 4.5 g q6h (30 min infusion)</td>
<td></td>
<td>- Prolonged infusion preferred for critically ill, FN, CF, obese with CrCl > 100 infections with less susceptible pathogens (i.e. MIC ≥16)</td>
</tr>
<tr>
<td>Cefazolin⁵,²¹</td>
<td>Insufficient data</td>
<td></td>
<td>- Consider upper limit of normal dosing in severe infections, e.g. up to 2 g q8h (option for continuous infusion)²², or 1.5-2 g q6h intermittent dosing</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- In post-trauma critically ill patients, data suggests 2g q6h if CrCl > 215 ml/min,²³</td>
</tr>
<tr>
<td>Cephalexin</td>
<td>No data</td>
<td></td>
<td>- Consider upper end of normal dosing in severe infections; e.g. 500-1000 mg q6h</td>
</tr>
<tr>
<td>Cefepime, ceftazidime⁴,²⁴,²⁵</td>
<td>Up to 2g q8h prolonged infusion</td>
<td></td>
<td>- Prolonged infusion if critically ill, CF, FN, obese with CrCl > 100 ml/min, infections with less susceptible pathogens (i.e. MIC ≥8)</td>
</tr>
<tr>
<td>Drug</td>
<td>Change</td>
<td>Notes</td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>--------</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>Ceftazidime/avibactam</td>
<td>No change</td>
<td>- Consider extended infusion if targeting a higher PD endpoint of 100% fT>MIC or with less susceptible pathogens (i.e. MIC ≥ 2)</td>
<td></td>
</tr>
<tr>
<td>Ceftolozane/tazobactam</td>
<td>No change</td>
<td>- Use caution in renal impairment and with high doses (1g q6h): increased risk of seizures</td>
<td></td>
</tr>
<tr>
<td>Doripenem</td>
<td>No change</td>
<td>- Single case report suggests higher dosing needed for MRSA infections</td>
<td></td>
</tr>
<tr>
<td>Ertapenem</td>
<td>No change</td>
<td>- Insufficient data except as noted in critically ill, septic patients on CRRT.</td>
<td></td>
</tr>
<tr>
<td>Imipenem</td>
<td>No data</td>
<td>- Prolonged infusion if critically ill, FN, CF, obese with CrCl > 100 ml/min, if targeting a higher PD endpoint of 100% fT>MIC, or infections with less susceptible pathogens (i.e. MIC ≥ 2)</td>
<td></td>
</tr>
<tr>
<td>Meropenem</td>
<td>Same dose: consider prolonged infusion for critically ill patients</td>
<td>- PK reportedly unaltered by obesity, however, serum levels may be sensitive to CrCl: 1,000 mg q24h has been suggested for CrCl<sub>IBW</sub> > 110 ml/min to target gram negative pathogens</td>
<td></td>
</tr>
<tr>
<td>Monobactam</td>
<td>Insufficient data</td>
<td>- Insufficient data except as noted in critically ill, septic patients on CRRT.</td>
<td></td>
</tr>
<tr>
<td>Fluoroquinolones</td>
<td></td>
<td>- Insufficient data except as noted in critically ill, septic patients on CRRT.</td>
<td></td>
</tr>
<tr>
<td>Ciprofloxacin</td>
<td>In critically ill, septic patients on CRRT with organisms with MICs > 0.5mg/L (e.g. P.aeruginosa, A.baumannii): > 90kg: 400 mg IV q8h</td>
<td>- PK reportedly unaltered by obesity, however, serum levels may be sensitive to CrCl: 1,000 mg q24h has been suggested for CrCl<sub>IBW</sub> > 110 ml/min to target gram negative pathogens</td>
<td></td>
</tr>
<tr>
<td>Levofloxacin</td>
<td>750 mg q24h</td>
<td>- Maximum dose of 360 mg daily to limit the risk of nephrotoxicity</td>
<td></td>
</tr>
<tr>
<td>Moxifloxacin</td>
<td>No change</td>
<td>- Consider maximum dose 200 mg or 2 million units daily to limit risk of toxicity</td>
<td></td>
</tr>
<tr>
<td>Aminoglycosides</td>
<td>Use adjusted body weight (ABW<sub>0.4</sub>)</td>
<td>- Study q8h if targeting 50% fT>MIC for MRSA</td>
<td></td>
</tr>
<tr>
<td>Polymyxins</td>
