The DNA-MVA/HIV A Vaccine: Successes and Challenges

Megan Clark
Human Biology 146
Kenyan Sex Workers

■ 1994-1999 Rowland-Jones studies
 - 71 highly exposed, persistently seronegative (HEPS) sex works in Nairobi

■ Cellular immunity?
 - Number of HIV-specific CTLs lower than HIV+ sex workers
 - BUT different epitope specificity

■ Conclusion: Immunity relies on CTLs targeting right epitopes
Vaccine design

- What are the “right” epitopes?
 - Number of HEPs with CTLs specific to env increased with duration of uninfected exposure
 - HEPs tend to respond to pol and B18 $p24$ while HIV+ workers do not

- Vaccine designed with:
 - clade A gag $p24/p17$ epitopes
 - string of ~25 clade A epitopes (gag, pol, nef, env)
Vaccine design

- **Goal**: Make the body produce CTLs specific to “right” HIV epitopes

- **2 delivery methods**
 - Directly inject DNA epitopes
 - Incorporate DNA epitopes into other vector
 - Modified vaccinia ankara (MVA) virus
 - Cellular response to MVA tricks body into also recognizing and responding to HIV epitopes

- **Solution – Combine delivery methods**
 - DNA prime with MVA boost
 - 10-100 times higher T-cell counts than either alone in macaques
Vaccine Immunogenicity

- Amara, 2002 study – 24 macaques
 - 2 DNA prime with 1 MVA boost (SIV and HIV epitopes)
Vaccine Immunogenicity

- Humans – phase I and I/II trials on each vaccine alone since 2001 in Oxford and Nairobi
- Preliminary data
 - HIV vaccine - 12/18 volunteers showed responses in ELISPOT assay
 - MVA vaccine – 4/5 volunteers showed responses in ELISPOT assay
Vaccine safety

Safety – Murine studies
- DNA and MVA alone and in combination safe
- No evidence of pharmacological effects
- Genes cleared from all organs except injection sites by 5 weeks post-vaccination

Published safety data from human phase I trials not yet available
Challenge – Not true immunity

- Vaccine reduces pathogenicity (viral load)
- Doesn’t produce sterilizing immunity
- Sex workers resistant, not immune
 - 12 seronegative workers who reduced or took a break from sex work became seropositive
 - Infection associated with switch in specificity
 - Suggests that repeated exposure to epitopes maintains resistance

Implications – Regular boosting may be necessary.
 - More expensive
 - Many will miss their boosts
Barouch, 2002 – vaccine study on 8 rhesus monkeys
- 7 had successful disease reduction
- 1 had successful reduction until week 24 when viral replication breakthrough occurred, led to disease and death
- Findings – single nucleotide mutation in targeted gag epitope resulted in viral escape, vaccine failure

HIV strain diversity – Will the vaccine produce resistance to other clades?

Implications – Evolving boosts with old and new epitopes
- Ex. Flu vaccine evolves with changing virus
- Burden on research to keep up with virus
Challenge – Mucosal Immunity

- Progression of infection:
 1. Sexual contact – virus enters mucus membrane
 2. Establishes lymphatic tissue virus reservoir
 3. Systemic virus replication begins

- If response is only systemic, won’t block lymphatic reservoir (Pope and Haas, 2003)

- Mucosal response critical to protect against mucosal challenge in mice (Belyakov, 1998)

- Implication – Effective vaccine must elicit mucosal immunity to combat virus at initial contact
Conclusions

- Promising vaccine based on animal and preliminary human data
- Even if no sterilizing immunity, reduction in viral load and replication
 - Slowed disease progression
 - Reduction in transmission
- Outlook – Phase III trials scheduled for 2004
References

Heeney JL. The critical role of CD4+ T-cell help in immunity to HIV. Vaccine 2002; 20: 1961-63.