<td>Use IBW</td>
<td>- Manufacturer maximum: 2,700 mg/day in severe infections; 4,800 mg/day given by intermittent or continuous infusion for life-threatening infections</td>
<td></td>
</tr>
<tr>
<td>Amikacin</td>
<td>Use adjusted body weight (ABW<sub>0.4</sub>) for initial dose</td>
<td>- Maximum dose of 360 mg daily to limit the risk of nephrotoxicity</td>
<td></td>
</tr>
<tr>
<td>Gentamicin</td>
<td>Use adjusted body weight (ABW<sub>0.4</sub>) for initial dose</td>
<td>- Maximum dose of 360 mg daily to limit the risk of nephrotoxicity</td>
<td></td>
</tr>
<tr>
<td>Tobramycin</td>
<td>Use adjusted body weight (ABW<sub>0.4</sub>) for initial dose</td>
<td>- Maximum dose of 360 mg daily to limit the risk of nephrotoxicity</td>
<td></td>
</tr>
<tr>
<td>Polymyxins methanesulfonate</td>
<td>Limited data. Consider adjusted body weight (ABW<sub>0.4</sub>), especially in upper end of dosing range</td>
<td>- Maximum dose of 360 mg daily to limit the risk of nephrotoxicity</td>
<td></td>
</tr>
<tr>
<td>Polymyxin B</td>
<td>Limited data. Consider adjusted body weight (ABW<sub>0.4</sub>), especially in upper end of dosing range</td>
<td>- Maximum dose of 360 mg daily to limit the risk of nephrotoxicity</td>
<td></td>
</tr>
<tr>
<td>Anti-MRSA agents</td>
<td>Studies from prosthetic joint infection and SSTI suggest increased doses warranted</td>
<td>- Consider q8h if targeting 50% fT>MIC for MRSA</td>
<td></td>
</tr>
<tr>
<td>Ceftaroline</td>
<td>No change</td>
<td>- Maximum dose of 360 mg daily to limit the risk of nephrotoxicity</td>
<td></td>
</tr>
<tr>
<td>Clindamycin</td>
<td>IV: 600 mg q6h or 900 mg q8h PO: 450 - 600 mg q6h or 600- 900 mg Q8H</td>
<td>- Maximum dose of 360 mg daily to limit the risk of nephrotoxicity</td>
<td></td>
</tr>
<tr>
<td>Drug</td>
<td>Change</td>
<td>Notes</td>
<td></td>
</tr>
<tr>
<td>----------------------</td>
<td>--------</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>Dalbavancin</td>
<td>No change</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Daptomycin</td>
<td>Same weight-based dose but use adjusted body weight (ABW<sub>0.4</sub>)</td>
<td>- Caution in renal insufficiency, dialysis. Monitor CKs and signs of myopathy</td>
<td></td>
</tr>
<tr>
<td>Linezolid</td>
<td>No change</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oritavancin</td>
<td>No change</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| Sulfamethoxazole/trimethoprim | SSTI or severe/complicated UTI: up to 320 mg PO BID or 8-10 mg/kg_{ABW}/day in divided doses | - Limited data to guide optimal dosing weight
- Consider adjusted body weight when using high doses (e.g. >8 mg/kg/day) |
| Tedizolid | No change | |
| Telavancin | Same dose; consider a maximum of 1,000 mg/dose | - Increased systemic exposure may be related to AKI
- These are tentative pending results of an ongoing Phase I trial (NCT02753855) |
| Tigecycline | No change | |
| Vancomycin | See Vancomycin Per Pharmacy Protocol (Appendix C) | - Alternative approach using ABW_{0.4}: loading dose 25-30 mg/kg_{TBW}, initial maintenance dose approximately 15 mg/kg_{ABW} q12h[*], then adjust by TDM
- Loading doses commonly ranged from none to 3g; daily doses commonly ranged 2-4g or 20-30 mg/kg_{TBW}/day
- Adjust doses by TDM (peak and trough) using software utilizing Bayesian methods and AUC targets.
 - If calculating without software, see Hong et al for equations¹¹⁹
 - If only measuring troughs, more cautious and frequent initial monitoring of levels may be warranted |

a. Does not include dose adjustments for renal and/or hepatic impairment. Doses listed are within usual safety margins. Lower doses may be sufficient in mild infections (e.g. UTI). Dosages are based on the provided references and/or the authors' opinion, and should not replace clinical judgment. CrCl assumes calculation using ABW_{0.4} unless specified in table.

b. Dots represent types of studies available and not quantity

c. Dosing recommendations are for severe or deep-seated infections based on similarities in PK profile and dosing recommendations with other antibiotics of the same class when there is insufficient or no data in obese patients.
Table 2. Recommended Antifungal Dosing in Obesity (BMI ≥ 30 kg/m²)

<table>
<thead>
<tr>
<th>Drug</th>
<th>Maximum Dosea</th>
<th>Study Typeb</th>
<th>Comments</th>
</tr>
</thead>
</table>
| Caspofungin | 70 mg x1, then 50-70 mg daily | • • | - Retrospective study from 9 clinical studies found no significant difference in favorable responses in invasive candidiasis between obese and non-obese groups
- PK studies showed no correlation with BMI and PK parameters, but did find negative correlation between caspofungin peak levels and body weight, suggests increased doses needed for higher TBW
- In clinical trial of invasive candidemia, no safety concerns found with caspofungin 150mg daily |
| Fluconazole | Candidiasis: 12mg/kg x1 load, then 6mg/kg q24h (TBW) | • • • | - Doses up to 1200 mg daily have been reported in the literature for Cryptococcus meningitis
- In critically ill, esp with CrCl > 50, higher doses may be warranted to achieve PK/PD target of fAUC/MIC > 100, esp if MIC > 2 Candida spp
- Consider TDM for severe infections |
| Flucytosine | IBW | • | - Single case report.
- adjusted body weight has been suggested in life-threatening infections |
| Liposomal Amphotericin | Use total or adjusted body weight | • • | - No PK data in obese humans; in general pop PK studies, linear increase in Vd and CL with weight
- Safety data: at doses 7.5-15mg/kg/day, similar discontinuation rates; PK became non-linear (max Cmax and AUC at 10mg/kg/day) |
| Voriconazole, | Use adjusted body weight or LBW2005 | • • | - Adjust dosing based on TDM
- Retrospective TDM studies frequently showed supratherapeutic levels in obese subjects when dosed by TBW
- Steady state plasma PK of voriconazole did not suggest weight-based dose adjustments necessary |
Table 3. Recommended Antiviral Dosing in Obesity (BMI ≥ 30 kg/m²)

<table>
<thead>
<tr>
<th>Drug</th>
<th>Maximum Dosea</th>
<th>Study Typeb</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acyclovir</td>
<td></td>
<td></td>
<td>Use ideal or adjusted body weight</td>
</tr>
<tr>
<td></td>
<td>146-148</td>
<td></td>
<td>Case studies</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cidofovir</td>
<td></td>
<td></td>
<td>Use adjusted body weight</td>
</tr>
<tr>
<td>Foscarnet</td>
<td></td>
<td></td>
<td>Use adjusted body weight</td>
</tr>
<tr>
<td>Ganciclovir</td>
<td></td>
<td></td>
<td>Use adjusted body weight</td>
</tr>
</tbody>
</table>

DOCUMENT INFORMATION

A. Original Author/Date
Lina Meng, PharmD, BCPS, BCCCP: 12/27/2016

B. Gatekeeper
SASS Program

C. Review and Renewal Requirement
This document will be reviewed every three years and as required by change of law or practice

D. Revision/Review History
Lina Meng, PharmD, BCPS, BCCCP: 07/24/2017
Emily Mui, PharmD, BCPS: 03/27/2017, 07/24/2017
Marisa Holubar MD MS: 03/27/2017, 07/24/2017
Stan Deresinski MD: 03/27/2017, 07/24/2017

E. Approvals
Antimicrobial Subcommittee: 3/30/2017, 8/17/2017
Pharmacy and Therapeutics Committee: 4/21/2017, 9/15/2017

This document is intended only for the internal use of Stanford Health Care (SHC). It may not be copied or otherwise used, in whole, or in part, without the express written consent of SHC. Any external use of this document is on an AS IS basis, and SHC shall not be responsible for any external use. Direct inquiries to ASP 650-721-1908

Stanford Health Care
Stanford, CA 94305
References:

82. CENTER FOR DRUG EVALUATION AND RESEARCH APPLICATION NUMBER: 206494Orig1s000 CLINICAL PHARMACOLOGY AND BIOPHARMACEUTICS REVIEW(S). 2014.

125.

124.

121.

120.

119.

118.

117.

115.

114.

113.

112.

111.

109.

108.

107.

106.

105.

104.

103.

102.

101.

100.

99.

96.

the American Society of Health

Staphylococcus aureus infections. Pharmacotherapy: The Jou

Adane ED, Herald M, Koura F. Pharmacokinetics of vancomycin in extremely obese patients with suspected or confirmed

Bhalodi AA, Papasavas PK, Tishler DS, Nicolau DP, Kuit JL. Pharmacokinetics of intravenous linezolid in moderately to

Muzevich KM, Lee KB. Subtherapeutic linezolid concentrations in a patient with morbid obesity and methicillin-resistant

Pai MP. Pharmacokinetics of Tedizolid in Morbidly Obese and Covariate Matched Non-Obese Adults. Antimicrobial Agents and

Chemotherapy 2016:AAC.00682-16.

Comparable in Obese and Nonobese Patients and Healthy Subjects. 24th European Congress of Clinical Microbiology and

Infectious Diseases (ECCMID); 2014.

Pai MP. vancomycin clearance: emphasis on obesity. The American
careers of Health System Pharmacists, the Infectious Dis

Hall RG, Hazlewood KA, Brouse SD, et al. Empiric guideline-recommended weight-based vancomycin dosing and

BMJ Pharmacology and Toxicology 2013;14:12.

Kubiak DW, Alquaizani M, Sansonetti D, Barre MA, Calderwood MS. An Evaluation of Systemic Vancomycin Dosing in

Hong J, Krop LC, Johns T, Pai MP. Individualized Vancomycin Dosing in Obese Patients: A Two-Sample Measurement

Hall RG, Payne KD, Bain AM, et al. Multicenter evaluation of vancomycin dosing: emphasis on obesity. The American

DeRyke, Alexander D. Optimizing vancomycin dosing through pharmacodynamic assessment targeting area under the

Pai MP, Hong J, Krop L. Peak Measurement for Vancomycin AUC Estimation in Obese Adults Improves Precision and

Lowers Bias. LID - e02490-16 [pii] LID - 10.1128/AAC.02490-16 [doi].

Denetclaw TH, Yu MK, Moua M, Dowling TC, Steinke D. Performance of a divided-load intravenous vancomycin dosing

Reynolds DC, White LH, Alexander DP, DeRyke CA. Performance of a vancomycin dosage regimen developed for obese

Adane ER, Hald M, Koura F. Pharmacokinetics of vancomycin in extremely obese patients with suspected or confirmed

Rybak M, Lomaestro B, Rotschafer JC, et al. Therapeutic monitoring of vancomycin in adult patients: a consensus review of the American Society of Health-System Pharmacists, the Infectious Diseases Society of America, and the Society of